ON THE POSITION OF THE SAMPLE MEAN AMONG
THE ORDERED SAMPLE ELEMENTS

by
KArorLy SARKADI, Epir SCHNELL! and IstvAN VINCZE

Introduction

Let &, &,...¢&, be independent and identically distributed random
variables with continuous distribution function F(x) and with density function
F’(z) = f(x). Let us arrange these variables according to their order of magni-

tude: & < &% < ... < & and denote their mean value by E, je f= i 2’1* Eis
n i=1
In the following the probabilities '

(1) p=PE < E<E, E=2,3,...n

are considered.

Although the examination of these probabilities lies close at hand, as
far as we know this problem has not yet been treated in the literature2.

A distribution-free solution cannot be expected. It is obvious that
if F(x) is symmetrical (i.e. F(z) =1 — F[M(§) — z]) the equality p, =
= P,_i+, must be valid. We shall see in the following that for exponentially
distributed variables this symmetry is not fulfilled.

The explicit determination of the probabilities (1) seems to be very
complicated in the general case. The formula based on the joint distribution
of (&%, &%.. .. &%) is rather unmanageable; concerning the exact joint distrib-
ution of (&, &%) only for normally distributed variables is a recursion formula
known and even this is very complicated [4]. In § 1 we shall determine the
probabilities (1) explicitly for the exponential case, making use of the additive
Markovian property of the ordered sample elements in this case; in § 2 an
alternative elementary proof is given. In § 3 for the general case the limiting
joint distribution of & and &f is derived under weak conditions and is shown
to be a two dimensional Gaussian one. As a consequence of this the limiting
Gaussian distribution for the problem will be given in § 4.

§ 1. Exponentially distributed random variables

1. Let the random wvariables &, &, ... &, be independent identically
and exponentially distributed, i.e.
(1.1) Péi<a)=1—eN i=1,2...n

1 Hungarian Central Statistical Office.
2 Added in proof: Our paper was already in print as the paper of DAvip [10]
appeared which contains some of our results but considers only normal distribution.
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240 SARKADI—SCHNELL—VINCZE

We wish to remark that from the identity
Pe=P(Er1 S &< &) = P& <25 <28F)

there follows the independence of the probabilities p, from the value 4 > 0
and thus it is sufficient to consider only the case 2 = 1.

2. We shall make use of the following well known relation: (see e.g.
[1] p. 232) if &y, ¥, . .. ¥, are independent, exponentially distributed random
variables with parameters 4;, 4,, ... 4, then the density function ¢,(f) of the

k
variable 9 = ' 9, is equal to
i-1

(1.(21; =TS R | . L
gilt) = (= D1 Ay by . Ay,
’ RN AE ) B )R )= By
If 4, = 2, =...= 2, = 2 then we obtain from (1.2) the following well known
formula:
At
1.3 () = ———e*.
(1.3) gi(t) (—1)!

3. We shall apply the following well known theorem: if &, &, ..., &,
are independent, identically and exponentially distributed random variables
with the parameter 1 =1 and & < & <...< & ({% = 0) the set of.the
same variables rearranged in increasing order of magnitude, then the incre-
ments 6, = & — & | are independent and exponentially distributed with
distribution functions

)= P(0, < x) =1— g-n=ktx, 2 =0 k=1,2. .-om

(see for example [1] p. 585).
4. Let us turn now to the determination of probabilities:

Po=p+ P+ ...+ p=PE< &), s B -
where &, &, . .. &, are independent exponentially distributed random vari-

ables with parameters 4, (+ = 1, 2,...n).
With our notation the following relations hold:

g esdoab ol o oliil
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1 O & k—1
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Thus

Pk:P(§_<§,t)=P(2n [1_i;1j65<-2k 5,.):

i=1

B % i—1 -1,
B g )

7=z

(1.4)

Let us introduce the following new variables:

77i:(l_z—l
n

0

B =784,

2]

for the distribution function of which

n
Pmi<z)=1—e" resp. P(¥;<y)=1— e—(T —1>y
is valid.
In consequence of the independence of the variables 7, the density func-
tion y,_,(x) of 1= M4y + Mpya + .. . + 7, is the following:

) il k-1

B = A SnsaE ity

Yaud (n—k—1)!

further — because of (1..2) the density function g,(x) of the variable

1 k=1
9 =-— N9, equals
"
= 2

(S i [

r=1

Consequently our formula (1.4) may be written — because of the idependence
of n and 4 — as follows:

£ ©

Po=Pu <)~ | ( [ oo du] Vi) d =

0

nn—k+1

(n—Fk—1)!

o L

s

0 %

ph—k=1g—nx o
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Carrying out the integration and using a slight modification — we obtain
YR Py E—r(k

1:6 P:( — i li=12,8 ..k,

(1.5) i .

