ON RANDOM SETS

by

KATALIN BOGNÁR

P. Erdős raised the following combinatorial problem: Let N(n) subsets of a set \mathcal{H} of n elements be chosen at random, independently and so that at every choice any subset is chosen with the same probability $\frac{1}{2^n}$; how large must be N(n) to ensure with probability near to 1 (as n tends to infinity) that among these N(n) sets there is a pair such that one is a subset of the other.

A. Rényi [1] solved this problem and obtained (among others) the follow-

ing results:

I. Let $P_n(N(n))$ denote the probability of the event that there exist among the N(n) subsets chosen at random at least two, one being a subset of the other. Then for any fixed c > 0, if

$$\lim_{n\to\infty} \frac{N(n)}{\left(\frac{2}{\sqrt[]{3}}\right)^n} = c ,$$

then

(1)
$$\lim_{n \to \infty} P_n(N(n)) = 1 - e^{-c^2}.$$

II. Let γ_n denote the number of pairs of subsets A_i , A_j (i < j) among the chosen sets $A_1, A_2, \ldots, A_{N(n)}$ such that $A_i \subseteq A_j$ or $A_j \subseteq A_i$.

Suppose

 $N(n) \sim \left(\frac{2}{\sqrt{3}}\right)^n \omega(n)^{-2}$

where $\lim_{n\to\infty}\omega(n)=\infty$, but $\lim_{n\to\infty}\sqrt[n]{\overline{\omega(n)}}=1$. Then for any fixed ε (0 \leqslant ε <1)

$$\lim_{n\to\infty} \, \mathbf{P}(\mid \gamma_n - \omega^2(n) \mid <\omega(n)^{1+\varepsilon}) = 1 \, .$$

($\mathbf{P}(\ldots)$ denotes the probability of the event in the brackets.)

 $A_1 \subseteq A_2$ denotes that A_1 is a subset of A_2 , $A_1 + A_2$ denotes the union of the sets A_1 , A_2 , while A_1A_2 denotes the intersection of the sets A_1 , A_2 .

The sign \sim denotes asymptotic equality.

Rényi also obtained results (analogous to (1)) concerning other relations than $A_i \subseteq A_j$, namely

a) $A_1 \subseteq A_2 \subseteq \ldots \subseteq A_r$ (see theorem 6 of [1])

b) $A_3 = A_1 + A_2$ or $A_3 = A_1 A_2$ (see theorem 8 of [1]).

The generalization of this problem — raised by A. Rényi — is as follows: $\frac{1}{2}$

Let us choose at random N(n, R) = N subsets of a set \mathcal{H} of n elements independently and so that at each choice any subset of \mathcal{H} is chosen with the same probability, i.e. with probability $\frac{1}{2^n}$. Let be given an arbitrary relation

$$(2) R(X_1, X_2, \ldots, X_r)$$

of r set variables, defined on subsets of \mathcal{X} , which can be expressed by Boolean operations and which can be fulfilled by r different subsets.³ How large must be N and of what type must be the relation, that for sufficiently large n with probability near to 1 there should exist among these N subsets at least one r

-tuple of sets, fulfilling the given relation?

This paper is devoted to this problem. After giving some notations, we shall prove a lemma concerning the probability that the relation R holds for a random r-tuple of sets (analogous to the lemma 2 of [1]). There will be given a class \mathcal{R} of relations (,,regular'' relations, see def. 1, (8)) such that if $R \in \mathcal{R}$ and if N is suitably chosen $(N \sim (C(R))^n \omega(n))$ where C(R) > 1 is a constant, depending only upon the relation R, and $\omega(n) \to \infty$ as $n \to \infty$), then there can be found among the N randomly chosen subsets of \mathcal{H} with probability tending to 1 as $n \to \infty$ at least one r-tuple of sets for which the relation R holds. Our result is valid e.g. for the following relations:

$$\begin{split} R(A_1,\,A_2,\,A_3) &\equiv A_1,\,A_2,\,A_3 \text{ are pairwise disjoint.} \\ R(A_1,\,A_2,\,A_3) &\equiv (A_3 = \bar{A}_1 + \bar{A}_2) \end{split} \qquad \text{etc.} \end{split}$$

There will be given a class $\mathcal{R}_1(\subset \mathcal{R})$ of relations ("strictly regular" relations, see def. 1, (9)) such that if $R \in \mathcal{R}_1$ and if $N \sim c(C(R))^n$, where c > 0 fixed, then the probability that among the N randomly chosen subsets of \mathcal{H} there can be found at least one r-tuple of sets, for which the relation R holds, tends to $1 - e^{-c^r}$ as $n \to \infty$.

It will be mentioned furthermore, that the "balancedness" of the relation (see def. 2) is a necessary condition of the relation R being fulfilled with positive probability by at least one r-tuple of sets of the N randomly chosen subsets if $N \sim c(C(R))^n$.

Notations. Let X_1, X_2, \ldots, X_r be an ordered r-tuple of subsets of the set \mathscr{H} of n elements. Let us consider all possible set-theoretical products of r factors such that the j-th factor is either equal to X_j or to \overline{X}_j where \overline{X}_j denotes the complementary set of X_j with respect to \mathscr{H} , and let us call these products the atoms of the r set variables X_1, X_2, \ldots, X_r , or simply: atoms. The number of possible atoms is obviously 2^r (some of them may be equal to 0, when for X_1, X_2, \ldots, X_r some relation holds). Let these atoms be numbered in some way from 1 to 2^r , the m-th will be denoted by $E_m(X_1, X_2, \ldots, X_r)$.

