A CENTRAL LIMIT THEOREM FOR THE SUM OF A RANDOM
NUMBER OF INDEPENDENT RANDOM VARIABLES

by
J. MOGYORODI!

§. 1. Introduction
Let &, &, ..., &,, ... denote throughout the present paper a sequence

of independent and identically distributed random variables with mean value
0 and variance 1. Let us put

(1) h=b+&+ ... +&
and
(2) Nn = gn

V—7_L' .
Then by the simplest case of the central limit theorem

(3) lim P(n, < ) = D(x) (— oo <x<‘—}— 00)..

n—+-+oo

Here and in what follows P( . ) denotes the probability of the event in the
brackets and @(z) the standard form of the normal distribution function, i.e.

o
J e *dy.

— o0

@ P(a) =

1
J2n
In the present paper we shall investigate the limiting distribution of the
random variables #,, for n - 4 oo, where v, (n = 1,2, ...) is a sequence
of positive integer-valued random variables. We mention that in this paper
nothing is supposed about the dependence of », on the random variables &,.

The first results of this kind have been obtained by F.J. ANScoMBE
[1]. We mention here a special case of a more general result of the mentioned
author.

Theorem 1. If v, is a sequence of positive integer-valued random variables
such that v,jn converges for n— -+ oo in probability to a constant ¢ > 0, then
(5) lim P(7,, <x)= ()

[

holds.
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Recently A. RENYI [2] generalized Theorem 1. He investigated the case
when% tends in probability to a positive random variable A having a discrete

distribution. He proved the following

Theorem 2. If v, (n = 1,2, ...) is a sequence of positive integer-valued
random variables such that vp/n converges in probability to a positive random
variable A having a discrete distribution, then (5) holds.

In paper [6] we set ourself as an aim to investigate in a following paper
the case when v,/n converges in probability to a positive variable 1 having
arbitrary distribution.

According to this program, the aim of the present paper is to generalize
RENYI's result by omitting the restriction that the positive random variable
/. has a distribution of the discrete type.

We prove the following

Theorem 3.2 Let &, &,, ..., &, ... be a sequence of independent and ident-
ically distributed random variables with mean value 0 and variance 1.

If v, (n=1, 2,...) is a sequence of positive integer-valued random variabies

such that v,[n converges in probability to a positive random variable 2, then (5)
holds.

§ 2. Some theorems and an inequality of Kolmogorov type

We denote by AoB the symmetric difference (4 — B) + (B — A)
of the random events 4 dand B in the following.

Lemma 1. Let 7, 7,, ..., T,, ... be a sequence of random variables and
suppose that T, converges in probability to a random variable ©. Let further a, and
a, (a, < a,) be continuity points of the distribution function F(x) of the random
variable v. Let A denote the event {a, < v < a,} and A, the event {a;, < 7, <
ay}. Then P(A,04) — 0if n— + oo.

Proof. Given any & > 0 we can choose (because of the continuity of F(x)
at the points @, and a,) a positive number 6 such that | F(x) — F(a) | < e
ifle—ag |20 G=1,2).

We have the following sequence of equalities and inequalities

P(4,4)=P4,4,v<a,—8)+P4,4,v>a, + ) +
+P4,4,0,—6<t<a,)+P4,4,6,<71<0a,+8) =<

s < P(z,—7|>0)+ F(a,) — F(a,—0) + F(a, + ) — F(a,)
an
PA,4)=Pd,4,a,+0<7v<a,—0)+Pd,4,a,<7v<a,+0)+
+Pd,4,a,—6<t<a,) <P(v,— 7] >0+
+ F(a, + 8) — F(a,) + F(a,) — F(a, — 9) .

Taking into account that v, converges in probability to 7 we can choose the
positive integer n, such that if n > n, we have P(| 7, — 7 | > d) <e.

2 Professor R¥NYI kindly informed me that in the paper “On the strong law of
large numbers for a class of stochastic processes’” written by J. R. Buom, D. L. HANSON,
and L. H. KoopmaNs the same theorem is proved independently of me. This paper is to
be appear in ‘“Zeitschrift fiir Wahrscheinlichkeitstheorie und verwandte Gebiete”. (Sprin-
ger-verlag. Berlin — Gottingen — Heidelberg. 1962).
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Thus we have P(4,4) < 3¢ and P(4, A) < 3¢ and so P(4,04) < 6e.
This gives our assertion.

