ON GAPS GENERATED BY A RANDOM SPACE FILLING
PROCEDURE

by
G. BANKOVI

§. 1. Formulation of the model

In paper [1] A.RE&Nyr dealt with a one-dimensional random space
filling procedure.!

This procedure consists:in placing successive disjoint unit intervals on
the interval (0, z), according to the following rules:

a) for x < 1 no interval can be placed,

b) for > 1 the left endpoint of the first unit interval is uniformly
distributed on the interval (0, z — 1),

c¢) if k unit intervals (k = 1, 2, ...) are already placed, the left endpoint
of the (k + 1)-st unit interval will be uniformly distributed on the subdomain
of the interval (0, x — 1) by which no intersection with the former % intervals
can be obtained,

d) the procedure will be finished when there remains no possibility of
placing a further unit interval without intersection.

The number of the placed unit intervals is a random variable »,. It is
proved that

(1) x;+m =0 Jexp{ J

and

du} dt = 0,748 .

=0(V:;) (x— 4 o0)

(An equivalent formulation of this model, describing the problem from
the aspect of random experimentation is given in this section below).

Generalizations of the problem are treated in papers [2], [3] and [4].

This paper contains further investigations concerning the original model,
namely the distribution of the gaps (i.e. those parts of the interval (0, z)
which are not covered by unit intervals) is considered.

First of all, an exact formulation of the model is given since the problems
to be treated have rather complicated structures.

Let {t, ¢, ..., ¢n, ...}x =T, (x>1) be a sequence of independent ob-
servations of the random variable uniformly distributed on the interval (0, 2 —
— 1). The set consisting of the elements 7', for a fixed # will be denoted by

1This is a special case of a three-dimensional problem raised by W. SCHMETTERER.
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7,. Obviously 7, can be interpreted as a random number generator. For
every fixed 7', a set of indices 4y, %,, ..., 7, will be defined in the following
manner. Let

% =1, %H=min B, (k=123 )
i
where

k—1
Bl\(z) = {?’ 'Ul [(til’ti; + 1) N (ti’ ti + 1)] == 0} .

j=
The stopping rule is given by

v = max {k: i < + oo}.
Kk ;

(For the sake of brevity the index a of », is sometimes omitted.)

The numbers t;,t,, ..., t, denote the left endpoints of disjoint unit
intervals and, according to the stopping rule, no more unit interval could
be placed without intersection; thus the interval (0, z) is “filled”.

Let us denote the ordered set of {t,,¢,,...,¢,} by {4, &, ..., 6}
The numbers

ID=1t¢ IV=tr—(tFr,+1) *k=28..,9, ITV=g—(¥+1)

will be called “gaps”, generated by the described random space filling proce-
dure?. ¥

The probability spaces {z,, S,, P,} occuring in problems concerning
the gaps can be characterized in the following way. Let be

(k) = {T, 1 v, = &} =010 .0

Obviously z,.(m) N 7,(n) = 0 (ms=n) and U 7(k) = 7,. Furthermore, the
equality 5
k+1

(2) 2 Igc]) =z—k (Tx(k) :# 0, Tx € tx(k))

Jj=0
holds. Let be
Z (k) =

k+1
={z:z=(zl,z2, walpp ) 025 210=1,2,.;., 811}, sz_s_x—k}y
=0

i.e. Z(k) is the common part of a (k + 1)-dimensional simplex and of a unit
hypercube. (The numbers z; (j = 1,2, ...,k -+ 1) mean the gaps generated
by an element T,, T, € 7.(k)).

The set 7,(k) is transformed by the random space filling procedure onto
the domain Z (k) in such a way that the inverse images of disjoint subsets
of Z.(k) are disjoint in 7.(k). Let S.(k) denote the o-algebra of those subsets

2J.e. as there is no possibility of misunderstanding, ‘“‘gap” may denote either
an interval or its length.



ON GAPS GENERATED BY A RANDOM SPACE FILLING PROCEDURE 397

of 7.(k) which are the inverse images of the Borel sets of Z (k). Then the
o-algebra

Sy = U 8,(k)
k

will be suitable for the problem treated in § 2. (We remark that for the problem
treated in § 4, S, can be given in a simpler way; in this case the Borel sets
of Z (k) only in respect of z, are to be considered).