³ It will be said that the relation $R(X_1, X_2, ..., X_r)$ holds for $X_1^0, X_2^0, ..., X_r^0$ if $X_1^0, X_2^0, ..., X_r^0$ fulfill R in the given order.

(The numbering may be done e.g. as follows: let be

(3)
$$E_{m+1}(X_1, X_2, \dots, X_r) = X_1^{\delta_1} X_2^{\delta_2} \dots X_r^{\delta_r}, \qquad (m = 0, 1, \dots, 2^r - 1)$$

where

$$X_j^{\delta j} = \left\{ \begin{array}{ll} X_j, & \text{if} \quad \delta_j = 0 \\ \overline{X}_j, & \text{if} \quad \delta_j = 1 \end{array} \right.$$

in case

$$m = \sum_{j=1}^{r} \delta_j \, 2^{j-1}$$

where δ_i equals 0 or 1. E.g. in case r=2

$$\begin{split} E_1(X_1,X_2) &= X_1\,X_2 \; ; \; E_2(X_1,X_2) = X_1\,\overline{X}_2 \; ; \; E_3(X_1,X_2) = \overline{X}_1,X_2 \; ; \\ E_4(X_1,X_2) &= \overline{X}_1,\,\overline{X}_2 \; . \end{split}$$

It is well known ([2]), that any relation $R(X_1, X_2, \ldots, X_r)$ which may be expressed by Boolean operations, can be written in disjunctive normal form (in short: normal form), i.e. in the following form:

$$\sum_{m\in\Gamma} E_m(X_1, X_2, \ldots, X_r) = \mathcal{H},$$

where Γ is a set of indices m. ($\Gamma \subset \{1, 2, ..., 2^r\}$). In other words, the normal form of R means that the following two conditions are equivalent:

(a)
$$R(X_1, X_2, \ldots, X_r)$$
 holds,

(b)
$$\sum_{m \in \Gamma} E_m(X_1, X_2, \dots, X_r) = \mathcal{H}.$$

Let the number $v(\Gamma)$ of elements in Γ be denoted by s, i.e. s is the number of atoms occurring in the normal form of R. Obviously $1 \le s \le 2^r$, and when the relation does not hold identically, then $s < 2^r$. As an example, let the relation $R(X_1, X_2, X_3)$ be the following:

$$R(X_1, X_2, X_3) \equiv X_1 + X_2 \subseteq X_3$$
.

The normal form of this relation is:

$$X_1X_2X_3 + X_1\overline{X}_2X_3 + \overline{X}_1X_2X_3 + \overline{X}_1\overline{X}_2X_3 + \overline{X}_1\overline{X}_2\overline{X}_3 = \mathcal{H}.$$

Let (i_1, i_2, \ldots, i_l) be an l-tuple $(l \leq r)$ of the numbers $1, 2, \ldots, r$. Let us form from $X_{i_1}, X_{i_2}, \ldots, X_{i_l}$ all possible 2^l atoms. Let

(5)
$$s_q(i_1, i_2, \ldots, i_l)$$
 $(q = 1, 2, \ldots, 2^l)$

denote the number of atoms occurring in the normal form of R, containing as component the atom $E_q(X_{i_1}, X_{i_2}, \ldots, X_{i_l})$.

⁴ For a given relation $R(X_1, X_2, \ldots, X_r)$, the number $s_q(i_1, i_2, \ldots, i_l)$ depends obviously only upon the serial number (in R) of the sets occurring in the atom $E_q(X_{i_1}, X_{i_2}, \ldots, X_{i_l})$ and not upon the sets themselves.

Obviously

$$0 \le s_q(i_1, i_2, \dots, i_l) \le 2^{r-l}$$

and

(6)
$$\sum_{q=1}^{2^{l}} s_{q}(i_{1}, i_{2}, \dots, i_{l}) = s.$$

Let us put further

(7)
$$\sum_{q=1}^{2^l} s_q^2(i_1, i_2, \dots, i_l) \stackrel{\text{def.}}{=} S^2(i_1, i_2, \dots, i_l).$$

Definition 1. If for the relation $R(X_1, X_2, \ldots, X_r)$

holds, $R(X_1, X_2, ..., X_r)$ will be called a *regular* relation. If for the relation $R(X_1, X_2, ..., X_r)$

(9)
$$\max_{\substack{(i_1,i_2,\ldots,i_l) \\ (i_1,i_2,\ldots,i_l)}} S^2(i_1,i_2,\ldots,i_l) < s^{2-\frac{l}{r}} \qquad (l=1,2,\ldots,r-1)$$

holds, $R(X_1, X_2, \ldots, X_r)$ will be called a strictly regular relation.

