ON RANDOM SETS

by
KaraLin BOGNAR

»
P. ErpGs raised the following combinatorial problem: Let N(n) subsets
of a set 7 of n elements be chosen at random, independently and so that at

every choice any subset is chosen with the same probability ‘)in; how large

must be N(n) to ensure with probability near to 1 (as » tends to infinity)
that among these N(n) sets there is a pair such that one is a subset of the other.
A. RENYT [1] solved this problem and obtained (among others) the follow-
ing results:
L. Let P,(N(n)) denote the probability of the event that there exist among
the N(n) subsets chosen at random at least two, one being a subset of the other.
Then for any fixed ¢ > 0, if

lim =,
s
then
(1) lim P, (N(n)) =1—e°.

Nn—»oco

II. Let y, denote the number of pairs of subsets 4, A (z < j) among the
chosen sets 4,, 4,, ..., Ay, such that 4, S 4; or 4; A

Suppose
N(n) ~ (%} o) 2

where lim w(n) = oo, but lim 17w(n) = 1. Then for any fixed & (0<ce<<1)

n—eo n—»oo

lim P(|y, — 0?(n) | < o(n)'*+¢)=1.

n—oo

(P(...) denotes the probability of the event in the brackets.)

1 A, C A, denotes that A4, is a subset of 4,, 4, + 4, denotes the union of the sets
A Ads while A, A denotes the intersection of the sets A4,
*2 The SIgn ~ denotes asymptotic equality.
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Rényi also obtained results (analogous to (1)) concerning other relations
than 4; € A4;, namely

a) A, € 4, ... € A4, (see theorem 6 of [1])
b) A3 = A, + A, or A, = A, 4, (see theorem 8 of [1]).
The generalization of this problem — raised by A. RENYI — is as follows:

def.
Let us choose at random N(n, R) = N subsets of a set # of n elements
independently and so that at each choice any subset of 2 is chosen with the

same probability, i.e. with probability 2% . Let be given an arbitrary relation

(2) BBy B w o X}

of r set variables, defined on subsets of Z#°, which can be expressed by Boolean
operations and which can be fulfilled by r different subsets.> How large must
be N and of what type must be the relation, that for sufficiently large n with
probability near to 1 there should exist among these N subsets at least one r
-tuple of sets, fulfilling the given relation ?

This paper is devoted to this problem. After giving some notations, we
shall prove a lemma concerning the probability that the relation R holds
for a random 7r-tuple of sets (analogous to the lemma 2 of [1]). There will be
given a class @ of relations (,,regular’” relations, see def. 1, (8)) such that
if BR¢€® and if N is suitably chosen (N ~ (C(R))" w(n) where C(R) > 1 is
a constant, depending only upon the relation R, and w(n) — o as n — o),
then there can be found among the N randomly chosen subsets of 7
with probability tending to 1 as n— <o at least one r-tuple of sets for which
the relation R holds. Our result is valid e.g. for the following relations:

R(A,, 4,, A,;) = A, A,, A, are pairwise disjoint.
R4,,A,,A)=(4,=4,+ 4,) ete.

There will be given a class ®,(C ®) of relations (, strictly regular’ relations,
see def. 1, (9)) such that if R € ®, and if N ~ ¢(C(R))", where ¢ > 0 fixed,
then the probablhty that among the N randomly chosen subsets of &% there
can be found at least one r-tuple of sets, for which the relation R holds, tends
tol—e ¢ as n— oo.

It will be mentioned furthermore, that the ,,balancedness’ of the relation
(see def. 2) is a necessary condition of the relation R being fulfilled with positive
probability by at least one r-tuple of sets of the N randomly chosen subsets
if N ~ ¢(C(R))".

Notations. Let X, X,, ..., X, be an ordered r-tuple of subsets of the
set I of n elements. Let us consider all possible set-theoretical products

of r factors such that the j-th factor is either equal to X; or to X where X
denotes the complementary set of X; with respect to 7, and let us call these
products the atoms of the r set variables X, X,, ..., X,, or simply: atoms.
The number of possible atoms is obviously 2" (some of them may be equal to 0,
when for X,, X,, ..., X, some relation holds). Let these atoms be numbered
in some way from 1 to 27, the m-th will be denoted by E (X, X,, ..., X,).