The probability measure P, is determined by the particular problems
considered (i.e. by S,);namely, roughly speaking, each 7', is “‘equally probable”.

§. 2. Limiting distribution of a gap chosen at random

The first problem treated is the determination of the limiting distribution
of a gap chosen at random on the filled interval (0, z). More precisely, the
distribution function

G,(h) = P(I, < ) 0<h<1)
will be considered (for x — 4 =), where I, is selected with probability 1/»--1
out of the gaps I{, IY, ..., I¢*D generated by the random sequence 7',.

Definitions and notations. Let 9.(h) denote the random number of gaps
not smaller than A4 (0 <A < 1), occurring on the filled interval (0, ). Let

(3) ‘Sx(k) =¥+ 0x<h)
and
(4) 0x(h) = i(—k);l_l .

In the following we shall use the notations
E(»,) = M(z), D(»,) = D(x), B(§,(h)) = M,(2), D{E(R)) = Dyl%) .2

In dealing with the asymptotic behaviour of the model (for x — -+ o)
we shall need three lemmas.

Lemma 1. The function M ,(z) satisfies the functional equation

(5) Myz4+1) = %J M(t)dt+ 1 (@ > 0)

0
and the initial condition

0: for O0=2<h
(6) ﬂmwz{f =
1 for. h=w<1.
Lemma 2.
oo t
3 = I
(1) i M:C(h):QJexp{——ht—2Jl . du}dt O<h=<1).
X—>+ oo € u

0 0

3 The random variables &.(1) and », differ only on a set of measure 0 and therefore
their corresponding moments are equal.

11 A Matematikai Kutaté int’zet Kozleménye VII. A/3.
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Lemma 3.

Dy(z) =0()=) 0<h=1;z—>+ o).

The first assertion can be easily seen; let us namely consider the filling
procedure of the interval (0,2 + 1) generated by the random sequence
T.. (x> 0). It follows from the model that for #, = ¢ the equation

(8) My(x+ 1|8) = My(t) + Myx — ) + 1

holds, where M,(z 4 1|t) denotes the conditional expectation of &, (h);
¢ is uniformly distributed on (0, ) and therefore

9) Mh(x+1)=iJMh(x+1;t)dt.
X
0

The equation (5) follows by integrating (8) and considering (9). The initial
condition (6) obviously follows from the model.

Lemma 2 is a special case of Theorem 4 in [4] but a shorter proof, similar
to that of Lemma 6 can be also given; both of these proofs make use of Lemma 1.

Lemma 3 is a simple consequence of the results obtained by A. RENvI
(see [1], pp. 121—123).

Theorem 1. ‘
(10) lim G (k)= G(h) =2—C1C(R)
X0
for every h (0 < h < 1) where C(h) is defined by (7) and C = C(1) (see (1)).
Proof. The quotient
(k)
v.+ 1

is the ratio of the number of gaps not smaller than %, relative to the number
of all gaps. The equality

(11) NA;MZEFMQ
L i |
obviously follows from the given definitions. Considering (3) and (4)
D (h
X( ) — Qx(h) Sl 1’
|

and thus (11) can be written in the form

The random variables o.(k) (0 < 2 < + <o) are uniformly bounded (namely
as 0 <9 (h) < v, +1, 1 < p(h) < 2); in completing the proof it suffices
to show* that

lim st. o,(k) = C~1C(h)

X—>+ oo

4See e.g. exercise 17. of Chap. XI. in [5].
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as from this
lim E(o.(k)) = C0(R)
Xt
follows®.
Let 4 and A(h) denote the events

| — M(x)| < 1, D(e)
and

|£x(h) — Mp(x)| < 4, Dy(x),

respectively, where 4, and 2, are fixed but arbitrarily chosen positive numbers;
A and A(h) denote the complements of 4 and A(k), respectively. According
to Chebyshev’s inequality
1 1
P4d)<—, PAR)<—=

(4) i (A(R)) 7
hold. Let z, be a number such that for z < «,

M(x) +1> 4, D(x) ;

(@, can be chosen in such a way, as M(z) = O(x), D(z) = O(J/x)). o.(k) can be
written in the form

E(h) — My(x) + My(x) + 1 .
v, — M(x) + M(x) + 1

thus, for « > z, we obtain the estimate

Qx(h) ==

1} i
M) 1+ L= 22 Dnl2)) M) 1+ M]
M) |1+ -ﬁ# | M) |1+ #

Considering the asymptotic behaviour of the functions M(z), M,(x),
D(x) and Dy(z) (see Lemma 2 and Lemma 3) (12) can be written in the form

(13) P(%(1+81)<9x(k)<%"(%)(1+82)]>1—11-2——%,

where & = ¢&(x; b, 4, 4,)), & =-=¢(x;h,2A,24;), |&|—>0 and |g|—0 as

x — + oo. It follows from (13) that
M (x M (

oy — 02 | Myle)
M (x) M (%)

this means (considering (1) and (7)) that p,(%) converges in probability to
C—1C(h) as it was to be proved.

