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Abstract

TurAN has asked the following question: What is the smallest number,
f(n), such that for any system ¢ of more than f(n) triplets formed from =
given elements there are always four elements all four triplets of which occur
in ¢. The following closely related problem is solved: What is the least number,
g(n), such that for any system ¢ of more than g(n) triplets formed from » given
elements there are always four elements each pair of which occurs in some
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triplet of ¢. It is shown thatg(n) = 21 i ol or e Fihd ;
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according as n is congruent to 0, 1, or 2, respectively, modulo 3.

In a recent paper P. ERpOs [1] has stated an unsolved problem due to
TurAN, namely, what is the smallest number, f(n), such that for every system
@ of more than f(n) triplets formed from n given elements there are always
four elements all four triplets of which occur in ¢. We will treat the following
closely related question: Given an ordinary graph on 7 points (with no loops
or multiple edges), with the property that each of its edges belongs to at least
one triangle, i.e. a complete subgraph of order 3. What is the least number,
g(n), such that every such graph containing more than g(n) triangles contains
at least one complete quadrilateral, i.e. a complete subraph of order 4. The
main object of this note is to prove the following result:

Theorem.
n? if n=0(3);
27 , i ’
1 gmy =) EXDE DRy )
20
(n — 2)2(77L £ 1} , if n=2(3).

We first derive a lower bound for @, the number of complete quadrilate-
rals in a graph of the given type on n points, in terms of 7' and ¥, the nnumber
of triangles and edges, respectively, contained in the graph.
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Let the points of the graph be labelled P,, P,, ..., P,. For every pair
of distinet points, (P;, P;), which are joined by an edge, let #(¢, j) denote
the number of triangles in the graph which contain the edge joining P; to P;.

(2) Zt(i,§) =3T,

where the summation (here and elsewhere in general), is over all sets of points
in the graph for which the expression being summed is defined.

If the distinct points P, P; and P form a triangle in the graph define
w(i, j, k) and r(¢, j, k) as follows:

(3) w(i, §, k) =13, ) + 4G, k) + 1, k),
and
(4) (i, j, k) = w(i, j, k) — 2(number of points P, 1 1, j, k,

such that P, is joined by an edge to P, P;, and P)).

It is easily seen that
(5) w(, j, k) =i, 7, k) + 2Q(i, 4, k) ,
where Q(i, j, k) denotes the number of complete quadrilaterals containing the
points P;, P; and Py.

Summing (5) over all triangles in the graph gives
(6) 8Q = 2t*(i, j) — Z'r(i, ], k),
since each complete quadrilateral is counted four times and the edge joining
P, to P; contributes, #(i, j) times, an amount equal to #(i, j) to the sum of the
w(t, j, k)’s.

There are 7' non-zero terms in the sum of the (i, j, k)’s each of which

is less than or equal to n, the number of points in the graph, from (4). Also,
a lower bound for the sum of the squares of the #(i, j)’s is obtained by setting

each of the £ non-zero terms equal to%, from (2).

Hence,
2
(1) sg= (3L —nT:T(g—T——n.
E E

We now return to the original problem.
Consider first the case where n = 1(3).
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in such a graph then, by a theorem of TurAN [3], it

contains at least one complete quadrilateral regardless of the value of 7'.
n?—1
If E=

then, appealing to TUurAN’s theorem again, there is, in

the sense of isomorphism, only one such graph having this many edges and

(n+2)(n—1)*

no complete quadrilaterals, and this graph contains o triangles.
L o 2__4
If ¥ < Bred | li= n_§_4 then it follows from (7) that if 7' > ﬂnz—.‘.')

then @ > 0.
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Thus, no matter how many edges the graph has, if n = 1(3), it can
(n+2) (0 — 1)
27
lateral, and there is essentially only one graph with this many triangles and

no complete quadrilaterals.

This completes the proof of part of the theorem stated in (1). The remain-
ing parts may be demonstrated in a similar fashion except that when n = 0(3)
it is necessary to consider only two cases. We remark that the same sort of
argument may be used to show that

have at most

triangles without containing a complete quadri-

(8) 3Tg—f~(4E—n2).

This has also been proved by NorpHAUS and STEWART, (see [2]).

Substituting this inequality into (7) yields the following lower bound
for the number of complete quadrilaterals a graph on n points contains, in
terms of the number of its edges:

(9) 6@;£(4E—n2)(3E—n2).
e

More generally if S; denotes the number of complete subgraphs of order

i in a graph on n points the type of argument used above yields the following
inequality:

(10) k(k—Q)S,(;Sk_l[&:% _n].
Sk
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Ob OJJHOM 3AJJAUE TURAN-A
J. W. MOON — L. MOSER
Pe3ome

TUuRAN craBus ciefyoumit Bonpoc: Kakoe uucno f(n) siBnsieTcs: Haii-
MeHBLIMM C TaKMM CBOICTBOM, YTO eCJIM U3 7 3aJaHHBIX 3JeMeHTOB 00pa3oBaTh
Kakylo Ju00 cuctemy ¢ u3 Gosiee 4em f(n) TpUIJIETOB, TOT/la BCerja CyLeCTBYeT
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YeTpipe 9JIeMeHTa TaKue, YTO Bce YeThbipe TpHIlJIeTa 00pa30BaHHblE M3 HUX HAXO0-
JATCS B @. 3Jech pellaeTcs ClelylOlMii, OJM3KUH K IpUBeJeHHEMY BONpPOC:
Kakoe uncio g(n) siBnsieTcsi HaiiMeHbIIMM C TaKMM CBOWCTBOM, UTO eCJIM K3 7
3aJIlaHHBIX 3JIEMEHTOB 00pa3oBaTh KaKylo JIM0O cucTemy ¢ u3 Ooyiee 4em g(n)
NPUMEPOB, TOr/Ia BCerjia CyllecTBYeT YeThbIpe djleMeHTa TaKue, UTO Kaj)Kjas rnapa
00pa3oBaHHasi U3 HUX HAXOJUTCSl B HEKOTOPOM TPHILJIeTe CHCTEMBI ¢. 3/iech Mo~
Ka3aHo, 4TO
3 S 2 . 2
=" mEI@—1 =2t
27 27 27

CMOTPSA TOMy, SIBJISIETCS JIM % CPAaBHUBBIM ¢ 0, 1 MM 2 COOTBETCTBEHHO, O MO-
nyao 3.
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