31t will be said that the relation R(X,, X,,..., X,) holds for X X2 Qi s 03 X0 it
1 r
X3, X9,..., X? fulfill R in the given order.
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(The numbering may be done e.g. as follows: let be
(3) Bk Koy o vy g = XD X0, o X, (m=0,1,...,20 —1)
where

|

X, if 6;,=0
X¥=1= 5

in case
r
F=1
where 6, equals 0 or 1. E.g. in case r = 2
E(X,,X,)=X,X,; E,(X,,X,) = X, fz ; By(Xy, X)) = le X,

E4(X1> Xz) =5 X-l’ Xz C

It is well known ([2]), that any relation R(X,, X,, ..., X,) which may
be expressed by Boolean operations, can be written in disjunctive normal form
(in short: normal form), i.e. in the following form:

(4) ZEm(Xl’ X2i e '1Xr) =K,
mel’
where I'is a set of indices m. (I" C {1, 2, ..., 2"}). In other words, the normal
form of R means that the following two conditions are equivalent:
(a) R(X, X,,...,X,) holds,
(b) FBAR Ky o X =
mel’

Let the number »(I") of elements in /" be denoted by s, i.e. s is the number
of atoms occurring in the normal form of R. Obviously 1 < s < 27, and when
the relation does not hold identicaily, then s << 2. As anexample, let the relation
R(X,, X,, X;) be the following:

RX,X, X,)=X,+ X, € X,.
The normal form of this relation is:

oo o E TS e o MR 0 O AL e MR EL S i S

Let (3}, %, . . ., %;) be an I-tuple (I < r) of the numbers 1, 2, .. ., . Let us form
from X, X,,, ..., X;, all possible 2! atoms. Let
(5) &85 % - 0 %5) le=1.8, .. ;%)

denote the number of atoms occurring in the normal form of R, containing
as component the atom E (X, , X; iAo

i1’ ig» * °

4 For a given relation R(X,, X,,..., X,), the number sq(il, %+ -+, %) depends
obviously only upon the serial number (in R) of the sets occurring in the atom
Bq(Xi, Xi,, . . ., Xj;) and not upon the sets themselves.
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Obviously
0 < 8,(4y, 5y, ) =2
and
ol
(6) 3 aliots o bl
q=1
Let us put further
e et by s .
(7) S 8g(iys By - o) = 8%y, 0y, - -5 8).

q=1
Definition 1. If for the relation R(X,, X,, ..., X,)
(8) Max Sy gl =< 8 T (I=11,125 oy =)
(i3, 1ay. .5 11)

holds, R(X,, X,, ..., X,) will be called a regular relation. If for the relation
VoA 0. 00 SRR )

(9) Max SR Agsncs )= 81 (=1,2, .. :;r—1)
(PR YRR )
holds, R(X,, X,, ..., X,) will be called a strictly reqular relation.
Examples. 1. The relation
B By vy dly s Ay Ay oy dg) =

=A,S A4; and 4, S A4; and ... and 4, < 4,

iy ==

is regular, but not strictly regular. Namely, it is easy to see, that s = 3 and

Max B By sns Py = 3T 5002 L g~ g-018
(h 17"2;- . -hzl—l)

— §.32t—1-1 -~ 8 (2_—
further
t (2-— 2—1)
Max 8%h,, Ry, ool =882 =13 2l
(hnhzy - ha)
II. The following relations are strictly regular:
I R(Ad,, A, A,)=A, + A, = 4,, (s=4);
2. R(A,,A,,A,)=4, < A, + 4,, (8="1);
3. R(A4,, 4,, A,)=A,, 4,, A, are pairwise disjoint, (s = 4).
IIT. The relation
R(A,, 4y, A5, 4)) =4, € 4, S (4; + 4,) (s =10)

is not regular.
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Definition 2. Let R (X X)) (where<t <7 and (i, %, - - ¥)
is a t-tuple of the numbers Lo 2o ,r) and B(X,, X,, ..., X,) be two relations.
We shall write

