ON THE METHOD OF CHARACTERISTICS

by
L. VEIDINGER!

1. Introduction

The classical method of characteristics, discovered by J. MAsSAU, is
one of the standard numerical methods for solving initial value problems
for quasi-linear hyperbolic systems involving » unknown functions and two
independent variables. Since an initial value problem for a general nonlinear
system can always be transformed into a quasilinear one containing a larger
number of equations and unknowns (see, for example, [1] p. 35), the method
is applicable to any nonlinear hyperbolic system in two independent variables.

Although the method of characteristics has been much used in practice
(see, for example [5], p. 133), as far as the author knows, no attempt has been
made to estimate the error of the process in the general case; even the con-
vergence of the process for n > 2 has never been proved.

In the present work we shall prove that under some, rather trivial
assumptions the error is of order O(h), where £ is the maximum distance
between two adjacent grid points on the initial curve. Thus the order of the
error is the same as in the finite difference method of COURANT, ISAACSON
and REES (see [2]). The method of characteristics, however, may be more
advantageous in certain cases, since practically no restrictive conditions
are required to ensure stability and convergence.

In the special case n = 2 a simpler proof of this result is given in [3].

2. The initial value problem for quasilinear hyperbolic systems
in two independent variables

Let us consider the following quasilinear system, written in matrix form:

(2.1) w,+ Au,+h=0,
where u, and u, are partial derivatives of the column vector u = [u ] whose
components U, are unknown functions of the variables  and y; A = [a;;]

isa.n Xn ma,trlx, and h = [A;] is a column vector; the elements a;; and
h; may depend on z, y and u (but not on u, and u,).

We assume that the system (2.1) is of hyperbohc type in an open region
I" of the n + 2-dimensional z,y, u-space, that is, the matrix A has n real eigen-
values 4,(z,y,u) < (2, y,u) gln(x, y,u) at every point of I, and to these eigen-
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values correspond 7 linearly independent eigenrows b¥(z,y, uw), b¥(z, y, u),
., b¥(x, y, u) such that

(2.2) bHA — 4,E) = 0%,

where E is the unit matrix, and O* is the zero row. The eigenvalues 4;, the
eigenrows bf, and the vector h should have bounded second partial derivatives

bt
in I'. Moreover, let 4, — 4, > ¢, and |det B | > ¢,, where* B = [ . }
b
We suppose for convenience that the initial curve is a segment AB of
the y-axis (this assumption can always be satisfied by introducing new
coordinates instead of x and y). The components u,(y) of the initial (vector)
function wu,(y) should have derivatives that satisfy a Llpschltz condition
in AB. Finally, we assume that every point (0, i, %, (), - . ., %yn(y)) for which
(0,y) € AB lies in the region /.
Let us put 2,,,,x=max [0, max 4, (z,y,u)]and 2, =min [0, min A,(x,y,u)].

By the existence theorem of A. ScEMIDT (see [4]) from( theeprecedmg
assumptions it follows that our initial value problem has a unique solution
inside a trapezoid® A, bounded by the segment AB, two sides with slopes
Amax and Ao through 4 and B respectively, and a line parallel to the y-axis;
moreover, the partial derivatives of the solution satisfy a Lipschitz condi-
tion inside 4.

3. The method of characteristics

If u = w, y) is a solution of the system (2.1), then along the line element
dy = A, dx we have

du
d_x:ux_[_liuy: —(A—}.(E)uy—h:
whence by (2.2)
(3.1) 7 S A
" dx : ;

The simplest variant of Massau’s method of characteristic can now be de-
scribed as follows. We choose a sequence of grid points (that are not necessar-
ily equally spaced) on the initial segment. These points will be called grid
points at the 0-th level. The values of u at these points can be determined
from the initial condition. If P, is a grid point at the 0-th level then we put
Yo(Py) = y(P,). Let now P, P’ be two adjacent grid points at the »-th level
such that y,(P) > y,(P’). We assume that the approximate values of w at
these points,

w(P) = u(x(P),y(P)) and u(P’)=u(x(P'),y(P))
are already computed If Q is the intersection of the line with slope
2(P) = ll(x P) u(P)) through P and the line with slope An(P) =
=An(2(P),y(P),u(P)) through P’, thoanﬂl be called a grid point at the y 4 1-th

level, and we shall put %,(Q) = yo(P). It will be proved in the sequel that

2 In this paper ¢,,. . ., ¢,, are positive constants that depend on the bounds and the
Lipschitz constants of a;;, %, u, u, and wu,
3In what follows we shall’ regard the half- -plane > 0 only.
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if the maximum distance between two adjacent grid points at the 0-th
level is small, and the points P, P’ lie near to the y-axis, then @ always
(exists and) lies right to the points P and P’. The coordinates of @ can be
determined from the equations

(3.2.a) ¥(Q) —y(P) = 1_1(P) (#(Q) — =(P))

(3.2.b) Y(@) — Y(P') = 4,(P) (2(Q) — (P")).