Thus we have determined the probabilities mentioned in (1.4) for the expo-
nential case. -
Obviously P, must be equal to 1 (& < & being a certain event). If in

(1.5) k is replaced by n we obtain
(_ 1)n n—1 - = n 1 n—1 i n

P = E’ == 1 pn—1 — E' — A\Na—1-ET
' ( ) ' nn_l r=1 ( 1) ' 7

nt—1 %

ph=

=1

N. H. ABEL has proved the identity (see [2])
n—1
e n, r(p — pyn—r—1 _ by,
( ),20'(r (@47 (b— =1 = (a 4+ b)

which holds for every real value of a, b and for every integer n = 0.
Let us apply Abel’s identity for « = b = 0 and take into consideration
that for r = 0 the left side of the equality equals 0, accordingly:

n—1
= n pn—1(__ n—r—1 . .
anI[r)r (—1) +n"=0;

n—1

Sy [t
/o

r=1
Obviously (— 1)?7"1 = (— 1)"~ "+ and thus it is verified that our formula
gives P =:1.
5. For the probabilities p, = P, — P,_, from (1.5) the following formu-
lae are obtained:

from this

YR i) & el
1.6 — — — 1) =l
(1.6) =] (k_1j2< e
or
(k "1 T
(1.7) P o St

where the ©% denote the so called Stirling numbers of the second kind (see
e.g. [3] p. 168—181; tabulated in [5]).

The above distribution is a special case of the occupancy distribution.
It is known that putting randomly r objects into n cells, the probability that
k cells will be occupied and » — k will be empty is

[" Al
k__@ﬁc

n
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(see e.g.[3]p. 178). Thus (1.7) gives the probability that putting » — 1 objects
into n cells, & — 1 cells will be occupied and » — £ + 1 will be empty. Confid-
ence limits for the occupancy distribution are tabulated in [9].

6. From formula (1.5) we obtain for every n:

Py=— Py=—1_[2"%n — 1) — (n— 2)]
nh—2 an—2

Py=— ~ [ Hn— 1) (n —2) — 2 Hn — 1) (n — 8) + (v — 2) (n — 3)].
nn?

7. From above formulae in the case n = 3 we obtain

1 2
y == —, = — — O
P2 3 Ps 3 | (P1 )
and in the case n = 4

EET S *" 16’ L™

0).

3
-
fl

§ 2. An alternative proof

1. We now turn toanother proof of (1.7) which is based on combinatorial
models.
It will be shown that the determination of the probabilities p, =

=P(& ,<E< &%) can be reduced in case of exponential parent distribution

(Model A) to the above mentioned occupancy problem (Model B).

2. First of all we will show that Model A is equivalent with the follow-
ing Model C: let us divide the interval [0,1) by » — 1 mutually independent
variates distributed uniformly in the interval [0,1). We consider the probability

of exactly £ — 1 random intervals having lengths < % In the following it

is shown that this probability equals

=Pla2E<D.
For this purpose it suffices to verify that the joint distribution of the quantities
&; / > §; (1 =1, 2,...n)is identical with that of the random intervals obtained

by above procedure. These two random vectors have the same set of possible
values: each component must be nonnegative and the sum of all components
equals 1. The latter vector has a uniform distribution within this set. We show
that the same holds for the former vector variate as well. It is clear from the
form of the density function of the vector {&;} that the conditional distribution

of &,/ 2 §; with respect to 2 -is uniform within the set of the possible values.
As thls set (and thus the dlstrlbutlon) does not depend on the actual value

of 2 §; the unconditional distribution of ¢ / 2 ; agrees with the conditional
one. Thls proves the equivalence of Models A alld C.
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3. Evidently Model B can be formulated in the following way: The inter-
val [0,1) is divided into n intervals of length 1/n. We are interested in the proba-
bility that exactly £ — 1 of these intervals will contain at least one of n — 1
random points, independently and uniformly distributed in the whole interval.