BAE i RS R Ky o B

if the relation R,(X;, X,, ..., X;) holds whenever R(X,, X,, ..., X,) holds;
in this case we shall say, that R(X,, X,,, ..., X)) is a subrelarion of the relation

r
R(X,, X,, ..., X,). Let K(R) denote for a relation Rthe number 1///s where
r is the number of sets occurring in the relation R and s is the number of atoms
in the normal form of the relation R. The number K(R) will be called the balance
number of the relation R.
A relation R is called balanced, if for any relation R, for which

R EZR
holds, the corresponding balance numbers fulfil the inequality
K(R,) < K(R).>

Remark. If
ZEIII(XI' ). CHRT Xr) =
merl’
is the normal form of the relation R(X,, X,, ..., X,) of r variables, then the
relation R,(X,, X,, ..., X,), — the normal form of which is
DB X Xy s Xy =K
merl’,
where ' © I, — is a subrelation of R and all subrelations R,(X,, X,, ..., X,)

of R(X,, X,, ..., X,) can be obtained in this way.

186 BolXys Xyjsvvviiy) (3hin Ky aorr X} G {8as Xz <5 ig Rpf] DO
any subrelation of R. The normal form of R, can be obtained as follows: we
add atoms (of the r set variables X,, X,, ..., X,) to the normal form of R

until it is possible to bracket out all the atoms E (X, , X;,, ..., X;)
(@=1,2,...,27% (here X;,_,, X;,,, - .-, X; arethoseofthesetle e
which are not contained among X;, X,,...,X,;), ie. until the normal

form of R can be written in the form:

2’—
E (‘Xll+1‘ XIIA- 2 ’ .Yir
q:] mel’,

} B K B =

11° 12’
where obviously the first factor is equal to Z#°. Thus we get a relation R*:

2 EHZ(X X, Xi;) = C/Vr

= D SRR
which clearly is a subrelation of £. Now evidently R, is a subrelation of R*
and thus R, can be obtained from R* by eventually adding some atoms of the
variables X“, X, ..., X, to the normal form of R*.

It can be easﬂy shown that every regular relation is balanced. As a matter
of fact if R(X,,X,, ..., X,) is any subrelation of the regular relation

5The concept of a balanced relation is very similar to that of a balanced graph.
(See [3], p. 22.).

13 A Matematikai Kutats Intézet Kozleményei VII. A/3.
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RX, X,,...,X,)where 1 < i, <% < ... <4 < r, further if ¢{ denotes the
number of atoms in the normal form of R, and s in that of R, we have evidently
g o O,

Sq(iyyia, . - - ,i1)>0
(@=1,2,...,2)

Thus by the inequality of Cauchy we obtain

2

o
§2 = qu(il,iz,...,i,)] —
q=2

and therefore as R is by supposition regular we obtain

Sty iy i) =t Z82ipsiye. ... %)
Sq(iy,lay. .-, i)>0 q=1

l
2 At
sa<1s T

and thus
<+ =K(R).

¥
Ve Vs
This proves our assertion.
On the other hand a balanced relation is not necessarily regular. For
example the following relations are balanced, but not regular:

(1) R(4,, 4,, 4;)= (4, + 4,) < 4, (8=15);
(2) R(A,, 4,, 4,, 4)= (4, + 4,) S 4; 4,, (s=7).

To give an example of a relation which is not balanced, let us consider
the relation

R(Ap 4,,..., Ai)) =42 4,; 442 4,;...; 4,2 v P
R(A,, 4,, ..., A;,,) is not balanced if 7 > 4.

As a matter of fact it is easy to see that for the balance number of R,
we have

=
~
l

1
e

Further
Rlélg:é -—g—Ri,_]<Ri

holds, but among the numbers K(R,) (i = 1,2, ...) K(R,) is the largest.

In the following we prove a lemma concerning the probability, that the
given relation (2) holds for an r-tuple of subsets 4,, 4,, ..., 4, of the set %
chosen at random and independently in the above described sense.

Lemma.