The components of the vector u(@) are computed from the equations
(3.3) b}(P) (W(Q) — u(P))) = di(P) (¢(Q) — x(P))),

where BH(P) = b¥(P), y(P), w(P)), &(P) = d(=(P), y(P), u(P)) and P,
is the intersection of the line with slope ,(P) through ¢ and the line PP’.
(Thus P, = P and P, = P’). Since  lies right to the points P and P’ all
points P; lie between P and P’ (see Fig. 1). The vectors w(P,) are defined by
linear interpolation between P and P’:

B=P

Pisr
P=Fh,
Figure 1.
(3.4) u(P;) = w(P) + 4P, (u(P’) — u(P)),
where
t(Pizw; 0<HP)<1.
y(P') — y(P)

It is clear that by successive application of this method we can find
the values of u in a system of irregularly spaced grid points, bounded by the
segment AB and two broken lines that approximate the ‘highest”” charac-
teristic curve through 4 and the “lowest” characteristic curve through B
respectively (see Fig. 2). Thus the method of characteristics automatically
yields the domain of determinacy of the segment A4B.

¥
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Let us denote by ~ and k& the maximum resp. minimum distance between
two adjacent grid points on the initial segment. We shall prove the following
theorem:

If the assumptions of section 2 are satisfied, and A = O(k) then as long
as the grid point R lies in a trapezoid A’ (that may be narrower than the
trapezoid A of the existence theorem) we have

u(R) —u(R) = O(h),

where O(h) denotes a vector whose components are of order O(h).4

4. Two lemmas

The proof of the above theorem will be based on two lemmas. The validity
of these lemmas will be proved in section 6.

First lemma: As long as the grld point R lies inside the trapezoid 4,
the point (z(R), y(R), u, (R), - .., un( R)) lies in the region I". (u(R), . .., un(R)
are the components of the vector u(R))

Second lemma: If R and R’ are two adjacent grid points at the same
level inside A’ such that #,(R) > y,(R’) then

(4.1) csh <yY(B) — y(B') — (R) (x(RB) —2(R")) < cyh

for 1 =1,2; ..., n.

From these lemmas we can immediately derive upper and lower bounds
for the difference of the abscissas, and upper bounds for the difference of the
ordinates of corresponding grid points at two consecutive levels. Namely,
(3.2.a) may be rewritten as

y(@) — y(P') +y(P') — y(P) = 4(P) [2(Q) — «(P’) + «(P’) — «(P)],
whence by (3.2.b) we have

(42)  (A(P) = L(P)) (w(Q) — 2(P") = Ay(P) (a(P") — 2(P)) —
— (Y(P) — y(P)).
Similarly
(4.3) (44(P) = 4(P))((Q) — ®(P)) = An(P) (x(P) — (P")) —
— (P} — g F))- |
Since_the eigenvalues 2, are bounded in I°, from the first lemma it follows

that 1,(P) — 4,(P) < ¢;, provided the points P and P’ lie in A4’. Thus by the
second lemma, (4.2) and (4.3) we obtain:

(4.4) 2(Q) — x(P) > cgh; x(Q) — x(P') > csh
so that the point @ lies right to the points P and P’.

41t is possible that the distance of a grid point from the y-axis is less than the
altitude of 4’, but it lies outside 4. The assertion of the theorem may be extended to these
grid points if we continue the initial function %,(y) beyond the segment AB so that the
Lipschitz-condition for uy(y) should remain valid.
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From the condition 4, — 4, > ¢; by the first lemma it follows that
An(P) — A4(P) > c¢,; consequently, by the second lemma, (4.2), (4.3), (3.2.a)
and (3.2.b) we have

(4.5) 2(Q) — a(P) < ez b ; 2(Q) —x(P') < crh; [Y(Q) —y(P)| < cgh
|9(@) — y(P) [ < coh.