We shall use this Lemma 1 in the following form:

Consequence. If [ay, b)), [a,b,), ..., [a), b;) are disjoint intervals
(k=1,2,...),a;b; (2 =1, 2,...k) are continuity points of the distribution
function of 7 and A® denotes the event {g; < 7 < b;} and A the event
{a; £ 7, <b;} i=1,2, ...,k) then for any fixed positive integer k

i

—

P(AD0 AD) 0, if n—+ oco.

The following Lemma is almost trivial.

Lemma 2. If 7, 7, ..., Tp, ... ©s a sequence of random variables which
converges in probability to a random variable T and a is a continuity point of
the distribution function v such that P(v <a) <e (resp. 1 — P(z <a) <¢)
then there exists a positive integer n, such that for n = n,

P(rt,<a) <2¢. (resp.1 —P(r,<a)<2¢).

Proof. The assertion follows at once from the fact that a is a continuity
point of the distribution function of = and from the following equalities and

inequalities:
Pit,<a)=P(r,<a,|7,—1|= )+ P(r,<a,|t,—1|>0) =
<=P@r—d<a)te ifn=n,.

The case when 1 — P(7 << a) < ¢, can be treated similarly.
We formulate a theorem of A. RENYT [4].

Theorem 4. If 7, is a sequence of independent random variables such that
putting ‘
1 n
o, = — Ty, where B,— -+ oo
5
the distribution of the random variable o, tends to a limiting distribution, then the

conditional distribution of o, under any condition having positive probability,
tends to the same limiting distribution.

Theorem 5. Let 7, T,, ..., Ty, ... be a sequence of random variables such
that for n = 1,2, ... M(7,) exists® and
M(z,) > M (|1 M] < + o)

as n— -+ oo,

Let us suppose that
a)
lim { |z,|dP=0
N—+o |tp|>N

3 Here and in what follows M(-) and M(-|4) denote the mathematical expectation

and the conditional mathematical expectation resp. of the random variable in the
brackets.
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uniformly in n.

b) lim |P(r, <z|4)—P(r, <2)|=0
n—>-es

where A is an event such that 1 > P(A4) > 0.

Then
lim Mz, |A)y=M.
n—>+e |
Proof. We have |
|
Mz, | 4) = —— 7, dP + J ,dP
ol 4) = 5 A){ | |
(AN{|m|=NY) (An{lml>N})
where N is an arbitrary positive number.

Condition a) ensures that for any e > 0 we can choose a number
N = N{(e, 4) such that

(6) 'E rndP‘éﬁ J 7,|dP <&
(An{[r,,|>N(e)}) \ (|72l >N(®))
holds for n =1, 2, ... .
Thus we have
: 1 2 1
7 M(z,| 4) — —— ‘ . 4P <&, n=12,...).
(7) ’ (tn| 4) P \ | )

(AN(Tl <N ()

It is easy to see that forn =1, 2, ...

1
_ T dP= khy P(khy < 7, < (k+ 1) Rg| 4
P(4) lthZN(F) o P(khy ( ) by | 4)
{AN] |7, | <N(Ee))} ol=
where h, is a fixed positive number and %, < e.
Let
ok €
LG J
hy

Then it follows from condition b) that we can choose an index n, = n,(¢’) =
= n,y(¢) such that for n > n, the following inequality holds:

|P(khy < 7, < (k+ 1) k| A) — P(khy < 7, < (k4 1) by)| < &
for any integer k such that |k 2, | < N(e).
Using this inequality we obtain for n = n,
<l
P(4)

{ANIml<NE) )

7,dP > 2 khy P(khy = 7, < (k1) hy) —e.

|kho| =N(e)
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Thus from (7) we see that for n > n,

(8) Mz, |d)= = khyPkhy =7, < (k4 1)) — 2.
[kho| <N (e)
On the other hand it follows from (6) that
M(z,)— | 7,dP|<e n=1,2,...)
(|Tn|§N(5))

and we have for n =1, 2, ...

LT 5dP— X WPlh=v,< b+ hk)sh<s.

(I7al EN()) |kho|<N(e)

Confering these last two inequalities with (8) we obtain for n > n,

(9) M(z,|4) = M(z,) — 4.