Examples. I. The relation

$$\begin{split} R(A_{i_1},A_{i_2},\ldots,A_{i_t};\ A_{j_1},A_{j_2},\ldots,A_{j_t}) &\equiv \\ &\equiv A_{i_1} \subseteq A_{j_1} \text{ and } A_{i_2} \subseteq A_{j_2} \text{ and } \ldots \text{ and } A_{i_t} \subseteq A_{j_t} \end{split}$$

is regular, but not strictly regular. Namely, it is easy to see, that $s=3^t$ and

$$egin{aligned} & \max_{(h_1,h_2,\dots h_{2l-1})} S^2(h_1,h_2,\dots,h_{2l-1}) = 3^{l-1} \cdot 3^{(t-l)2} + 3^{l-1} (2.3^{t-l})^2 = \ & = 5.3^{2t-l-1} < 3^{t \cdot \left(2 - rac{2l-1}{2t}
ight)}; \end{aligned}$$

further

$$\max_{(h_1,h_2,...,h_{2l})} S^2(h_1,h_2,\,\ldots,h_{2l}) = 3^l (3^{t-l})^2 = 3^{t \, \left(2 - \frac{2l}{2t}\right)}.$$

II. The following relations are strictly regular:

1.
$$R(A_1, A_2, A_3) \equiv A_1 + A_2 = A_3$$
, $(s = 4)$;

2.
$$R(A_1, A_2, A_3) \equiv A_3 \subseteq A_1 + A_2$$
, $(s = 7)$;

3.
$$R(A_1,A_2,A_3) \equiv A_1, A_2, A_3 \, \text{are pairwise disjoint,} \, (s=4) \, .$$

III. The relation

$$R(A_1,A_2,A_3,A_4) \equiv A_1 \subseteq A_2 \subseteq (A_3+A_4) \qquad (s=10)$$

is not regular.

Definition 2. Let $R_1(X_{i_1}, X_{i_2}, \ldots, X_{i_t})$ (where $t \leq r$ and (i_1, i_2, \ldots, i_t) is a t-tuple of the numbers $1, 2, \ldots, r$) and $R(X_1, X_2, \ldots, X_r)$ be two relations. We shall write

$$R_1(X_{i_1}, X_{i_2}, \ldots, X_{i_t}) \leq R(X_1, X_2, \ldots, X_r)$$
,

if the relation $R_1(X_{i_1}, X_{i_2}, \ldots, X_{i_l})$ holds whenever $R(X_1, X_2, \ldots, X_r)$ holds; in this case we shall say, that $R_1(X_{i_1}, X_{i_2}, \ldots, X_{i_l})$ is a *subrelation* of the relation

 $R(X_1, X_2, \ldots, X_r)$. Let K(R) denote for a relation R the number $1/\sqrt{s}$ where r is the number of sets occurring in the relation R and s is the number of atoms in the normal form of the relation R. The number K(R) will be called the balance *number* of the relation R.

A relation R is called *balanced*, if for any relation R_1 for which

$$R_1 \leq R$$

holds, the corresponding balance numbers fulfil the inequality

$$K(R_1) \leq K(R)$$
. 5

Remark. If

$$\sum_{m \in \Gamma} E_m(X_1, X_2, \dots, X_r) = \mathcal{H}$$

is the normal form of the relation $R(X_1, X_2, \ldots, X_r)$ of r variables, then the relation $R_1(X_1, X_2, \ldots, X_r)$, — the normal form of which is

$$\sum_{m \in \Gamma_1} E_m(X_1, X_2, \dots, X_r) = \mathcal{H}$$

where $\Gamma \subseteq \Gamma_1$, — is a subrelation of R and all subrelations $R_1(X_1, X_2, \ldots, X_r)$

of $R(X_1, X_2, \ldots, X_r)$ can be obtained in this way. Let $R_2(X_{i_1}, X_{i_2}, \ldots, X_{i_t})$ ($\{X_{i_1}, X_{i_2}, \ldots, X_{i_t}\} \subset \{X_1, X_2, \ldots, X_r\}$) be any subrelation of R. The normal form of R_2 can be obtained as follows: we add atoms (of the r set variables X_1, X_2, \ldots, X_r) to the normal form of R until it is possible to bracket out all the atoms $E_q(X_{i_{t+1}}, X_{i_{t+2}}, \ldots, X_{i_r})$ ($q = 1, 2, \ldots, 2^{r-t}$) (here $X_{i_{t+1}}, X_{i_{t+2}}, \ldots, X_{i_r}$ are those of the sets X_1, X_2, \ldots, X_r which are not contained among $X_{i_1}, X_{i_2}, \ldots, X_{i_r}$), i.e. until the normal form of R can be written in the form of R can be written. form of R can be written in the form:

$$\sum_{q=1}^{2^{r-t}} E_q(X_{i_{t+1}}, X_{i_{t+2}}, \dots, X_{i_r}) \sum_{m \in \Gamma_2} E_m(X_{i_1}, X_{i_2}, \dots, X_{i_t}) = \mathcal{H}$$

where obviously the first factor is equal to \mathcal{H} . Thus we get a relation R^* :

$$\sum_{m \in \Gamma_2} E_m(X_{i_1}, X_{i_2}, \ldots, X_{i_t}) = \mathcal{H},$$

which clearly is a subrelation of R. Now evidently R, is a subrelation of R^* and thus R_2 can be obtained from R^* by eventually adding some atoms of the

variables $X_{i_1}, X_{i_2}, \ldots, X_{i_l}$ to the normal form of R^* . It can be easily shown that every regular relation is balanced. As a matter of fact if $R_1(X_{i_1}, X_{i_2}, \ldots, X_{i_l})$ is any subrelation of the regular relation

⁵ The concept of a balanced relation is very similar to that of a balanced graph. (See [3], p. 22.).