It must be shown only that Model C is equivalent with Model B. For this
purpose we give a transformation, mapping Model B into Model C.

The transformatlon between the values 0 < o = =<1, <1

and 0= g =g =...= n <1 given below will have the following
properties:

a) it will be 1 : 1

) if {my, M, ..., m,_,} is distributed according to the order statistics

of asample of size n— 1 from a [0,1) uniform distribution then {#;, 3, . . ., 7}
follows the same law,

c) if the interval [% ; nl] contains at least one of the values 7,1, . . ., 1,,,
then 77 — 11 = 1/n; otherwise % — ni_;>1/n (t=12,...,n—1;

o =0, 7 = 1).
Evidently above conditions assure the equivalence of Models B and C.
The transformation is as follows:

Let be
2-1) Li=nn, = [nn] (t=1,2,...,m—1)
where [x] denotes the greatest integer < x. Let be further

pr=0
(2.2) Bi= i i G2l =28 ...,a—1)
Begbd ok 6 <ey

and
(2.8) ;= [nn]—p; @=1,2; oo g=—1)1

Evidently the sequences {7;} and {f;} are monotonically increasing,
(2.4) 58 Boplon B o il ol B8 oq sl
and
(2.5) n,:ﬁf% L 1O e ey, |

Let us denote by y,<y,<...<yp, theindices of those §; (1=2,...,n—1)
for which

(2.6) 57’1 = ﬂ‘/;—l
and by §, < 0, <...0d,_j the indices of those y; (¢ =1, 2, ..., s) for which

V8;

(2.7) Gyy, = Gy —1 -

Here the symbol % is used according to its former interpretation. It follows
namely that o; + f; = a;_; + f,_, if and only if j = y, for some ¢. This



ON THE POSITION OF THE SAMPLE MEAN 245

means that o; 4- f; takes on k — 1 different values, in other words, ¥ — 1

is the number of “occupied” intervals, i.e. the intervals [3%1 y %) 1=21< m)
each of which contain at least one of the points ;.
We denote these k — 1 values of o; + f; by
(2.8) B By e By
whereas the remainder members of the sequence 0, 1,..., 7 — 1 are denoted
K £ ey ane LB g
Let o} be defined by the relations 4
@l =9, =190 s i—hF1)
(2.9)
R =0 B= 1,2, . oyli=1)

where oy =0, 6,_;o; = s + 1. (Note that d,_, < s by definition).
Let us define now the transformed values

(2.10) - E?‘_i%' e 1 00

It follows from (2.9) that ¢, ; < s+ 1 and from (2.2) and (2.6) that
(2.11) B, =n—2—38.

This and (2.4) assure the fulfilment of the condition 0 < 7 < ) <
& S Wy 4 L

We now go over to the proof that the transformation (2.10) is one by one,
i.e. the quantities {#,;} can be also uniquely determined from the quantities
{ni}. Infact, if 0 <y < m =< ... =Zm,_; <1 are given, the sequence {7;}
can be uniquely determined in the following way: the sequences { {}, {3},
{¢;}, can be determined from (2.1) — (2.3), putting n; and o; instead of 7;
and a;, respectively. Then the sequence {y;} will follow from (2.€).

Putting 0q =0, 0, =8+ 1 (0, = 0,_; is assured by (2.11)) and, in
accordance with (2.9), denoting by

0g=0<0; X03< .0 <0y <0, jui=8+41
the values taken on by ¢, o1,. . ., ¢, the sequences {¢;} and {¢, } will be defined
by (2.9).
Let be ¢, <@, <...< ¢, ; the complementary set of the sequence
V8,5 Voys -+ +» Von Within the sequence 1,2,...,m — 1 and let us define in
accordance with (2.7)
ay, =&~ Po, B=1,2,...,6—1);
ay(s‘:a},a_l (7:2 1,2,...,”-’0)
from which by (2.5) we obtain the sequence 0 <n <9, < ... <7,,<1

Thus it is proved that the transformation (2.10) is one by one and that
the vectors {#,} and {7} have the same set of possible values.
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We now have to prove that the transformation preserves the measure.
The space of the vector {7,} can be divided into a finite number of subsets
for each of which the vectors {#;} and {f;} are constant; evidently these
subsets are measurable. Our transformation means a simple translation for
such a subset thus it is measure-preserving. As under the circumstances of the
condition b) the distribution of {#,;} is uniform over the set of its possible
values and {7;} has the same set of possible values, the distributions of {n;}
and {7;} are identical.