It follows from (9) that .

(10) lim inf M(z,|4) = M .
n—>+c

Now condition b) ensures that

lim |P(z, <#|d)— Plz, <2}}| =0.

n—t e
Similarly, as in the preceding argumentation, one shows that

(11) liminf M(z,|4) > M .

L
Now from (11) and from the equality
M(z,) = M(z, | 4) P(4) + M(z,| 4) P(4)
we deduce that
(12) limsup M(z,| 4) < M.

n—-+4 oo

(10) and (12) together give our assertion.

Theorem 6. Let 9, 9, ... be a sequence of independent random variables
with mean value 0 and variances D, D,, ... . Put
_ 40+ ..+,
! B

n

(where Bi= D3} + D} + ...+ D2 and B, — + o). Let us suppose that the
distribution function F,(x) of the random wvariable o, tends to a non-degenerate
limating distribution function F(z). Let us suppose further that
+ o
M(o?) = [ 22dF(x).
Then under any condition A, having positive probability, we have

M(o%| 4) —1 (@as m— -+ o).

12 A Matematikai Kutaté Intézet Kézleményei VII. Al3.
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Proof. We prove that under conditions of our theorem
lim j x2dF, (x) =0
N>+ |x|ZN

holds uniformly in =.

For this purpose let us choose the positive number N(¢) according to the
given positive number & such that for N > N(e)

j 22dF(x) < .4
4

|x|=N

be satisfied. Then we have for these N

he J 2 dF(x)

|x|<N

£
= =
-+

On the other hand, since F,(x) converges to F(x) at all continuity points of
F(z), we have for n > n(e)

l j x2d F,(x) — J 22 dF ()
[x|sN |X|=N

Thus for n = ny(¢) and for N = N(¢) the following inequality holds

e
<5 =
4

<

(13) e Jxﬁan(x) %

[x|=N

Further from the condition

oo oo

J‘ 22 dF  (x) = J x2dF(x)

-0 — oo

we deduce that
=

(14) 1 Jj‘wﬂ ar,(x) — J 22dF (x)

— o0

€
<—>
2

if n > n,(¢). Let n(e) = max (ny(€), n,(¢)). Confering (13) with (14) we conclude

0= j 22dF  (x) < &,
[x|=N
if n > n(e) and N = N(e). This essentially means the asserted uniform integra-
bility.
We are now in the position to prove the assertion of our theorem. Accord-
ing to the preceding note we can choose for any » and for any positive & a
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positive number N(¢) such that

0< [ 2?dF (x)<e (n=1,2,...)
[x|="N(e)
and
0=< y 22dF(x) < e.
Ix|ZN(e)

Using this inequality we obtain for any fixed condition 4, having positive
probability,

(15)
1k €

0< 2 qF (x| d) < —— [ 2 dF (x) < TR
= J R dFa|d) S 5 | SdE@ S o )
[x|=N(e) [x|=N(e)

Thus it is sufficient to deal with the convergence of the integrals

{ a*dF (x| A).
[x[=N(e)
Now according to the assertion of Theorem 4 we have
F (x| 4)— F(x)
at all continuity points of F(x).
This means that
(16) [ x2d Fyx|4)—~ [ a2dF(z).
[X|=N(e) [x|=N(e)
Taking into account the choosing of N(¢) and confering (15) with (16) we obtain
the assertion of our Theorem.

Theorem 7. Let 7, 7y, ..., Ty, ... be a sequence of independent random
variables with mean values M(t;) = M; and variances D(t;) = D,. Let further

:rl+...—|—1n—(M1+...+Mn)
8,

(o

n

where

S,=VD}+Di+ ... +D3.

Let us suppose that the distribution function F,(z) of random variable o, converges
to the non-degenerate distribution function F(x) with variance 1. Let further C
be an arbitrary random event having positive probability. Then there exists an
integer ny = ny(C) such that for n = n,

k

E(Ti—Mi>|;zSn,0)§

i=1

3)P(C)
a2

P

max
1Sk=n

where A 18 an arbitrary positive number.