¹³ A Matematikai Kutató Intézet Közleményei VII. A/3.

 $R(X_1, X_2, \ldots, X_r)$ where $1 \leq i_1 < i_2 < \ldots < i_l \leq r$, further if t denotes the number of atoms in the normal form of R_1 and s in that of R, we have evidently

$$t \ge \sum_{\substack{s_q(i_1, i_2, \dots, i_l) > 0 \\ (q = 1, 2, \dots, 2^l)}} 1.$$

Thus by the inequality of Cauchy we obtain

$$s^2 = \left(\sum_{q=2}^{2^l} s_q(i_1,i_2,\ldots,i_l)\right)^2 = \left(\sum_{s_q(i_1,i_2,\ldots,i_l)>0} s_q(i_1,i_2,\ldots,i_l)\right)^2 \leq t \sum_{q=1}^{2^l} s_q^2(i_1,i_2,\ldots,i_l)$$

and therefore as R is by supposition regular we obtain

$$s^2 \le ts^{2 - \frac{l}{r}}$$

and thus

$$K(R_1) = \frac{1}{\sqrt[l]{t}} \leqq \frac{1}{\sqrt[l]{s}} = K(R) \,.$$

This proves our assertion.

On the other hand a balanced relation is not necessarily regular. For example the following relations are balanced, but not regular:

(1)
$$R(A_1, A_2, A_3) \equiv (A_1 + A_2) \subseteq A_3, \qquad (s = 5);$$

(2)
$$R(A_1, A_2, A_3, A_4) \equiv (A_1 + A_2) \subseteq A_3 A_4, \quad (s = 7).$$

To give an example of a relation which is not balanced, let us consider the relation

$$R_i(A_0,\,A_1,\ldots,\,\,A_{i-1}) \equiv A_0 \supseteq A_1\,;\ A_0 \supseteq A_2\,;\ldots;\ A_0 \supseteq A_{i-1}\,.$$

 $R_i(A_0, A_1, \ldots, A_{i-1})$ is not balanced if $i \ge 4$.

As a matter of fact it is easy to see that for the balance number of R_i we have

$$K(R_i) = \frac{1}{\sqrt[i]{2^{i-1} + 1}}.$$

Further

$$R_1 \leq R_2 \leq \ldots \leq R_{i-1} < R_i$$

holds, but among the numbers $K(R_i)$ (i = 1, 2, ...) $K(R_3)$ is the largest.

In the following we prove a lemma concerning the probability, that the given relation (2) holds for an r-tuple of subsets A_1, A_2, \ldots, A_r of the set \mathcal{H} chosen at random and independently in the above described sense.

Lemma.

(10)
$$\mathbf{P}(R(A_1, A_2, \dots, A_r) \ holds) = \left(\frac{s}{2^r}\right)^n.$$

Proof. Let a_1, a_2, \ldots, a_n denote the elements of \mathcal{H} . Let be

$$\varepsilon_k(j) = \begin{cases} 1, & \text{if } a_k \in A_j \\ & \text{if } a_k \notin A \end{cases} \qquad \begin{cases} j = 1, 2, \dots, r; \\ k = 1, 2, \dots, n \end{cases}.$$

It is shown in [1] (lemma 1), that the random variables $\varepsilon_k(j)$ (k = 1, 2, ..., n) are independent and they take on the values 0 and 1 each with probability $\frac{1}{2}$.

It is obvious that the random choice of a subset A_j corresponds to a sequence of n experiments for the random variables $\varepsilon_1(j)$, $\varepsilon_2(j)$, ..., $\varepsilon_n(j)$. The probability of any fixed result of such a sequence is equal to $\frac{1}{2^n}$. It is obvious furthermore,

that the relation R holds if and only if a corresponding relation R_{ε} concerning the random variables $\varepsilon_k(1), \varepsilon_k(2), \ldots, \varepsilon_k(r)$ holds for $k = 1, 2, \ldots, n$. However the probability of the latter can be obtained — for a given k — by determining the number s' of sequences $\varepsilon_k(1), \varepsilon_k(2), \ldots, \varepsilon_k(r)$ for which the relation R_{ε} holds and dividing this number by 2^r (the number of all possible sequences of r elements each 0 or 1). On account of the above mentioned independence the probability that R_{ε} holds for every k, i.e. that R holds, is equal to $\left(\frac{s'}{2^r}\right)^n$.

But s' = s, since the sequence $\varepsilon_k(1)$, $\varepsilon_k(2)$, ..., $\varepsilon_k(r)$ corresponds to the atom $A_1^{1-\varepsilon_k(1)} \cdot A_2^{1-\varepsilon_k(2)} \dots A_r^{1-\varepsilon_k(r)}$ (k=1, 2, ..., n) of the normal form of R (see (3)), which proves the lemma.