(10) P(R(A,, A, ..., A,) holds) = l?i)

Proof. Let a, a,, ..., @, denote the elements of % . Let be

g('— i it akEA]- ]':1,2,...,7';
= if a, ¢4 k=1,2,...,n)
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It is shown in [1] (lemma 1), that the random variables ¢,(j) (k =1, 2, ..., n)

are independent and they take on the values 0 and 1 each with probability %

It is obvious that the random choice of a subset A4; corresponds to a sequence
of n experiments for the random variables &,(j), &(j), - . ., €x(j). The probability

of any fixed result of such a sequence is equal to % . Itis obvious furthermore,

that the relation R holds if and only if a corresponding relation R, concerning

the random variables €,(1), €x(2), ..., ex(r) holds for k = 1, 2, ..., n. However
the probability of the latter can be obtained — for a given k¥ — by determining
the number s” of sequences &,(1), &x(2), ..., ex(r) for which the relafion R,

holds and dividing this number by 2" (the number of all possible sequences
of r elements each 0 or 1). On account of the above mentioned independence

the probability that R, holds for every k, i.e. that R holds, is equal to :

But s” = s, since the sequence &4(1), €4(2), ..., €4(r) corresponds to the atom
Al-aW . Al-a® | Al-a) (k =1, 2,...,n) of the normal form of R (see (3)),
which proves the lemma.

Theorem 1. Let n(R, N, n) i) n denote the nmwmber of ordered r-tup-

les, A;, A, ..., A, among the randomly, independently chosen N subsets

Ay, Azlf’. . ,IZAN of the set F of n elements, for which the relation R(A4,,, A 4

holds. If the relation is regular (see (8)), and if

1) N~(,1)"I'Wz)
Ve

ig) * *

where

lim w(n) = oo,
then Wi
(12) limP(p=0)=0.

n—>eo

By other words, there exists, with probability tending to 1 when n tends to infinity,
at least one r-tuple of sets for which the relation R holds.

Proof. Let us denote by M(&) resp. D?(&) the mean value resp. variance
of the random variable &. It is sufficient to prove that

(13) lim ﬂﬂ:o,
| nee M)
since
P(17=0)<P(77< (77))<P(]77 M(n)lg-—gl))=
(14)

13*
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The latter follows from Chebyshev’s inequality. Hence from (13) and (14),
we obtain (12). We prove (13).

Let us put
1, if R(4,,4,,...,4;) holds
(15) R ( i )
0 otherwise.
Obviously
(16) = E Ef lsun sty
1=i;<N
[l
J= 12001
(i.e. the summation runs over all ordered r-tuples from the integers 1, 2, . .., N).
We shall make use of the following asymptotical formula
M — P
(17 ) M k] ~ il[_
P r!

which is valid if £ = 0, p > 1 are fixed integers, and M — + oo.
For the mean value of 7 we have from (16), (10), (17) and (11)

! [i]" ~ o(n) .

(18) M(y) = [N .

r

Now let us estimate the variance of 7, making use of the identity:
(19) D3(n7) = M(n?) — M2() .
Since by (15) M(e%,...;,) = M(&iy,...;,) and since

M(eii,...i,* Enjo... i) = M(Ei,...1,) M(j4,... 1)

in case (iy, iy, ..., %) and (jy, Js, - - -, J,) are disjoint (because of independence),
thus we have

(20) M(n*) =M(n) + ; M(eis,....,) M(gjg,...0) + 2 M(eig,...1, &g 0)
i i)

where the sum 3" contains those terms M(e; ;,. i, ¢j,j,...;,) for which some of the

1,-s are equal to some of the j,-s. Since furthermore

2
(21) 2 Mey M@, 02| 2 Mg, =M ),
in# e 1<i;<N
(hyk=1,2,...;T) j=]ljzélk g
hence from (19), (20), (21) we have
(22) D2(n) < M(n) + 3" M(eu,... i, 8pji..d0) -

In order to verify (13), it will suffice according to (22) and (18), to show, that

(23) llm Z M(eili""i"ejljhnjr) =0 4
B M=(n)
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For this there will be needed to compute the probability that the relation
R holds simultaneously for both of the r-tuples of subsets 4,,4,,..., 4,
god - A A ... 8 (e Bl Ay .. AR (4, 4;,, - .-, 4;) holds)
in case some of the indices %, @), ..., 7, coincide with some of fhe indices
Ju:Jas «--r g Let I (I <7) denote the number of common elements of
15 g5 o v oy b a0d 5y, Jo, « . ., Jr. Let us suppose e.g., that