12%
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K
Proof. Let 9, = 2 (t; — M,;) and let » denote the indicator of the event

i i=1
g, ie.
1, if C occurs

0, otherwise.
Let further 4, (k= 2, ... n) denote the following event:
] £ 18, (=12 ... k—1) and [#|=18,,

and 4, the following event: |9, | = A8,
and let o, be the indicator of the event 4 ,. Then

n
a; =0, if 4§, 0= D=1 and
k=1

||| -

Let us investigate the mean value of y92. It is easy to see that

RS
}2 (7, —M,-){;ZSH,C]‘

ax
g

M(y92) > 2 M(ya, 92) + 2 (you DD, — D)) -

The second sum of the right-hand side can be written as follows
n—1 [ n
My 3 a0, —00) =My 35,

J=1
where Bi=(v;— M) > a,b,. (G=2,8; «cssm].
k=1

The system {f,} is suborthonormal (j = 2, 3, ..., n).

For, if j &~ ¢ and j < 4, then (r; — M) is independent of all the random
variables playing role in the product f;f;, and thus we have M(8;5;) = 0.

On the other hand
j=1 2
M(B5) = M((7; — j)2)M({k2;ak79kJ)§D?Sr21<+°°-

Thus applying the inequality of Cauchy and Bessel resp. we obtain

mb22)

= ZZM(V VWHé

B;
M)

. ] ) TR | S
< 2 ) < 5 |/ sz > D2 < VPO S2.
EV,;M[”VW%) 2 M < VMG | 3 3 D) < VPO
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Taking into account this inequality we can write
n
(17) My 9 2 = M(yaw) 128} — 2/P(O) 53

On the other hand according to Theorem 6 we have

lim M(yo2) = lim M(s%|y = 1) P(C) = P(C).

n—-+ oo n—»-+ e

Thus there is an index n, = n,(C) such that if n > n,

M(ya2) < |P(O)

or
(18) M(y93) < S:P(C).
Confering (17) with (18) we get the assertion.

Remark. Theorem 7 is in some sense an extension of the celebrated
Kolmogorov inequality. Its deficiency however is that we postulate the con-
vergence of the distribution functions P(¢, < x) to a non-degenerate distrib-
ution function #(z). This requirement is eliminated in a theorem of A. RENvy1
[5] but on the other hand the existence of the fourth moment of random varia-
bles 7, is postulated in his theorem. We give here a generalized form of the
theorem of A. RENYT, where only the existence of the 2 4 p-adic (p is an arbit-
rary positive number) moment of the random variables 7, is required.

Theorem 8. Let 7,, 7,, .. ., 7, beindependent random variables and suppose
that their moment of order 2 + p (p is an arbitrary positive nwmber) exists.
Let further C be any event of positive probability. If M, S,, A denote the same
quantities as in the preceding theorem then the following inequality holds for any
et LSRR

&
P| max | N (7, — M) ngn,C'Jg
ISksin | am—

lIA

I 2
P(C 2{?( By ]2; (r; — M;|2+p)2+P . 9]
A2 Sz

where B, is a positive constant depending only on the parameter p.

The proof of this theorem can be performed in somewhat similar way
as that of the theorem of A. RENYI.

§ 3. Proof of theorem 3

Let us consider the distribution function of the positive random variable
A. Given any & > 0 we can choose a sufficiently small « > 0 and a sufficiently
large b > 0 such that @ and b are continuity points of the distribution function
of 4 and -

Pa<i<b>1—c¢.
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Then taking into account that »,/n converges in probability to 2, there exists
by virtue of Lemma 2 a positive integer n, such that for n > n,

P(a§ﬁ<b)>1—-2s.
n

Denoting by 4, the event a < %’ < b we can write

P(n"n = x) = P("]vn <z, An) + P(nvn <z, An) .