Theorem 1. Let $\eta(R, N, n) \stackrel{\text{def.}}{=} \eta$ denote the number of ordered r-tuples, $A_{i_1}, A_{i_2}, \ldots, A_{i_r}$ among the randomly, independently chosen N subsets A_1, A_2, \ldots, A_N of the set \mathscr{H} of n elements, for which the relation $R(A_{i_1}, A_{i_2}, \ldots, A_{i_r})$ holds. If the relation is regular (see (8)), and if

(11)
$$N \sim \left(\frac{2}{\frac{r}{\sqrt{s}}}\right)^n \sqrt[r]{\omega(n)}$$

where

$$\lim_{n\to\infty}\omega(n)=\infty,$$

then

$$\lim_{n\to\infty} \mathbf{P}(\eta=0) = 0.$$

By other words, there exists, with probability tending to 1 when n tends to infinity, at least one r-tuple of sets for which the relation R holds.

Proof. Let us denote by $\mathbf{M}(\xi)$ resp. $\mathbf{D}^2(\xi)$ the mean value resp. variance of the random variable ξ . It is sufficient to prove that

(13)
$$\lim_{n\to\infty} \frac{\mathbf{D}^2(\eta)}{\mathbf{M}^2(\eta)} = 0,$$

since

(14)
$$\begin{aligned} \mathbf{P}(\eta = 0) &< \mathbf{P} \left[\eta < \frac{\mathbf{M}(\eta)}{2} \right] < \mathbf{P} \left[|\eta - \mathbf{M}(\eta)| \ge \frac{\mathbf{M}(\eta)}{2} \right] = \\ &= \mathbf{P} \left[|\eta - \mathbf{M}(\eta)| \ge \frac{\mathbf{M}(\eta)}{2 \mathbf{D}(\eta)} \cdot \mathbf{D}(\eta) \right] \le \frac{4 \mathbf{D}^2(\eta)}{\mathbf{M}^2(\eta)}. \end{aligned}$$

The latter follows from Chebyshev's inequality. Hence from (13) and (14), we obtain (12). We prove (13).

Let us put

(15)
$$\varepsilon_{i_1 i_2 \dots i_r} = \begin{cases} 1, & \text{if } R(A_{i_1}, A_{i_2}, \dots, A_{i_r}) \text{ holds} \\ 0 & \text{otherwise.} \end{cases}$$

Obviously

(16)
$$\eta = \sum_{\substack{1 \le i_j \le N \\ i_j \ne i_k \\ j = 1, 2, \dots, r}} \varepsilon_{i_1 i_2 \dots i_r},$$

(i.e. the summation runs over all ordered r-tuples from the integers $1, 2, \ldots, N$). We shall make use of the following asymptotical formula

$$\binom{M-k}{p} \sim \frac{M^p}{p!}$$

which is valid if $k \ge 0$, $p \ge 1$ are fixed integers, and $M \to +\infty$. For the mean value of η we have from (16), (10), (17) and (11)

(18)
$$\mathbf{M}(\eta) = {N \choose r} r! \left(\frac{s}{2^r}\right)^n \sim \omega(n).$$

Now let us estimate the variance of η , making use of the identity:

$$\mathbf{D}^{2}(\eta) = \mathbf{M}(\eta^{2}) - \mathbf{M}^{2}(\eta).$$

Since by (15) $\mathbf{M}(\varepsilon_{i_1i_2...i_r}^2) = \mathbf{M}(\varepsilon_{i_1i_2...i_r})$ and since

$$\mathbf{M}(\varepsilon_{i_1i_2...i_r}\cdot\varepsilon_{j_1j_2...j_r})=\mathbf{M}(\varepsilon_{i_1i_2...i_r})\,\mathbf{M}(\varepsilon_{j_1j_2...j_r})$$

in case (i_1, i_2, \ldots, i_r) and (j_1, j_2, \ldots, j_r) are disjoint (because of independence), thus we have

(20)
$$\mathbf{M}(\eta^2) = \mathbf{M}(\eta) + \sum_{\substack{i_h \neq j_k \\ (h,k=1,2,\ldots,r)}} \mathbf{M}(\varepsilon_{i_1 i_2 \ldots i_r}) \, \mathbf{M}(\varepsilon_{j_1 j_2 \ldots j_r}) + \sum' \mathbf{M}(\varepsilon_{i_1 i_2 \ldots i_r} \cdot \varepsilon_{j_1 j_2 \ldots j_r})$$

where the sum Σ' contains those terms $\mathbf{M}(\varepsilon_{i,i_2...i_r}, \varepsilon_{j,j_2...j_r})$ for which some of the i_h -s are equal to some of the j_k -s. Since furthermore

(21)
$$\sum_{\substack{i_h \neq j_k \\ (h,k=1,2,\ldots,r)}} \mathbf{M}(\varepsilon_{i_1 i_2 \ldots i_r}) \, \mathbf{M}(\varepsilon_{j_1 j_2 \ldots j_r}) \leq \left(\sum_{\substack{1 \leq i_j \leq N \\ i_j \neq i_k \\ i_1 = 1,2,\ldots,r}} \mathbf{M}(\varepsilon_{i_1 i_2 \ldots i_r})\right)^2 = \mathbf{M}^2(\eta) \,,$$

hence from (19), (20), (21) we have

(22)
$$\mathbf{D}^{2}(\eta) \leq \mathbf{M}(\eta) + \sum_{i=1}^{r} \mathbf{M}(\varepsilon_{i_{1}i_{2}...i_{r}}\varepsilon_{j_{1}j_{2}...j_{r}}).$$

In order to verify (13), it will suffice according to (22) and (18), to show, that