(*) ih[:jk‘5 t=1,2,...,l; léhl,kt_é r.
The probability
P(B(4;, 4, ..., 4,) B(4,, 4;,, ..., 4;,) bolds on condition (*))

can be obtained according to lemma 1, by determining the number ¢, of atoms
in the normal form of R(4,,4,, ...,4,) R(4;,4,, ..., A,). This normal
form is obviously the product of the normal forms of R(4,,4,, ..., 4,)
and R(4;, 4, ..., 4;). The latters can be written by condition (*) (bracket-
ing out the common components, i.e. the components containing the sets

Afh,* A4, .., 4,,) in the following form:
: 5
(24) m;‘l Em(Aihl: Aihzy sy Aih‘) tert,m(hnzh:,-‘.-,hz) El(Aih,_i_l’ Aih;H’ siei=g Ai/,,) )

resp.

21
(25) m% Bl B i A tm'm(knk”m,k‘)E,(Ajkm, Ajkm, cawyiln s

where®

ML nlB Bes i o ) = 8l By v v 55 le)
resp.

W Lylleys g+ -y b)) = SpulBegs gy - - -r Ky)

(see (5)). Multiplying (24) by (25) we get non-zero members only when multi-

plying members which contain the same component £, (4,,, 4;,, ..., 4,).
Hence for the number o, of atoms of the normal form of
By, Ay «oon ) Rldy, Apy <oy lly)
(by (*)) we have:
ot
(26) Gor= 2 Bl By« i ou B)Bulln Bhs sty . =12, uiiyr)

m=1

and by lemma 1, we have

n

(27) P(R(4

St (o
g s ooy B Bl o By vy AJ-,) holds on condition(*)) = (22rl—l

(I =02 )i

6 »(E) denotes — as before — the number of elements of the (finite) set K.
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Hence

Z M( iria- - irEj1ja. j,» 2 2

(28) Rl )
NYVIN—=U [(N=7%

HlEliE s
- l P —1

22r 1

r—1 i

2

: Ju“f'“‘:‘”(g

92r—1

=1

According to (17) and (11), we have from (28) '
r—1 3 !
Ml e s 2 30 (0P i I L,
2 Mey,.....e00...0) NZ( = i) w(n) AT (r— )2 I
=

n e
w(n) .
S 2

(29) b

_|_

According to Cauchy’s inequality, by (7) and because of the regularity of the
relation R, we have from (26)

o = Shy by, - R) S Ry - . Hg) =
(30) g :
= Max S2(pi, 0000 =8 T (l=1,2 0,0 —1)

(01,035 - - - ,01)

and

(31) o,

lIA

S

is trivial. (23) follows immediately from (29), (30) and (31), which proves Theo-
rem 1.

Theorem 2. Let P, (N, R) denote the probability that among the randomly
chosen N subsets Ay, A,, ..., Ay of the set F of n elements, there exists at
least ome ordered r-tuple of sets: A,;,A; A, for which the relation

i1? iy *vry

R(A,, A, ..., A;,) holds. If the relation is strictly reglular (see (9)) and if
(32) ’{LII:’ , éV = (¢ > 0 fixed) ,
T
Vs

then
(33) lim P,(N,B)=1—e".

n—»oo

We wish to remark, that the proof is very similar to that of Theorem 4
of [1], nevertheless for the sake of completeness it will be given in detail. The
proof is based on the sieving theorem, given in [1], which makes use of a graph-
theoretical lemma. We shall give here the lemma and the sieving theorem
without proof; the proof can be found in [1].
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A graph-theoretical lemma. (See [1], p. 89.). Let H be a finite set. Ny
denotes the number of elements of a set H. H? denotes the set of all possible
unordered pairs of different elements of H. If N; = m, then obviously Ny, =

= (7; . Let E c H? be any subset of H2 The pair of sets (H, £) = @ is called

a (finite) graph; the elements of H are called the vertices and the elements of
E the edges of G. If V;, V; are vertices of &, and (V;, V)) is an edge of G, then
it is said that V; and V; are connected by an edge in G. If ¢ = (H, E), we put
Ng; = Ny and M; = Np.

def.