The differences #(P) — x(P’) and y(P) — y(P’) may be expressed from
the system of linear inequalities

|Y(P) — y(P') — 4y(P) (x(P) — 2(P')| < cg b

|9(P) — Y(P’) — 4,(P) (x(P) — (P')| < ¢y b,
since the determinant of this system is equal to 4,(P) — 4,(P) consequently
(4.6) |2(P) — ®(P')| < eyob; |Y(P) —y(P')| < ey b

5. The error of the method of characteristics

Let u(x, y) be any vector function of two variables, whose partial deriv-
atives satisfy a Lipschitz-condition in A4’. From the construction of the
points @ and P; by (4.5) and (4.6) it follows that

u(Q) — w(P) = (u(P)) + 4(P) u,(P)) (x(Q) — (P))) + O(x(Q) — x(P))* =
= (u(P) + 4(P)u, )(x(Q — 2(Py) + O(A?),
provided the points P, P’ and @ lie inside A4’.
If u(z, y) is the solution of our initial value problem, then by (3.1)
(5.1) b}(P) (w(Q) — u(P) = d(P) (»(Q) — =(P))) +

+ O(4(P) — 2/(P) | h + 1?) .
Let us put
F=u—u
then because of the continuous differentiability of the eigenvalues 4; and the
eigenrows b¥ by the first lemma we have®

2(P) — 4(P) =0(| P))),
b¥(P) — bi(P) = O(|2(P)|).
Thus from (5.1) we get if we replace b¥ by b¥
bH(P) (w(Q) — u(P) = dy(P) (x(@) — w(Py) + O(|=(P) | h+ 12).

Subtracting (3.3) from this we obtain
b¥(P) (:(Q) — #(P)) = ((P) — d/(P)) (2(Q) — =(P) +
+ O(|2(P)| b + B?) = O(|2(P) | h + ?),

5If a is a vector, then by |a| we denote the maximum absolute value of the com-
ponents of a.
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or after some rearrangements
(5.2)  BHP)2(Q) = b¥0) 2(P)) + (b}(P) — bHO))2(P) + O(=(P)| b + £?)

where O is the grid point corresponding to P at the » — 1-th level (see Fig.
2; it is convenient to introduce grid points at the » — 1-th level, since the
lemmas will be proved by induction on »).

By the well-known estimation of the remainder-term in the linear
interpolation formula from (4.6) we have

(5.3) w(P) = w(P) + (P (w(P") — w(P)) + O
Subtracting (3.4) from (5.3) we obtain
2(P) = z(P) + (P) (:(P') — 2(P)) + O(h*
Insertion of this into (5.2) yields
(5.4)  BHP)2(Q) = bXO)2(P) + (P) (b¥(0) z(P') — b¥(0) 2(P)) +
+ (b¥(P) — B¥(0))2(P,)) + O(|z(P)| b + h2).
Because of the continuous differentiability of w using (4.5) it follows that
(5.5)  u(P) —u(0) =u(P) — u(P) + u(P) — u0) + w(0) — u(0) =
= O(|2(0)| + |=(P)| + k).
Hence by (4.5) and the first lemma
b*(P) — b¥*(0) = O(|2(0)| + [z(P)| + h).

Similarly we have
b¥(0) — b¥(0') = 0(]2(0)| + |2(0")| + R).

Inserting these inequalities into (5.4) we get

b*(P) 2(Q) = b¥*(0) z(P) + t(P,) (b¥(0) (P’) — b¥(0) (P)) +
(5.6) + O(|=(P)| [2(P))| + [2(P)| b + [2(0)| [2(P))| + [2(0)| |=(P")| +
+ R(P)| k + [2(0)| |(P")| + [2(P)| b+ h?).

Denote by M, the maximum of | z(R) ; for all grid points R at the »-th
level, and by N, the maximum of | b¥(S) 2(R) | for 1 = 1,2, ...,n and for
all pairs of correspondlng grid points 8, R at the » — 1-th and the »-th level
respectively. Since ¢, < | det B | < ¢;,in I, from the first lemma it follows that
(5.7) M, =0WN); N, =0(M,).

(5.6) and (5.7)yield

(5.8) Nopyn E N, + cy(N) + NN, +NA+ R7).
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We shall show that if £, is the solution of the linear difference problem

E

v

m=E,+c Eh; Ey=cyh
with suitably chosen constants ¢;, and ¢, then £, > N,.
Let us denote by d the altitude of the trapezoid 4. From (4.4) it follows
that » < c¢;q dh™1, therefore
(5.9) E,= Ey(1 + ¢;,") < cy5hesd” < cyghefnnd,

Thus, if ¢z > 1; ¢4 > 40i5(ci3 + 1) and

d < log (13 + 1) — log ey

C14C1¢

then c¢;3 + 1 > cqeucnd; ¢ b > 4cp40i5he8 > 4¢,E,; E,> h and, con-
sequently

(510) Ev+1 = Ev = 013(E12' %+ Eva—l E Evh o h2) o

It is easy to see that Ny = 0 and N, < ¢;; h. Thus if ¢;5 > ¢,7, then from (5.8)
and (5.10) it follows that £, > N,. Finally, by (5.7) and (5.9) we have

(5.11) E,=O(h); N,=O0@h); M, =O0@h).