Finally we see from (2.8) that the interval [ e Jg’ni) does not contain

any of the values 71, 7y, . . ., ,_; and the interval 8_/ Sl contains at least
n n
one of them; on the other hand, (2.9), (2.10) and (2.4) assure that
Neptr — Mo, > 10y 154y — 5 < 1fm

(t=1,2 ...,n—k+1; j=1,2, ..., k—1).

Thus the transformation has the property c) as well.
Thus we have proved the equivalency of Models C and B, i.e. that of A
and B too.

§ 3. The asymptotic joint distribution of the mean and the k-th
ordered sample element

It is supposed in this and in the first part of the following § that the
common density function of the independent random wvariables &, &,; .. ., &,
is continuous and positive in intervals, which contain the expected value
M(¢) and the quantiles considered in the following as inner points. Let be
for the sake of simplicity

M) =0, M(&)=DXf=1

We shall introduce in the following some new notations for quantities
depending on n but without indicating this circumstance. Let us have now
a sequence of integers k& = k(n) for which we assume that

k(n - -
q:qn:(T)ﬁq, 0<q<1,
as m— oo or in short lim ¢ = gq.

We shall use furgﬁe: the following notations:
=g, =F g, t=Fq),

= otg) =1L, 5=,

t

m = m(q,) = [ wwan m

n

— oo

I
3
V\Q/)
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and

(here naturally £ = k(n), ¢t = t(g,) and o = o(q,)).
It will be shown that in the case of f(q) 5= 0 the joint imiting distribution

of & and &k is mormal, more precisely, that

E4znt

lim P V —Vn <y, pr<w|=
fzas qm 2 .2
1—2-—2z 4
V /(@) e
(3.1) Z "
~ 2 2 ;
: 1 J J - u —+ v quv]dudv,
27(1 — 0% 2{1 —¢%
where
6(2_/(0%]
l1—gq

Bi== :
qm
1 2 ~2
V Qf(t)2+az

Proof. We begin with investigating the conditional distribution of &
with respect to & Evidently under the condition &f = ¢’ the conditional
distribution of & + &% + ...+ &%_, is identical to that of the sum of £ — 1
independent variates with the common distribution function

X

J‘f(u)du, (—co<a <t3i=1,2,...,k—1)

P, < 2) = F:t,)

— oo

and, similarly &, + ...+ & is conditionally distributed as the sum of
n — k independent variates with the common distribution function

P(c[<x):1_1mjf(u)du A T S
J

The variables {; have the expectations and variances

v

M) — i [uf(u) du,

-0
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i t

TR T
D(z) Fw)Juﬂwmt uw)Jumnw

1
Mi)=— ——
(€ 1= B

J uf(u) du ,

t 34

2 . 1 [ = 1 , i
D (Ci)_IHF(t’)(\l J u? f(u) du (1 e Ju}‘(u)du} p

— — o

i=k+1,%k4+2 ...1n.

Thus it follows that the conditional expectation and variance of & is — with

{he notation ¢’ =% . 1_
' v
Mgt =) =" ;1 J -’Uf<“)du17(z(']),(_1f(;)(r))+%’
”

-]

2¢0—me+u—waq.
F(t')X(1— F(t'))?

+
2

—%J and ®(x) = J(p(t)dt.

— oo

Let be @(x) = (2n)_%exp

According to the central limit theorem we have

__— £| * == ,’
(3.2) o [é__%;” <ylet :t'] — B(y)
e D(|&k=1) /
uniformly in y.
It is known furthermore that denoting the distribution function and
density function of &% by F,(u) and f, (u), respectively, we have [8]

=)
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(3.3) il {t—l— =i

n—-e |/

e

(3.4) lim Fk{t—{—*w] . B(w)
e 17

uniformly in w.
For the conditional expectation and variance we have

¢

1_1’12 ME|&E=t+a)= —xjuf(u)dug(lﬂ—éé)%—o(x):

— oo

o xmf( t) Tola),
1—gq

lim n D(&| &=t +2)=1— I@—I—O(x).
n—»>oco — q
Hence

lim M(& + zéii§§=t+x):zi+x[z— {T—)ﬁ%]—}—o(x),

limn D&+ 28 |8 =t+2)=1— lﬁﬁ(}; + O(x) .