Let A be a subset of H. Let the graph AG = (4, A%E). If M,z = j,
then it is said that the set 4 contains j edges of .
Put
No(jra)+ 2 1; Ng(3,0) =1.
ACH

Ng=a,
Maesj

=
/ i

By other words, N,(j, ) is equal to the number of subsets of H which
have o elements and contain not more than j edges of the graph G. Let further
be

lv=

NP@G, 204+ 1) = X Ng(j, 28+ 1)

Il
=}

B
and

NG, 2a) = ZNolj, 26).
Thus N®(j, m) (resp. N@(j, m)) denotes the number of subsets of H which
contain an odd (resp. even) number < m of elements of // and contain not more
than j edges of G.
For any nonnegative integers «, f, put

1: ifa:ﬁ:
8= o, if as=8.

If @ = (H, E) is an arbitrary finite graph, m = N, then for any nonnegative
integral value of «, the inequalities

N®(1,20 4 2) — 8, = NP(0,20 4 1)
NP(1,2a 4 1) = NP(0,2 a) — 8,

A sieving theorem. (See [1], pp. 91—92.) Let B be a probability field,
By, B,, ..., B, arbitrary events. Let ¢ be an arbitrary graph with m vertices.
Let them be labelled and identified with the integers 1, 2, ..., m. Let H be
the set of the numbers 1, 2, ..., m. Let H® denote the set of those subsets
of H which contain no edges of @ in case the number of their elements is even,
and which contain at most one edge of G in case the number of their elements
is odd. Let H©® denote the set of those subsets of H which do not contain edges
of @G in case the number of their elements is odd, and which contain at most
one edge of @ in case the number of their elements is even.
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Let be SV =1 and

8= 2. _ PB:3B
1<, <. .. <igsm
(i15l3y- . - lg)EHD

further 859 =1 and
SO = o P(B,

1Si<<...<igsSm
(i1yfzy. - -ia)€HO

Then the inequalities

28+1 28
(34) 2 (18P <PB,B,...B,) < > (—1)789,(=0,1,2,...)
a=0 a=0
hold.
Proof of theorem 2. Let B(i,, i,, ..., i,) denote the event, that the rela-

tion R holds for the randomly chosen subsets A, A, ..., 4, (in this order).
Then obviously

(B8P (N, Bj=P|. F Bliuty - i,)) :1—P'l Il B(i, 1, z)]
T el s

Let us denote by @ the set of ordered different r-tuples? (iy, i,, .. .%,), formed
from the numbers 1, 2, , N. Let the vertices of the graph @ be the elements
of @ and let the vertices (z("l) i, . z("l)) and ({22, i), ..., 1)) be con-
nected if they are not disjoint, i.e. if z("l) = {2 for certam values of A resp. k.
(Suppose

i;{i,) et ,L-;Zz), s Z(r:,) z;{‘:z) i=12,...,7).)

According to (34), the following inequalities hold:

S A gt Bl 1T L 2p

(36) P| If B(il,z‘2,...,i,)‘§2(_1)033» FE) M R T
1<i;EN a=0
J=125 05T

and

PR e T +

(37) Pl Bl %5 - n s );2 P8P (B=0,12; ...}

11%12,51\1

The numbers S in (36) are defined as follows: S = 1; and

8@ = JOP(B(EL, i, ..., i) B({®, i, . . .,i®) . .. BE@, i@, .. .,i?),

a = 1, 2, T
7Tw; r-tuples, (2, i“) .« i®and (19, i9,. . ., 1) are not different, if for the
corresponding sets A, A,m A M and A, A, ..., Af» the normal form of

R(Af, Ay, ..., A4;m) and R(A,(;), A, , A») contain the same atoms.
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where the summation in 2'(0) is taken over all combinations of order a chosen

of different r-tuples (¢}, 45, ...,8,) (1 =4, < N;j=1,2, ) such that the
r-tuples (i{, i, ..., i), (z‘z) i, ...i9), . (z(") w(") ceey 3)  are all
disjoint in case o is odd while at most two r-tuples have common elements
(say I (I=1,2,...,7)) in case a is even.

