REMARK ON A THEOREM OF DÉNES

by

MURRAY EDEN¹ and M. P. SCHÜTZENBERGER²

The aim of this note is to give a slightly more explicit form to the correspondence between labelled trees and cycles which was found by Dénes (1).

Let $X = \{x_i\}$ $(1 \le i \le n)$ be a set of vertices and

 $T = \{t_i = (x_{i,j}, x_{i,j}) = (x_{i,j}, x_{i,j})\}, (1 \leq j \leq n-1)$ be a set of edges so that

(X,T) is a tree.

Considering T as an abstract alphabet, we denote by G the set of all words in the letters $t \in T$ that contain each t at most once and we define a mapping from G into the symmetric group of permutations S_n on elements $1, 2, \ldots, n$, by associating the transposition $\bar{t}_j = (i_j, i'_j)$ with each $t_j = (x_{i_j}, x_{i'_j})$ and the product $\bar{g} = \bar{t}_{j_1} \bar{t}_{j_2} \ldots \bar{t}_{j_k}$ with each $g = t_{j_1} t_{j_2} \ldots t_{j_k}$. It is trivial that any two \bar{t}_j , s corresponding to disjoint edges commute. Thus, unless (X, T) is a "bush" not all the associated cycles are distinct.

For any permutation $s \in S_n$ and triple (a, b, c) of distinct elements, we define the indicator $\sigma(s; a, b, c)$ with value zero if a, b, and c do not belong to the same cycle of s and with value ± 1 depending upon whether b is or is

not between a and c. Formally,

 $\sigma(s;a,b,c) = \sigma(s;b,c,a) = -\sigma(s;a,c,b) = 1 \text{ if } s^n a = b, \ s^{n'} a = c \text{ with } n \leq n' \text{ and } s^{n''} a \neq c \text{ for all } n'' < n'.$

Property 1. For any $g = g't \in G$ and triple (a, b, c) if $\sigma(\overline{g}'; a, b, c) \neq 0$

then $\sigma(\overline{g}'; a, b, c) = \sigma(\overline{g}; a, b, c)$.

Proof. The subgraph $(X, T') \subset (X, T)$ corresponding to the factors of \bar{g}' is a disjoint union of trees $T' = (T''_1, T''_2, \ldots, T''_k)$ some of which may be reduced to a single vertex.

By Dénes' Theorem there is a one to one correspondence between the trees T_i'' and the cycles which constitute the factors of the permutation \overline{g}' .

Now $T' \cup \{t\} \subset T$ is also a disjoint union of trees. The new edge $t=(x_i,x_j)$ connects two disconnected components of the graph (T',X). Furthermore, i and j belong to two different cycles of \bar{g}' say, $(i\ i_2\ i_3\ ...\ i_m)$ and $(j\ j_2\ j_3\ ...\ j_p)$. Now $\bar{g}=\bar{g}'i$ is obtained by replacing these two cycles by the single cycle $(i\ j_2\ j_3\ ...\ j_p\ j\ i_2\ ...\ i_m)$. The result follows immediately. As a consequence, we have:

Property 2. If $t = (x_i, x_j)$ and $t' = (x_j, x_k)$ are two distinct factors of the

word $g = g_1 t g_2 t' g_3$, then $\sigma(\overline{g}; i, j, k) = 1$.

Proof. Using the construction which has been given for property 1, it follows that i and j are in one cycle and k in another cycle of $\overline{g}_1 \, \overline{t} \, \overline{g}_2$, the particular cycles being $(il_2 \ldots l_m jl_{m+2} \ldots l_{m+m})$ and $(kk_2 \ldots k_{m'})$, say. Thus

² Harvard University.

¹ Massachusetts Institute of Technology.

 $\overline{g}_1 \ \overline{t} \ \overline{g}_2 \ \overline{t}'$ contains the cycle $(jk_2 \ldots k_{m'}, kl_{m+2} \ldots l_{m+m'}, il_2 \ldots l_m)$. Hence,

 $\sigma(\overline{q}_1 \, \overline{t} \, \overline{q}_2 \, \overline{t}'; \, i, j, k) = 1$ and the results follow from property 1.

Let $h_i \in G$ denote a product of the set of all edges t_{j_i} incident to x_i . Let us now consider $W = \{w = (h_1, h_2, \ldots, h_n)\}$ the set of all n-tuples of elements h_1, \ldots, h_n . Clearly the number of elements w in W is

$$\Delta(X,T) \stackrel{\text{def}}{=} \prod_{1 \le i \le n} (\deg x_i) \,!$$

For any given $w \in W$ if $g^* = \prod_{j=1}^{n-1} t_j$ is a product of maximal degree n-1, and if for each i, the symbol t_j corresponding to edges incident to x_i appear in g^* in the same order as in h_i , then we shall say after Lyndon [2] that the word g^* is a minimal infiltration of $w(g^* \in (w))$. Clearly if deg $x_i = 1$, h_i reduces to a single t and may as well be omitted from w.