1 1
max (|¢, |, lezl)] < l_f .3 E ;

3The symbol lim st. denotes convergence in probabilitv.

L1
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Evaluated values of G(h) and C(k) are tabulated in § 5.

Theorem 2.
m= lim E(I,)=C"1—1.

Xircfen
Proof. It is obvious (see (2)) that for every k (k= 0,1,2,...), 7 (k) 5= 0
and for every 7T, € 7,(k)
(k+1)E(L|T) =2 —F,
and from this
x—
14 E(L ) —FE X
e

follows. In the following the proof is similar to that of Theorem 1. It can be
easily shown that

(15) Him gt =]
X oo v, =1

since (see [1])

. v
lim st. =< =20C.
X—>+ oo @X

The random variables (x — »,) (v, + 1)1 are bounded for 0 < z < 4 oo,
namely
x— v,

V=il

from this fact and (15), under consideration of (14), the assertion follows.
Another proof can be given by starting from

1
m= [ yG'(y)dy.
0

(This method is used in the proof of the following theorem.)

0=

él/‘

29

Theorem 3.
o= lim D)=
Xt oo
- % t
s R ey

:—2+C”1(6—8 J [1 te )exp{~—2jl~ - du}dt)—C—?.

0 0 i
Proof.

1 1 o t

lim B(I2) — J y2 G (y) dy — 201 J ( J thexp{— gl —2 J s }dtJd?/I

X+ o0 u
0 0 o0 0

oo 1 t

=201 J‘[Jy?e—y’dy texp{—ZJl_e_ du}dt:
u
0

0 0
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o t

— po—t __ tp—t _ p—Uu
:—1+4C*1Juexp{—2jl 4 du}dt:
0

12 u
0

= t
__ p—ty __p—u
:—1+4C“1J[1 . 'exp{—:Z[l s du}dt:
t 3 U
0 0

P t

v T et ks
:—1+4C—1_SC—1J(1 i zexp{—ZJI a du}dt.
u

0

Since
o2 = lim E(I2) — m?,
X—>+ o

considering Theorem 2, the assertion follows.

§. 3. Two further problems

In this paragraph two problems are simply solved by applying the results
of § 2.

1. What is the probability of the event that a point placed at random
on the filled interval (0, z) is placed on a gap smaller than 2 (0 <h < 1)?

The answer will be given for & — 4 oo.

On the filled interval (0, z) the number of those gaps for which the ine-
quality
(16) h=I® < b+ dh (=1,2 ..., 9.+ 1)
holds, clearly equals )
9 (h) — O (h + dh) = E(h) — & (h + dh).

The sum of these gaps is approximately equal to A(&.(h) — &.(A + dh)). Thus
the probability of placing a point on such a gap is given by

M () it My an() g

x x

(A7) p) a2 (600 - sx<h+dh>)J =h(

Considering (7) we obtain from (17)

(18) p(h)dh = lim p(h)dh ~ h(C(h) — C(h + dh)) ~ — hC’(h) dh
and since from (IT)YJM

(19) C'(h)=—CG'(h),

thus the required probability equals
h h h
P(h)= [ p(y)dy=C [ yG'(y)dy = C(hG(h) — | G(y)dy).
0 0 0
2. What is the probability of the event that a segment of length L

(0 < L < 1) placed at random on the filled interval (0, z) intersects none of
the unit intervals?
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Let us consider the interval (0, x 4 L); the left endpoint of the segment
is uniformly distributed on (0, ). Therefore the probability of the event
that such a segment will lie on one of the gaps for which (16) holds, equals
approximately

h—L h—L
(M () — My gp()) ~ Sy Dx(h) dh.