(23)
$$\lim_{n\to\infty} \frac{\sum' \mathbf{M}(\varepsilon_{i_1 i_2 \dots i_r} \varepsilon_{j_1 j_2 \dots j_r})}{\mathbf{M}^2(\eta)} = 0.$$

For this there will be needed to compute the probability that the relation R holds simultaneously for both of the r-tuples of subsets $A_{i_1}, A_{i_2}, \ldots, A_{i_r}$ and $A_{j_1}, A_{j_2}, \ldots, A_{j_r}$ (i.e. $R(A_{i_1}, A_{i_2}, \ldots, A_{i_r})R(A_{j_1}, A_{j_2}, \ldots, A_{j_r})$ holds) in case some of the indices i_1, i_2, \ldots, i_r coincide with some of the indices j_1, j_2, \ldots, j_r . Let l ($l \leq r$) denote the number of common elements of i_1, i_2, \ldots, i_r and j_1, j_2, \ldots, j_r . Let us suppose e.g., that

$$i_{h_t} = j_{k_t}, \quad t = 1, 2, \dots, l; \ 1 \leq h_t, k_t \leq r.$$

The probability

$$\mathbf{P}(R(A_{i_1}, A_{i_2}, \dots, A_{i_r}) R(A_{j_1}, A_{j_2}, \dots, A_{j_r})$$
 holds on condition (*))

can be obtained according to lemma 1, by determining the number σ_l of atoms in the normal form of $R(A_{i_1}, A_{i_2}, \ldots, A_{i_r})$ $R(A_{j_1}, A_{j_2}, \ldots, A_{j_r})$. This normal form is obviously the product of the normal forms of $R(A_{i_1}, A_{i_2}, \ldots, A_{i_r})$ and $R(A_{j_1}, A_{j_2}, \ldots, A_{j_r})$. The latters can be written by condition (*) (bracketing out the common components, i.e. the components containing the sets $A_{ih_1}, A_{ih_2}, \ldots, A_{ih_l}$) in the following form:

$$(24) \qquad \sum_{m=1}^{2^{l}} E_{m}(A_{i_{h_{1}}}, A_{i_{h_{2}}}, \ldots, A_{i_{h_{l}}}) \sum_{t \in \Gamma_{l,m}(h_{1}, h_{2}, \ldots, h_{l})} E_{l}(A_{i_{h_{l+1}}}, A_{i_{h_{l+2}}}, \ldots, A_{i_{h_{r}}}),$$

resp.

(25)
$$\sum_{m=1}^{2^{l}} E_{m}(A_{i_{h_{1}}}, A_{i_{h_{2}}}, \ldots, A_{i_{h_{l}}}) \sum_{t \in \Gamma_{l,m}(K_{1}, k_{2}, \ldots, k_{l})} E_{t}(A_{j_{k_{l+1}}}, A_{j_{k_{l+2}}}, \ldots, A_{j_{k_{r}}}),$$

where6

$$\nu(\Gamma_{l,m}(h_1, h_2, \ldots, h_l)) = s_m(h_1, h_2, \ldots, h_l),$$

resp.

$$\nu(\Gamma_{l,m}(k_1, k_2, \ldots, k_l)) = s_m(k_1, k_2, \ldots, k_l)$$
,

(see (5)). Multiplying (24) by (25) we get non-zero members only when multiplying members which contain the same component $E_m(A_{i_{h_1}}, A_{i_{h_2}}, \ldots, A_{i_{h_l}})$. Hence for the number σ_l of atoms of the normal form of

$$R(A_{i_1}, A_{i_2}, \ldots, A_{i_r}) R(A_{i_1}, A_{i_2}, \ldots, A_{i_r})$$

(by (*)) we have:

(26)
$$\sigma_l = \sum_{m=1}^{2^l} s_m(h_1, h_2, \dots, h_l) s_m(k_1, k_2, \dots, k_l), \quad (l = 1, 2, \dots, r)$$

and by lemma 1, we have

(27)
$$\mathbf{P}(R(A_{i_1}, A_{i_2}, \dots, A_{i_r}) R(A_{j_1}, A_{j_2}, \dots, A_{j_r}) \text{ holds on condition(*))} = \left(\frac{\sigma_l}{2^{2r-l}}\right)^n$$

$$(l = 1, 2, \dots, r).$$

 $[\]overline{{}^6v(E)}$ denotes — as before — the number of elements of the (finite) set E.

Hence

(28)
$$\sum_{l=1}^{r} \mathbf{M}(\varepsilon_{i_1 i_2 \dots i_r} \varepsilon_{j_1 j_2 \dots j_r}) = \sum_{l=1}^{r} \sum_{(*)} \left(\frac{\sigma_l}{2^{2r-l}}\right)^n = \sum_{l=1}^{r-1} \binom{N}{l} \binom{N-l}{r-l} \binom{N-r}{r-l} r!^2 \left(\frac{\sigma_l}{2^{2r-l}}\right)^n + \frac{\binom{N}{r} r! (r!-1)}{2} \left(\frac{\sigma_r}{2^r}\right)^n.$$

According to (17) and (11), we have from (28)