Thus from (3.2) — & being given — it follows that for each ¢ > 0, we
can find a positive constant 0, such that for sufficiently large n

o )

IP(§+zEt<zt+x
l1—g¢q

Y14, _ ™
T VﬁVI Li==g:

whenever [z| < §; here K shall fulfill the condition

(3.5)

g—t+o|— oy

e
=iK"

(3.6) ®(— K) <§.
Further for sufficiently large » (see (3.4)) we have

(3.7) £, (t - % KJ T
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Now the probability in the left hand side of (3.1) equals

w

" %~ 2 i
I.(q9) = j (§+z§ <2t+H/ i) T o%ap 5 t+Vnr)
(3.8) e e
Xf,{[t+ﬁr]v—ﬁdr.
Let be
/1—2-7),2—}—02- z——;nf(t)
(3.9) Hoy= | @ |y it e _z,k_)i (r)dt
| ™ 1 ™4
i L 1—3g

— oo

The difference between 7,(q) and I(¢) can be made smaller than ¢ as shown
in the following:

First we can denote the argument of @ in I(g) by »’, then apply (3.5)
putting x = LSS Dividing the integration interval (—oo, w) into (—oo, —K)
and (—K, w) (,llmre —K can be chosen smaller than — |w|), in consequence
of (3.6) and (3.7) the first part of the difference becomes smaller then%. Con-

cerning the second part we refer to (3.3) and (3.5), namely for suff;ciently
large » we obtain from (3.3) the inequality

b

—¢(r)‘<é-

7

Le. for sufficiently large n

Ty — U | <=
| 1n(q) (q)‘<3

Let us turn now to the evaluation of /(g); denoting the coeff101ents of y and =
by A and B, resp.

w 1 w By—Ar a a

J@(By — A7) p(r)dt = J J e 2dule ?2dv=

— o — oo — oo

w Yy

. BY Ay oA ;
:£ J J 6_7@ _zfurﬂ)dudr.
27

— o0 —oo

From this we have the relation (3.1) and the expression of p.
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§ 4. The asymptotic normality of the distribution P,
In this § we shall use of our previous assumptions
M =0, M&E) =D =1.

Let us denote by ¢, the quantile corresponding to the expectation
M(&) = 0, i.e.
7 = F(M(£)) = F(0).
Let further be

0
1
=M(E|E<0)=— J uf(u)du
9o
In order to obtain for the probabilities P, = P(& < &) a reasonable

limiting distribution let ¢ — ¢, according to L] =qg=q,+ ;—_ .
n n

In this case we obtain the following relations

m = m(q) =m, + O

)

x

il = 2ol
T

)

f(()=£0)+ 0O

iz

Substituting z = —1, o = 4o and
t
y — mq — =
e, KL AP
Vr—e75
z

+[7

qu 1 —q,) + 2 gom, £(0)

n (3.1) we obtain for large n the asymptotic relation

PE< &)~ ( : ]
Vgo — qo) + 2m4 g, f(0) + f(0)?

Denoting by x, = » the random variable for which the event
(&%_, < & < &%) occurs, the relation

P(x, < k + 1) = P(§ < &%)
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holds and we obtain

% .
et )
limP| 2 <& ( ! ] :
L VL_ qu o) T 2 my q,f(0) + £(0)?
n
and hence
: — g,
(4.1) lim P ( o <y V_)
fhe qu(l — qo)+2mq, f(0 +f

We show now that this theorem can be extended for the case f(0) = 0
under the assumption that f(z) is continuous in a neighbourhood of the origin.
In this case we obtain the simple form

Iim P

n—»>oo

77(/'0
<yln|=2().
V% 1— 90) }

This means that x, has the same limiting distribution as the variate
%, defined by the relation3

B a2 ME <L

Proof. By virtue of the central limit theorem we can find a positive

K

constant K such that for sufficiently large n P ||| > r
n

< i, but in this
2

case
R,
(4.2) P (Et > 7 €| >ﬁ] < % too.
Since
F El_F[_ﬁj 21{/(@
e un —q) n= (1 —q)
Vn

moreover, F(&%) is asymptotically normally distributed with parameters

q, q(ln;q), therefore for sufficiently large n

Pt <) - (( Y

3 This remark is due to A. RENYI.

(4.3) < F(&) < F|—=
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i.e. it follows from (4.2) and (4.3) that

P(létl < &) <.
This proves that
lim P(|&t] < |)) = lim P(|&] < 0).

n—oco n—co

i.e. %, and %, have the same limiting distribution.