Thus the required probability for the interval (0, x 4 L) is equal to

J*px y

and hence for x — + oo (considering (18) and (19)) we obtain

1 1 1
B e _LCWdy=C | 1 —6Gw)dy.
L LJ g p(y)dy LJ (y —L)C'(y) dy LJ( (y)) dy

We remark that
P(l)= lim P, =0Cm=1-—0.
L—~+0
§. 4. On the distribution of the first gap

By considering 7., we have investigated so far only the ““average proper-
ties” of the gaps. A further interesting problem is that of the properties of
I® for a fixed k; for k&> 1 the tackling of this question seems to be rather
comphcated but for £ = 1, the limiting distribution of I{) can be determined
and compared with that ‘of =

Let us introduce the following notations

P(IP < h) = G*(z; h), E((IP))) = M¥x) =12 )
Lemma 4. For every fixed h (0 < h < 1), G*(x; h) satisfies the functional
equation

(20) G*z +1; k) :—I—JG*(t; h) dt (@ > 0)
x
0

and the initial condition

(21) G¥(e; I} = {

1for0Zx<h
Ofor h=d<]1,

Lemma 5. The functions M¥(x) (j=1,2,...) satisfy the functional
equations

(22) Mz J M) (@ > 0)
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and the initial conditions

(23) M () = a8 =z=1).
The initial conditions (21) and (23) obviously follow from the model.

The equations (20) and (22) can be deduced similarly to (5).

Lemma 6. If the function Q(z) satisfies the functional equation

(24) Q= + 1) :lJQ(t) at (x> 0)
x
0
and the initial condition
(25) Q(z) = g(x) 0=x=<1)
where q(x) is integrable and
(26) 0<q@x) <K 0<z<1),
then
- t
1—e™
Jim Q) = J A(f) exp {_ f —d }dt,

0 0
where

A(t) = (l q(x) e dx (0<t< -+ o).

0
Proof. Let us introduce the Laplace-transform of Q(z),

p(s) = r Q(x) e~ dx (Res > 0).
0
@(s) exists, since it follows from (24), (25) and (26) that
Q)= K 0=z < + oo)
and thus
o(s) < K J g K
: s
As
27) J U Q) dt] o0 o e P
0 0 e
and

(28) J 2Q(x + 1) e~*dx = — gs— (e5(@(s) — A(9))),
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irom (24), (27) and (28) the ordinary differential equation

(29) 2 @(ol)— ) + 22 — o
is obtained. By substituting
(30) ¥(s) = e(@(s) — A(s)),
(29) can be written in the form
(31) 7o)+ i) + 20 0.
It is easy to show that
(32) lim p(s) =0;
namely R
p(s) = esz(x) = dz = f Qx+ 1) e dx < —§
1 0

The solution of the equation (31) under the initial condition (32) is

= t
1 1—e™
(33) P(s) = —S—f A(t) exp {— J du} dt.

u

From (33) and (30) the relation

1—e™¥

§s—++0 s—++0

(34) lim (sp(s)) = lim (sp(s)) = J A(t)exp U du}dt

ollows, since

1
0 < lim (se* A(s)) < lim (Kse 5 e *dr) = Klim (¢ —1)=0.
s—=+0 s—>+0 0 s—~+40
In completing the proof, we shall make use of the following Tauberian
theorem (see [6] Theorem 108 and [1]): If a(z) is a monotonically increasing
function (0 <2 < + o), > 0 and

lim sf f e da(z) =c
8=+ 00 0
then

lim ) — :

x>tw 2P I'(g+1) )

X
Let us put a(x) = j Q(t) dt and f = 1; considering that in this case
0

[ = dalz) = g(s),
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we obtain

fowar
(35) lim (s¢(s)) = lim 2— = lim Q(x).
s—+0 X4 oo 5 b X—> 4 oo

Comparing (35) with (34), our assertion follows.
Applying Lemmas 4, 5 and 6, the following theorems are obtained:

Theorem 4.
oo {7
2 o [ T—tp—0
lim G*(x;h):G*(lz):J = exp —f——-du it (0<h<1).

X—>+ oo u
0

Theorem 5.

o t

. e — p—U
m* = lim Mf(x):fl——?——fe—exp{—Jl g du}df.

X—> 4 oo t2 U
0 0

Theorem 6.

1—et—te—! — —t2e!