The numbers S{M in (37) are defined as follows: SV, = 1; and

8P = SOP(B(EP, D, . . ., i®) BGE@, i@, ..., 4®) ... BE®, i, .. .,i@),

o = 1, 2, .
where the summation in 2‘(1) is taken over all combinations of order a chosen
of different - tuples Y ,z) such that the r-tuples (9, iV, ..., M),
(i, 4@, ..., @), ..., (6, ¥, ..., #V) are all disjoint in case a is even,

While at most two 7- tuples have common elements in case « is odd.
According to lemma 1,

& gy X s\n
(38) P(Bi(f,, 85 ++s8,)) = [;) ,
hence
(N]rg(N—r)H “.(N—zgr B i
(39) g r ’ {i =3
20+1 20+ 1)! o 3
N)r![N_")r! [N—2er+r]”
(40) S = r r > i)"zg |
(20)! or
Further
A
r r » peny
(41) 8l = Bl [%] + RY
where

RQ = 3*P(B(QL, i, . ..,i®) BGE, i, ..., i®) ... B, i, ..., i%)).

In 3'* the summation is taken over all combinations of order 2o chosen of

different r-tuples (i,, %y, . . ..1%,) such that among the r-tuples (i(, ¢V, ..., D),
(i, D, ..., @), ..., (139, i), . ., i) there are exactly two, “which are
not dlsJomt Let these two r- tuples (containing ! elements in common
(=1, ,7)) be (i, 4fe ... D) and (ife2), 35, . .., @), and suppose,
that

(**) i@ = 4o, F=1,2.0,0; L2k, k;=1; 1 0, <0, = 20-

According to a previous consideration (see (27))

n
(42) P(BER, igo, . . ., i) B(ie2, ig», . . ., %) on condition (**)) = (%
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where for ¢, it follows from (26), (30) and from the condition that the relation
is strictly regular:

ol
o =m2:13m(h1’ Bgs ooy Big) Gl g oo B) 2
(43) =
= Max S%hby-.. By s T ([I=1,2, .0ur="T)
P
and it is easy to see, that
(44) L.
Hence by (38) and (42) we have:
N

r—1 (Z
Ef< >
=1

(N—2r+l)rl('N——3r—|—lJr! .'.[N+l+r—2gr)rl(

iallmn)

2

a; \*

92r—1

r r r
(20 —2)!

X o

SJn(2Q—2)

¥ rl(rl —1) ‘vN_TJr!(N_ 2rJr! [N_(zg_z)rjrl 'n(20—2) n

r r r r < =2 e,
s 2 (20— 2)! (2,] (2'
(45)

Let now be N ~¢ )

- )n, then using again (17), the right hand side of (45)

7y
is asymptotically equal to

r—1 rl2 N2er—1 s \(20—2)
2 201 (r — D)12(2 0 — 2)! (EJ

=1
or\n =1 rl2 g2er—I g \*
2rJ 2 201 (r — )12 (20 — 2)! (Sz—é) L

=1

n

_I_.

0
92r—1

(7‘! = 1)]\7(29—1)r [ g \n(20—2)
2(20—2)! 2’J

c@=Dr(rl —1) (g,

2(2¢—2) (;J ’
from which it follows according to (43) and (44), that
(46) RY)—0, if n— co.
Furthermore we have
'NJT!(N—T]T!_”[N— 20r
r r r

r!
8 \n(20+1)
5 (*‘J SE R(219)+1

(47) S(21.n)+1 =

(2e+ 1) 2
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where
sy s . 9y o g . . «004+1)
R<219)+1 :Z'* P(B(@‘lh, 3(21), - 7/;1)) B(@‘f), 7,‘22’, i Z<r2)) = B(’L‘129+1’, @‘229+1), = 7'(r 0+ ))

In >'* the summation is taken over all combinations of order 2p 4 1, chosen
from different r-tuples (i, %, ..., 7,) in such a way that among the r-tuples
(2, ¥, ..., 8F), 6P, o, ..., i), ..., (D, ifetD, ., ipe+D) there are
exactly two, which are not disjoint. Similarly we have

(48) B, ,—0, if n—>oo.

Hence from formulae (39), (40), (41), (47) it is easy to obtain by means of (46)
and (48), that

(49) S;.°>=;_—"’+o(1) (=01,...)
and \ -
(50) = 2—: + o(1) (7=0,1,...)

where o(1) — 0, if n — oo; and from (49) — (50) by (35) — (37), our statement
(33) follows.

We have seen that if R is a relation among r sets, the normal form

of which contains s atoms, the regularity of the relation is a sufficient condition
. 2

(51) lim P, ((‘(,—

for
5 n, R) =0
n—»e VS

for any ¢ > 0. We shall show now, that the balancedness of R is necessary
condition for the validity of (51).