This proves our theorem in section 3 provided the two lemmas of section
4 are true. We must still prove these lemmas.

6. Proof of the lemmas.

The two lemmas will be proved simultaneously by induction.

Let P, Pj be two adjacent grid points on the y-axis. From the condition
= O(k) it follows that ¢;g b < y(P,) — y(P£3) < h. Thus the second lemma
is true on the initial segment provided ¢, > 1 and ¢4 > ¢,. Since the first
lemma is trivial, both lemmas are valid at the 0-th level.
Now let us assume both lemmas are proved for all grid points at the
0-th, ..., »-th level inside A" and let @ be a grid at the » 4+ 1-th level. From
(5.11) it follows that

(6.1) w(@) —u(@) =O0(h).

(It should be observed that in the proof of the inequalities (5.11) for the
grid points at the » 4 1-th level the two lemmas have been used only at the
0-th, ..., »-th levels). If I is a closed subregion of I" containing the points
(0, v, uy(y)), and the altitude d of the trapezoid A" is small enough, then as
long as the point (z, y) lies in A4’, the point (z, ¥, u(x, y)) lies in 7”. In parti-
cular, the point (2(Q), »(Q), u(Q)) lies in I”. But then from (6.1) it follows
that if A is small enough, the point (2(Q), ¥(Q), W(Q)) lies in I".
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Now let P, P’ be at the u-th level, and let @, @” be the corresponding
grid points at the w4 1-th level, where u < ». Subtracting (3.2.a) from

y(Q) — y(P’ P') (x(Q 29)

we get

(6.2) Y(Q) — y¥@Q) = y(P') — y(P) + 4,(P") (»(Q) — x(P")) —
— () ((Q) — =(P)).

From (4.5) and (5.11) it follows that

3,(Q) — 2(P) = O(h) .
Similarly we have .
)_*I(P) . ZI(P’) = O(h) .

Using these inequalities and (4.4) from (6.2) we get

yQ) — y(@ (x — (@) =
= y(P') — y(P) — 2y(P (x ) + O(h(2(Q) — x(P))).
Summing this inequality for u = 0,1, ..., », we find that if @ and Q" are at

the » 4 1-th level, and P, P; are the corresponding grid points at the
0-th level, then

¥(Q) —¥(Q) — 4(Q) (¢(Q) — x(®)) = y(Py) — y(Po) + O(d) ,

whence
(¢1 — C1sd Vh < y(@) — Y@ (x ) < (L+cd) b

Thus the second lemma is true for the points @, @ and for 7+ = 1, pro-
vided d is small enough (but 1ndependent of & and »). The case i = n can be
treated in the same way.

(Received september 13, 1961)
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0 METOJE XAPAKTEPUCTHUK
L. VEIDINGER

Pe3iome

B Hacrosimeii craTbe paccMarpuBaeTcsl YMCJIeHHOe pelleHKe 3aaud Kon
JUISL CHCTeMBl 7 KBasWJIMHEMHBIX I'MIep00JMYeCKUX ypaBHeHMH ¢ JByMsl He3a-
BYCHMBIMU TlepeMeHHBIMU 110 MeTOy XapaKTepucTHK (1o meToay Macco). [doka-
3bIBAETCSl CJIelylollasl Teopema:

[lycte maTpuna A, BeKTOp h M HayajHble YCJIOBMS JUIsl cucTeMsl (2.1)
YJOBJIETBOPSIOT TpeGOBAHUAM, IePeunclIieHHbBIM B INyHKTe 2, u nycTb b= O(k)
rjae h-makcumalsibHOe, k-MMHMMaJbHOE PAcCTOSIHME My /[ABYMSI COCeJHUMMU
TOYKaMM CeTKM Ha HayaJbHOM OTpe3ke. Torja /Ui KaX10d TOUYKM ceTKH R
Jie)Kallelf BHYTPH HeKOTOpOM Tpameumun A’, orpaHuYeHHOH HayaJlbHBIM OTpe3-
KoM AB Mbl UMeeM

u(lk) —u(R) = 0(h),

rjae u(R) — 3HayeHue peleHusi cuctemsl (2.1) B Touxe R, a u(f)— npub-
JIM)KeHHOe 3HaveHHe Mo MeToay Macco.
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