For instance if $X = (x_1, x_2, x_3, x_4)$ and $T = \{t_1 = (x_1, x_2), t_2 = (x_2, x_3), t_3 = (x_1, x_2), t_4 = (x_1, x_2), t_5 = (x_2, x_3), t_7 = (x_1, x_2), t_7 = (x_1,$

 $t_3 = (x_3, x_4)$ we have

$$\begin{split} W &= \{(t_1, t_1\,t_2, t_2\,t_3, t_3)\,,\; (t_1, t_2\,t_1, t_2\,t_3, t_3)\,,\; (t_1, t_2\,t_1, t_3\,t_2, t_3)\,,\; (t_1, t_1\,t_2, t_3\,t_2, t_3)\} = \\ &= \{(t_1\,t_2, t_2\,t_3)\,,\; (t_2\,t_1, t_2\,t_3)\,,\; (t_1\,t_2, t_3\,t_2)\,,\; (t_2\,t_4\,t_3\,t_2)\} \end{split}$$

and

$$\begin{split} &\big((t_2\,t_1,\,t_2\,t_3)\big) = \{t_2\,t_1\,t_3,\,t_2\,t_3\,t_1\} \\ &\big((t_1\,t_2,\,t_3\,t_2)\big) = \{t_1\,t_3\,t_2,\,t_3\,t_1\,t_2\} \\ &\big((t_2\,t_1,\,t_3\,t_2)\big) = \{t_3\,t_2\,t_1\} \\ &\big((t_1\,t_2,\,t_2\,t_3)\big) = \{t_1\,t_2\,t_3\} \,. \end{split}$$

We now wish to prove:

Property 3. If $g \in ((w))$ and $g' \in ((w'))$ then $\overline{g} = \overline{g}'$ i. f. f. w = w'.

Proof. By 2) we know that $w \neq w'$ implies $\overline{g} \neq \overline{g}'$ for every $g \in ((w))$ $g' \in ((w'))$ since there must be at least one triple such that $\sigma(g; i, j, k) = -\sigma(g'; i, j, k)$.

To prove the backward implication let us now assume that $f, f' \in ((w))$

and $f \neq f'$.

According to 3) it may be that f = f' i.e. $f = t_{i_1} t_{i_2} \dots t_{i_{n-1}}$, $f' = t_{i'_1} t_{i'_2} \dots t_{i'_{n-1}}$ but that one can be reduced to the other by a certain number of exchanges of adjacent t's corresponding to disjoint edges in which case $\bar{f} = \bar{f}'$.

Assume there is no such reduction f^* of f to f'. Thus there exists some minimal n such that the left factor of f^* of degree n is different from the left factor of f', i.e.

$$f^* = g_1(x_j, x_k) g_2; \ f' = g_1(x_1, x_m) g_2'(x_j, x_k) g_3'.$$

Now g_1' contains an edge with either x_j or x_k as end point since otherwise n is not minimal. Suppose this edge is (x_j, x_p) . Then $f^* = g_1(x_j, x_k)$ $g_2'(x_j, x_p)$ $g_{3'}$ and $f' = g_1(x_1, x_m)$ $g_{2'}(x_j, x_p)$ $g_{3'}(x_j, x_k)$ $g_{4'}(x_j, x_k)$ in which case by property 2, $\sigma(f^*; j, k, p) \neq \sigma(f'; j, k, p)$.

 $\sigma(f^*; j, k, p) \neq \sigma(f'; j, k, p)$.
This completes the proof and it follows immediately that the number

of distinct cycles associated to the tree (X, T) is simply $\Delta(X, T)$.

REFERENCES

[1] DÉNES, J.: "The Representation of a Permutation as the Product of a Minimal Number of Transpositions and its Connection with the Theory of Graphs," A Magyar Tudományos Akadémia Matematikai Kutató Intézetének Közleményei 4 (1959)

[2] Lyndon, R. C.: "On Burnside's Problem. I." *Trans. Amer. Math. Soc.* 77 (1954) 207—215.

ЗАМЕЧАНИЕ ОБ ОДНОЙ ТЕОРЕМЕ DÉNES-A

M. EDEN M M. P. SCHÜTZENBERGER

Резюме

Авторы устанавливают соответствие между числом деревьев с n нумерированными вершинами и числом разложений цикла степени n-1 на произведений транспозиций. Они доказывают что эти два числа равны.