(29)
$$\sum_{l=1}^{r} \left(\frac{\sigma_{l}}{s^{2-\frac{l}{r}}}\right)^{n} \omega(n)^{2-\frac{l}{r}} \cdot \frac{r!^{2}}{2l! (r-l)!^{2}} + \left(\frac{\sigma_{r}}{s}\right)^{n} \omega(n)^{2-\frac{l}{r}} \cdot \frac{r!^{2}}{2l! (r-l)!^{2}} + \frac{r!^{2}}{2l! (r-l)$$

According to Cauchy's inequality, by (7) and because of the regularity of the relation R, we have from (26)

(30)
$$\sigma_{l} \leq S(h_{1}, h_{2}, \dots, h_{l}) S(k_{1}, k_{2}, \dots, k_{l}) \leq \underbrace{\operatorname{Max}_{(\varrho_{1}, \varrho_{2}, \dots, \varrho_{l})} S^{2}(\varrho_{1}, \varrho_{2}, \dots, \varrho_{l})} \leq s^{2 - \frac{l}{r}}, \quad (l = 1, 2, \dots, r - 1)$$

and

(31)
$$\sigma_r \leq s$$

is trivial. (23) follows immediately from (29), (30) and (31), which proves Theorem 1.

Theorem 2. Let $P_n(N,R)$ denote the probability that among the randomly chosen N subsets A_1, A_2, \ldots, A_N of the set $\mathscr H$ of n elements, there exists at least one ordered r-tuple of sets: $A_{i_1}, A_{i_2}, \ldots, A_{i_r}$ for which the relation $R(A_{i_1}, A_{i_2}, \ldots, A_{i_r})$ holds. If the relation is strictly regular (see (9)) and if

(32)
$$\lim_{n \to \infty} \frac{N}{\left(\frac{2}{r}\right)^n} = c \qquad (c > 0 \text{ fixed}),$$

then

(33)
$$\lim_{n \to \infty} P_n(N, R) = 1 - e^{-c^r}.$$

We wish to remark, that the proof is very similar to that of Theorem 4 of [1], nevertheless for the sake of completeness it will be given in detail. The proof is based on the sieving theorem, given in [1], which makes use of a graph-theoretical lemma. We shall give here the lemma and the sieving theorem without proof; the proof can be found in [1].

A graph-theoretical lemma. (See [1], p. 89.). Let H be a finite set. N_H denotes the number of elements of a set H. H^2 denotes the set of all possible unordered pairs of different elements of H. If $N_H = m$, then obviously $N_{H^2} = \binom{m}{2}$. Let $E \subset H^2$ be any subset of H^2 . The pair of sets (H, E) = G is called a (finite) graph; the elements of H are called the *vertices* and the elements of E the *edges* of G. If V_i , V_j are vertices of G, and (V_i, V_j) is an edge of G, then

E the edges of G. If V_i , V_j are vertices of G, and (V_i, V_j) is an edge of G, then it is said that V_i and V_j are connected by an edge in G. If G = (H, E), we put $N_G = N_H$ and $M_G = N_E$.

Let A be a subset of H. Let the graph $AG \stackrel{\text{def.}}{=} (A, \hat{A}^2E)$. If $M_{AG} = j$, then it is said that the set A contains j edges of G.

$$N_G(j,lpha) + \sum_{\substack{A \subseteq H \ N_A = lpha \ M_A G \leq j}} 1 \; ; \qquad \qquad N_G(j,0) = 1 \, .$$

By other words, $N_G(j, \alpha)$ is equal to the number of subsets of H which have α elements and contain not more than j edges of the graph G. Let further be

$$N_G^{(1)}(j, 2\,\alpha + 1) = \sum_{\beta=0}^{a} N_G(j, 2\,\beta + 1)$$

and

$$N_{G}^{(0)}(j, 2 \; \alpha) = \sum_{\beta=0}^{a} N_{G}(j, 2 \; \beta) \; .$$

Thus $N_G^{(1)}(j, m)$ (resp. $N_G^{(0)}(j, m)$) denotes the number of subsets of H which contain an odd (resp. even) number $\leq m$ of elements of H and contain not more than j edges of G.

For any nonnegative integers α , β , put

$$\delta_{\alpha\beta} = \begin{cases} 1, & \text{if } \alpha = \beta, \\ 0, & \text{if } \alpha \neq \beta. \end{cases}$$

If G = (H, E) is an arbitrary finite graph, $m = N_G$, then for any nonnegative integral value of α , the inequalities

$$N_G^{(0)}(1, 2\alpha + 2) - \delta_{m0} \ge N_G^{(1)}(0, 2\alpha + 1)$$

and

$$N_G^{\text{(1)}}(1,2\,\alpha+1) \geq N_G^{\text{(0)}}(0,2\,\alpha) - \delta_{m0}$$

hold.

A sieving theorem. (See [1], pp. 91-92.) Let $\mathfrak B$ be a probability field, B_1, B_2, \ldots, B_m arbitrary events. Let G be an arbitrary graph with m vertices. Let them be labelled and identified with the integers $1, 2, \ldots, m$. Let H be the set of the numbers $1, 2, \ldots, m$. Let $H^{(1)}$ denote the set of those subsets of H which contain no edges of G in case the number of their elements is even, and which contain at most one edge of G in case the number of their elements is odd. Let $H^{(0)}$ denote the set of those subsets of H which do not contain edges of G in case the number of their elements is odd, and which contain at most one edge of G in case the number of their elements is even.