- | " 2 1—e™

my = lim M¥(x) =2 % exp | — du| dt .
Xt oo 5 14 ; u

Thus the asymptotic variance of I equals:
(6*%)2 = lim D2(IPM) = m¥F — (m*)2.
X4

Obviously, also other proofs can be given for Theorem 5 and Theorem 6, by
making use of Theorem 4 and the relations

1 1
m* = (yG*(y)dy,m} = | y>G*(y)dy.
0 0

§. 5. Experimental results

The computing of G(h) for a fixed & requires the evaluation of the double
integral C(h). This laborious work can be avoided by applying the Monte
Carlo method®, the great advantage of which consists in obtaining estimates
of G(h) for all h(0 < h < 1) simultaneously. Of course, this method yields
only approximate values with a random fluctuation.

The stochastic model was given (see § 1). We have performed ten experi-
ments on the interval (0, 100).7 The results are tabulated in Table 1; the
accuracy is about 1072 The average value of 1072y, was 0.746.

¢ See e.g. [7].
? We made use of the table of random numbers of [8].
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Table 1.
3 G(h) C(h) ‘ h G(h) C(h)
|

0.05 0.166 1.370 | 0.55 0.765 0.923
0.10 0.269 1.293 } 0.60 0.791 0.903
0.15 0.346 1.236 0.65 0.813 0.887
0.20 0.425 TR 0.70 0.837 0.869
0.25 0.493 1.126 0.756 0.865 0.848
0.30 0.555 1.079 0.80 0.898 0.823
0.35 0.604 1.043 0.85 0.919 0.808
0.40 0.642 1.014 0.90 0.946 0.787
0.45 0.688 0.980 0.95 0.976 0.765
0.50 0.724 0.953 ‘ 1.00 1.000 0.747

By numerical integration we have obtained from the above values the

following estimates:
1

| G(y) dy ~ 0,662,

0

Thus we have the estimates:

1
m=1— [ G(y)dy~ 0,338,
0

1
f yG(y)dy ~ 0,402 .
6

1 1
o =2 (_)Y (1 —y) Gy)dy —(df G(y) dy)* ~ 0,082,

and, considering Theorem 2,

(36)

1-+m

-~ 0,747 .

The estimate (36) is in good agreement with (1). This fact shows the relat-

ively good accuracy of the experimental method. It is interesting that o2

9

is near to the variance (1/12) of the random variable uniformly distributed

on the interval (0,1).

To obtain good estimates for the values of G*(k) by the Monte Carlo
method, requires by far more experiments. This work was not done.
Finally, in Table 2 we have tabulated the estimates obtained for the

values of P;.

Table 2.

L l Py, ” L Py, L Br
0.1 0.211 0.4 0.122 0.7 0.060
0.2 0.176 0.5 0.100 0.8 0.039
0.3 0.146 0.6 0.080 0.9 0.019

(Received May 4, 1962)
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0 MPOMEXXYTKAX, CO3JAHHBIX OQHOH NPOLENYPOH
CJIYUANHOI'0 3ANIOJIHEHUSA MPOCTPAHCTBA

G. BANKOVI
Pe3iome

B patore [1] A. RENYI nccsiesioBas ciydaiiHoe 3anonsenue orpeska (0, x)
eIMHAYHBIMU OTpe3kaMu. OH Onpefesujl MaTeMaTHYeCcKoe OXKUJaHHMe ACHMIITO-
THYECKOr0 uKcia (Mpu & —> -+ oo) pacloJIo)KeHHbIX OTPE3KOB.

B aro0ii pabote nccienyioTcsi NpOMeXKyTKU MexKy oTpeskamu. B § 1 naercs
TOYHasi pOopMyJIMpPOBKA Mojies. B § 2 onpesensiercs npejiesibHOe pacipejiesieHue
NPOME)KYTKa, BBIOPAHHOIO M3 BCeX NMPOMEXKYTKOB clyyaiiHbim obpasom. B § 3
pelaoTes JiBe 3ajlaud OTHOCHTeJIbHO 3anojHeHHoro orpeska (0, x). B § 4 onpe-
JlesisieTcsi TIpejiesibHOe paclpejiesieHle epBoro nNpome)xyTka. B § 5 coobmarorces
pe3yJsbTaThl ONBITOB IIPOBeJeHHBIX MeToaoM MonTe-Kapio.
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