Theorem 3. Let R be a relation among r sets, the normal form of which
contains s atoms. In order that (51) should hold, the relation R has to be balanced.

Proof. Let R, be a subrelation of R among r, << r sets such that the nor-

mal form of R, contains s; elements, and r—l— > r—l— It follows from (51) that

Vsi Vs

n
if we choose N ~ ¢ ri subsets of a set having n elements at random, there

Vs
exists with probability = p > 0 at least one ordered r-tuple of these sets
for which the relation R holds. Then it is obvious that there must exist with
probability > p at least one r;-tuple of the N sets (r, << 7) for which the relation
R, holds.
On the other hand,
PN, R,) < M(,)

where 7, denotes the number of -tuples among the NV sets for which R, holds;
as further by (18) we have

M)~ 81 e (E)

1
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and thus M(7,) - 0 for n— o=. Thus we obtained a contradiction, which proves
theorem 3.

Let us mention that theorem 3 contains a second proof of the fact, men-
tioned earlier, that every regular relation is balanced.

I wish to express my thanks to Professor A. Rfvy1 for his helpful sugges-
tions and valuable advices.

(Received July 13, 1962)
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0 CJIYYAMHBIX MHO)XECTBAX
KaTaniy BOGNAR

Pe3iome

B craree aBTOp 3aHuMaeTcsi €O ciefylomleii nmpoGiemoit or A. RENYI
(B yactHOM ciyyae ot P. Erpds) (cm. [1]):

[Tycte J7 mHOKecTBO M3 7 3semenToB. Ilycth R(X;, X,, ..., X,) mobas
peJsiLys OT 7 BeJIMUMH, ONpeJleJieHHAsi Ha NOJAMHOYKeCTBAX <# , BbIpa)kaemasi C
IIOMOLIbIO OyJIeBBIX OlNepaluif M BBINOJHAEeMask M 4epe3 7 Pa3iIMYHBIX MOJAMHO-

»KecTB. BripeGem ciiyyaiiHo, He3aBUCMMO JDYI' OT Jpyra M ¢ PaBHOH BeposiT-
def.
HOCTbIO N(m, B) = N moamMHOecTB MHOXKecTBa <7 . Ilpu kakux N M KOTOpBIX

TUIAaX pesisluil cyllecTByeT, ¢ BepOATHOCTbIO OJM3KOA K 1 mpu JocTaToyHo
OonpIIMX 7, XOTS1 OBl OJlHA 7-aJJKa MHOXKECTB K3 ITUX N I0JIMHO)KECTB, Y/0B-
JIeTBOpAIOLIAs JAHHOI pessiuuu?

YKasbiBaeTcsi Kjacc @ pessiuuit («perysisipHble pesisiliuu», cm. omp. 1, (8))
Takot, uro g R € R u nogxomsimiero N (N ~ (C(R))"w(n), rae C(R) > 1 —
HEKOTOpasi INOCTOsIHHASL, 3aBHUCSIIAsl TOJbKO OT pelsituu R; w(n) — <o, eciu
n— oo) Me)X1y N BBIOpaHHBIMM CJIyYaiiHO TTOAMHOYKeCTBAMM ~# Haljgrcsl c
BePOSITHOCTBIO, cxofsileiicsi K 1 mpu n— oo, X0Ts1 OBl 0JjHA 7-a/IKa MHO)KECTB,
BelNOJIHAKOWAsE pensuuio R. (Teopema 1.)

Janee ykasbiBaeTcsi Knacc (R(C ) pensiliid («CTPOro peryJisipHbles peJisi-
uuu, cm. omp. 1, (9)) Takoit, uro must R € @, u N ~ ¢(C(R))" (¢ > 0 — 3adux-
CHPOBAHHOE YHCJI0) BepPOSITHOCTL TOTO0, 4YTO MeXXAy N ciyyaiiHO BBIOpaHHBIMH
MOJIMHO)KECTB < HaWéTcsi X0Tsl Obl OJHA 7-aJjKa MHO)KeCTB, Y/OBJIETBOPSI-
owas pensuun R, crpemutcss K 1 — e~ npu n — <. (Teopema 2.)
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