The second member of the right-hand side is smaller than 2¢, and thus we have
only to deal with the first member. Let us divide the interval [a, b) into k
subintervals by the points a;, <a, < ... <a,_ (@ < a,, @y < b) and suppose
that they are continuity points of the distribution function of 2. We introduce
the following notations:

ay=a, ap = b, and AS{’:[ai_lév—”<a,-} G ="1,2 :: 0.
n

Then_Zk'Aﬁf)z A and AP AD =0, if ]

We cal,r:llwrite

(19) P(,, <, 4,) = 2k P(n,, <, AD).
We have clearly o

OB el V [mi,-—l] ( b — C[nam]) gl (V @ _ 1) _

V[nai—l]

Let us denote by C(n, k, 7, g) the event that

[nai—l_] C"n—?"[na‘—l] [na’i—l]_
[/ " (vr—] )*"”‘"‘-‘](l/ v 1)

Let us choose the positive number ¢ such that the following inequality

S8 B=LB o

|D(x) — P(x + 20)| < &
be satisfied.
Let further the positive integer £ be choosen such that

_1_2(b——a)< €

0 Vk 2
be satisfied.

On the basis of (19) we can write

k
P, <z, 4,) = 2 P(n,, <=, AD,C(n, k,%,0)) +
i=1

k
+ 3 P(n, <, 4D, 00 5,5 0)).
i=1
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Applying now the inequalities

P(ABC) = P(4AB) + P(AC) — P(4) = P(4B) — P(4AC), and P(4B) <P(4)
and taking into account (20) we have

k k :
2 P("?[na;_,] < r— 2 9) Ag)) e 2 P(A(rll)’ O(n? k; i: Q)) é
(22) i=1 i=1

k 4 k S
_S_ P(n”n < x! A é 2 ’Y[na;_,] < + 2 Qa Ag‘l‘)) +§ P(Ag)! O(n: k; 7/'1 9)) .

It follows from the consequence of Lemma 1 that for any e > 0 there exists

a positive lnteger ny (n, =n,) such that if A9 denotes the event (a,_, < 1<a,)
(t=12, , k) then

k
(23) D' P(40 40) < -;— if n>n,.

Obviously we have for any three event
| P(AB) — P(AC)| < P(Bo )

and thus for n > n,

k
2 P n[”“t—x] <@ _{: 2 (3 A(l) 2 n[na{—-xl <z j: 2 9, As‘ll)) é
(24)

l\/w

< S P(fneg < T+ 20, 49) f&.

—

i=

We obtain thus the following estimate for P(n, <z, 4,)

K K
> P(’?[na;_,] <r— 29 A(’)) 2 P(Ag)v O(’ﬂ, k’ 3 Q)) = P(m,. <, An) =
i=1 i=1
(25) K | ST —
< D P(Mpnay <+ 20, AD) + e+ 3 P(AP, C(n, k, 4, 0))
i=1 i=1
if n = n,.

Since the distribution of random variables Nina;—y] CONVerges to (4), we have
by Theorem 4

k k
(26) lim > P(png._) <20, AD) =Bz + 29) 3 P(AD) =
n—>+e i=1 i=1

=Px+20)Pl@a<i<b)

if k£ is the fixed integer.

This means that there exists a positive integer n, (n, > n,) such that
if n > n,,

k |
\2; P(na) < * 4 20, AD) — Dz £ 20)Pl@a <A< b)| <
i= |
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From this inequality and from (25) we have

k
Dx—20)Pa<xd<b)—2e— DJP(AP,Cn, k,1,0) < P(n,, < 7, 4,) <

i=1
(27) K
<P+ 20 Pla<i<b)+2e+ SP(AP,C(n, k, 1,0))
i-1
if n = n,. We have
Pe<i<b)>1—¢

and thus for n > n, and the chosen o

k
B(x) — 46— ZP(AD, Cln, k,4,0) < P(n,, <z, 4,) <
i=1
(28) " RO
=O@) +3e+ SP(AD,C(n, k,1,0)) .
i=1

The proof will be completed if we prove that for any e > 0 there exists n,
(ny = n,) such that for n > n,

=

—

P(AP, C(n, k,4,0)) < &.

]

i

For this purpose we remark that the following inequality holds

) |
P49, b(T,zc,TQ))éP(As) W Ll ey ‘;9)

v, [na, 1}

= )

First of all we remark that if the event A{) takes place then

0< V[m’ il

I‘l

(29)

t P(As,>,

H/\

(30)

v

Thus we have only to estimate the sum of the probabilities
1 Srn 5[na¢_] ;
|

Ve |29 A("i))

where o is the fixed positive number, (i = 1, 2, ..., k). It can be easily seen
that (30) is smaller than

max
na;—,<l<na;

(31) P

Z:1 C[naa_J = (-))
— 0, AD] .
V[naz—l] 1

It follows from (31) by the aid of the inequality
|P(AB) — P(AC)| < P(Bo C)
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and by (23) that for n = n,(¢)