Consider now the special case of (4.1) when £ is exponentially distributed
in the interval (—1, o), i.e.

F(x)=1—e &+,

Then M(&) =0, gy=1—¢e71, my= (¢ — 1)~ and we have

S %Vn(e —3)

This agrees with the known limiting form of the occupancy distribution
[5, 6].

(Received June 6, 1961)
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MECTO BbIBOPOUHOro CPEJHEr0 CPEQAU 3JIEMEHTOB
BAPHUALIMOHHOI'O PSIA

K. SARKADI, E. SCHNELL u I. VINCZE
Pe3iome

ABTOpBI B CBOeil CTaTbe 3aHUMAIOTCS CJIeAyIoled NpOoOJIeMOit:

[lycte Oynyr &, &, ..., &, HesaBUCHMBIE 3JIEMEHTHI BBIOODKM M3 HEKOTO-
pOro COBOKYITHOCTH C HeIlpepbIBHBIM pacrpe/iesieHieM, CIIpalliBaeTcsi, Kakas
BepOATHOCTb TOr0, YTO BBIOOPOUHOE cpejiHee

nonager Me)xay (k— 1)-bIM M k-bIM eJIeMEeHTOM BapHallMOHHOrO psijia, WHBIMH
CJIOBAaMH, HAJ0 OMNpelesIUTb BepOSTHOCTU

=P 1= E<&).

rae vepes &f(k=1,2,..., n) ob6o3HayaeTcss k-Thlii 3JIeMeHT BapHalMOHHOTO
psiia. Yjaanoch onpeesuTb B SIBHOM BUJE BePOSTHOCTH Py JUIA cjlyyast 9KCIIO0-
HeHLMAJTBHOI'0 paclpefiesieHusi; B § 1 npu momoumy aguTUBHOI0 MapKOBCKOI0
CBOIiCTBAa BapHaLOHHOT0 psiia cliefyiomasi Gopmyia:

[kﬁl e

(1.6) =g e

rje uepe3 ©} o6osHauaercst TaK HasbiBaemoe CTUPJMHTOBOE YMCIJIO BTOPOro poja.
Pacnipesienenne, xapakrepusyemoe ¢popmyoii (1.6) siBsieTcst YaCTHBIM CI1y-
yaeM pacrpejieieHusi 3aHaATUs1 (eMm. Hamp. [9]).
C Mcrosnb30BaHHEM I3TOr0 (aKTa aBTOPHl B § 2 BTOPMUHO JIOKAa3bIBAIOT
dopmyny (1.6). CymHocTb 3TOro j0KasaTesbCTBa Clelylollasi: 3ajaercs TaKoe
npeoOpa3oBaHue ¢ cOXpaHEHMeM Mepbl, KOTOpoe IociefoBaTesbHocTh 0 < 7y =

SN = ...= 1M, <1 npeobpazyer B mnociefoBaTeJJbHOCTE 0= 1y < n; =

<= ... £ Mpoy < Mp= 1 Takum 00pa3om, YTO HePABHECTBO 7);— 7i—; <

< 1/n umeeT cuiy TOrjla U TOJBKO TOT/A, €CJIM CPEM UCeN 7y, Mg, ... Np—p 110
S 1—1 1
KpaiiHelf Mepe OJHO TonajaeT B MHTepBaJI , —
n n

B § 3—4 nokasbiBaeTcsl OTHOCUTEJLHO O0LIEro ciiyyasi Ipv HEKOTOPBIX
cabblx JOMYIIEHUSIX, YTO TIpe/esIbHBIM paclnpejesieHueM siBiseTcss ["ayccoBoe
pacnpefiesieHue.
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