5 o ¢
2 Pl max 1~ Cinac) =8 A(‘))_S_
&=t |na=izna;| J[na,_,]
(32) i
< P| max | S Crnaca

20 40|+ 7.
2

= nai<l=na; | V[’/Ml, 1]

Applying Theorem 7 to the terms of the right-hand side of (32) we obtain for
n=mny (N, = n)

P( max ;{M_ i > ]/ [nafL A(i)) =
na;—, <l<na, V[n — 'I ’ [n ;. 1)]
R &g VP A(’) [n( — Q- 1)]

[na, l]

Since the set of the continuity points of the distribution function of 2 is every-

where dense, we can choose the points of subdivision such that for any 6 > 0
1-+4¢;6 g

PR OB L 1900 B

holds with some ¢, | ¢ | < 1.
Putting now this subdivision of [@, b) we obtain from (33) the following

inequality

(34) P[| max &1 — Cinay] J > o, A(l)] <3 VP AM) b Lﬁ .
na;—,<l=na; V[’I?d,_l] i 9 [na] k
Let us choose ng(ng; > n,) such that for n = ng the inequality
n 1

Ereae

[na] a— o
be satisfied.

Then (34) gives
@)
(35) Pl s i s[nac—J >p, AD| < KVP(A )
naisisnoi | | [na_,] 0%k

where K is a positive constant independent of n. Substituting (35) in (32)
we have for

k

36 P : max
( ) 2 lna‘-,glgna;

i=1

K
o'k

Cz g é-[mu_,]

[ra;—]

[k
(SvFeam) -2

i—1

=, A#’J =
The cauchy inequality gives

k.
21/? 40) < || S PAD) VE < VE.
i=1
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Taking into account the choice of k and the preceding estimate we obtain
for n = n

K
(37) 2 P( max &= Cinay > o, Aﬁf)] <e.
=1 nai-, <I=na; [nai_l]
Our next aim is to estimate the sum of the probabilities
(38) P(}mnm_d (VM“;]— 1] ] =0, A&:‘)) o E=L2 ... B
n

Arguing again similarly as in the preceding estimation (37) we obtain that for
n = mg (ng = n;) and for the chosen £

e
{5 ZP(JW[MH][ W%l—lH;e,Aﬁ))ée.

=1 n

Confering now (28), (29), (37) and (38) we obtain the assertion of Theorem 3.

§ 4. Some additional remarks

It is easy to see that the above method of proof of Theorem 3 can be
applied to the case also when the random variables &, are not identically distri-
buted, but are such that the distribution of the normed sums of random vari-
ables &, tends to a non-degenerate limiting distribution. Especially the follow-
ing generalization of Theorem 3 is valid.

Theorem 9. Let &, &, ..., &, ... be a sequence of independent random
variables with mean value 0 (this is not an essential restriction) and variance
Var &, = Dy. Let us denote by n, the expression

ikt G

B,
where

/ n
so=| 201
k=1

Let us suppose that the distribution of n, tends to a non-degenerate limiting
distribution and that the sequence B,, is in the sense of KARAMATA ,,slowly oscillat-
ng”’ 1. e.

B,=n*L(n), (o > 0)
where for any ¢ > 0, L(cn)/L(n) — 1,if n— -+ oo. Let further v, be a sequence
of positive integer-valued random wvariables such that 2—" converges in proba-

bility to A. Then n,, has the same limiting distribution as n,,.

The proof of this theorem can be performed in the same way as that
of Theorem 3.
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.

We remark also that the supposition that %‘ converges in probability

to A can be replaced by the more general supposition that Vn

) converges
w(n

in probability to 2 where w(n) is an arbitrary positive function tending to infi-
nity for n — 4 oco.

(Received October 20, 1961; in revised from August 10, 1962)
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LIEHTPAJIbHASI IIPEIEJIbHASI TEOPEMA 1UJIs1 CYMM CJIVUAHHOI O
YUCJIA HE3ABUCUMBIX CJIYVUAWHBIX BEJIMUHUH

J. MOGYORODI
Pe3rome

JlokasbiBaeTcsl clieyomast

Teopema 3. ITycmbs &, &,,. .., &n,... — nocae008amebHOCNG HE3ABUCUMBIX
00UHAK060 PACNPeOeAeHHbIX CAYYQUHbIX 6eAUMUH, ¢ MAMEeMAMUu4ecKkum oxcuoa-
nuem O u oucnepcueti 1.

Ecau vy (n = 1,2, ...) — nocae008ameabHoCmb NOAONCUIMEALHBIX 1ea0-

“ Y
YUCACHHBIX CAYHQUHbBIX 6eAUYUH, MAKUX 4rmo -,’% cmpemumces no eeposmaocmu K

HeKomopoll NoAOHCUMeAbHOU CAYHAUIHOU 6eAuduHe A, 1M0 Mbl UMEEM :

limPé+—';+—£’”‘<w

il V.

X ¥
1 -
=— e “dy.
/ 27 J :
Teopema 3 siBisieTcsi 06o0mieHnem pedynbTaToB ANScOMBE-a [1], RENYT

[2], [3] u aBTOpa [6]. ViMenHO B paboTe ANSCOMBE-a U aBTOpa Ipejriosaraercs,

74 o o
4To ;n CTPEMHUTCA 110 BEPOSATHOCTH K HEKOTOPOHU ITOJIO)KHUTEJIbHON KOHCTAHTe, a B

paborax RENYI K HEeKOTOPOW IOJI0YKUTeJIbHON cydaiiHOi BeluunHe A, MMelo-
el JMCKpeTHOe paclpejelieHune.



424 MOGYORODI

Teopema 9, siBnsieTcs jerkum o6oo6uenrem Teopemsl 3. MeToJ1 10Ka3aTellb-
ctBa TeopeMmbl 3 MepeHOCUTCS! MOYTH TPUBUATILHBIM 00pPa30M Ha 0KAa3aTesbCTBO
Teopemsr 9.

Teopema 3 joxaspiBaeTcss ¢ nomoublo Teopembl 7, KOTOpast OCHOBBI-
BaeTcsl Ha clielyloleil Teopeme:

Teopema 6. [Tycmo 9y, d,,... nocaedosameabHOCMb HE3AEUCUMBIX CAYqall-
HbIX 6eAUMUH ¢ Mamemamudeckum oxcuoanuem 0 w oucnepcued Dy, D,, ...,
makux, umo @ynxyus pacnpeoeserusn Fp(x) cayqaiinod eeaudurol

g _ i+t + 9,
" B

(‘BH-—> + C)O)

n

cmpemumes K Hekomopoil HecoGemeennoll ynkyuu pacnpedesenusn F(x). ITycmo

lim M(o%) =M, (|M|< 4o, M= K'Nx‘ldF(x))

n—+ e
Mo Mbl UMeeM 048 YCAOBHbIX MAMEMAMUIeCKUX 0NCUOAHUL
lim M(d%|4) =M,

| U i
20e A — npoussoavHoe caAydaiinoe cofblmue, uUMeOWee noA0NCUMeAbHY0 6epOsm-
HOCIMb. :
Teopema 7. ITycmo &y, Oy,..., O,,... — N0CAC006QIMEABHOCIIL HE3ABUCUM-
blX caydaunblx eeaudun. Ilpeonoaazaemcs, wmo Mmamemamudeckoe 0xcuoaHue
M(9)= M; u oucnepcus D#) =D; (v = 1,2, ...) cywecmsywm 045 6cex i.
Bosbmem
N+ ..o+, — (M, + ...+ M

S

n
n

20e
8,=)YD?+ ... + D2.

[Ipeonoaoncum, umo pynxyus pacnpeoeaenuss F,(x) caydatnol eeauqunst o,
cmpemumes Kk Hekomopoul HecoGcmeenHoll Pynryuu pacnpedeaeHus. Ecau O —
cayqatinoe cobvimue, uMeOwee NOAONCUMEALHYIO 6ePOSIMHOCTIL, 10 CYWecmeyent
yenoe qucao ny, = n(C), makoe umo 04s ducea n, GOABUIUX N, MbL UMECM :

3VP(©0)

k

2 (‘ﬁi N ]‘[i)

= |

= AN 0=

n

1<k<n

P( max

20e A Npou3soabHOE 1N0A0NHCUMEAbHOC UUCAO.
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