Let be $S_0^{(1)} = 1$ and

$$S_{a}^{(1)} = \sum_{\substack{1 \leq i_{1} < i_{2} < \ldots < i_{\alpha} \leq m \\ (i_{1}, i_{2}, \ldots, i_{\alpha}) \in H^{(1)}}} \mathbf{P}(B_{i_{1}} B_{i_{2}} \ldots B_{i_{\alpha}}), \text{ if } \alpha = 1, 2, \ldots, m,$$

further $S_0^{-0} = 1$ and

$$S_{\alpha}^{(0)} = \sum_{\substack{1 \leq i_1 < i_2 < \dots < i_{\alpha} \leq m \\ (i_1, i_2, \dots, i_{\alpha}) \in H^{(0)}}} \mathbf{P}(B_{i_1} B_{i_2} \dots B_{i_{\alpha}}), \text{ if } \alpha = 1, 2, \dots, m.$$

Then the inequalities

(34)
$$\sum_{a=0}^{2\beta+1} (-1)^a S_a^{(1)} \leq \mathbf{P}(\bar{B}_1 \bar{B}_2 \dots \bar{B}_m) \leq \sum_{a=0}^{2\beta} (-1)^a S_a^{(0)}, \ (\beta = 0, 1, 2, \dots)$$
 hold.

Proof of theorem 2. Let $B(i_1, i_2, \ldots, i_r)$ denote the event, that the relation R holds for the randomly chosen subsets $A_{i_1}, A_{i_2}, \ldots, A_{i_r}$ (in this order). Then obviously

$$(35) P_n(N,R) = \mathbf{P} \left(\sum_{\substack{1 \le i_j \le N \\ j=1,2,\dots,r}} B(i_1,i_2,\dots,i_r) \right) = 1 - \mathbf{P} \left(\prod_{\substack{1 \le i_j \le N \\ j=1,2,\dots,r}} \overline{B(i_1,i_2,\dots,i_r)} \right).$$

Let us denote by Q the set of ordered different r-tuples (i_1, i_2, \ldots, i_r) , formed from the numbers $1, 2, \ldots, N$. Let the vertices of the graph G be the elements of Q and let the vertices $(i_1^{(\alpha_1)}, i_2^{(\alpha_1)}, \ldots, i_r^{(\alpha_1)})$ and $(i_1^{(\alpha_2)}, i_2^{(\alpha_2)}, \ldots, i_r^{(\alpha_2)})$ be connected if they are not disjoint, i.e. if $i_h^{(\alpha_1)} = i_k^{(\alpha_2)}$ for certain values of h resp. k. (Suppose

$$i_{h_1}^{(a_1)} = i_{k_1}^{(a_2)}, \dots, i_{h_l}^{(a_1)} = i_{k_l}^{(a_2)}$$
 $(l = 1, 2, \dots, r).)$

According to (34), the following inequalities hold:

(36)
$$\mathbf{P} \left(\prod_{\substack{1 \le i_j \le N \\ 1 \le i_j \le N}} \overline{B(i_1, i_2, \dots, i_r)} \right) \le \sum_{\alpha = 0}^{2\beta} (-1)^{\alpha} S_{\alpha}^{(0)} \ (\beta = 0, 1, 2, \dots)$$

and

(37)
$$\mathbf{P} \left(\prod_{\substack{1 \le i_j \le N \\ j=1,2,\ldots,r}} \overline{B(i_1, i_2, \ldots, i_r)} \right) \ge \sum_{a=0}^{2\beta+1} (-1)^a S_a^{(1)} \ (\beta = 0, 1, 2, \ldots).$$

The numbers $S_a^{(0)}$ in (36) are defined as follows: $S_0^{(0)} = 1$; and

$$S_a^{(0)} = \sum^{(0)} \mathbf{P}(B(i_1^{(1)}, i_2^{(1)}, \dots, i_r^{(1)}) \ B(i_1^{(2)}, i_2^{(2)}, \dots, i_r^{(2)}) \dots B(i_1^{(a)}, i_2^{(a)}, \dots, i_r^{(a)})),$$
 $\alpha = 1, 2, \dots$

⁷ Two *r*-tuples, $(i_1^{(1)}, i_2^{(1)}, \dots, i_r^{(1)} \text{ and } (i_1^{(2)}, i_2^{(2)}, \dots, i_r^{(2)})$ are not different, if for the corresponding sets $A_{i_1^{(1)}}, A_{i_2^{(1)}}, \dots, A_{i_r^{(n)}}$ and $A_{i_1^{(2)}}, A_{i_2^{(2)}}, \dots, A_{i_r^{(n)}}$ the normal form of $R(A_{i_1^{(1)}}, A_{i_2^{(1)}}, \dots, A_{i_r^{(n)}})$ and $R(A_{i_1^{(2)}}, A_{i_2^{(2)}}, \dots, A_{i_r^{(n)}})$ contain the same atoms.

where the summation in $\Sigma^{(0)}$ is taken over all combinations of order α chosen of different r-tuples (i_1,i_2,\ldots,i_r) $(1 \leq i_j \leq N; j=1,2,\ldots,r)$ such that the r-tuples $(i_1^{(1)},i_2^{(1)},\ldots,i_r^{(1)}),(i_1^{(2)},i_2^{(2)},\ldots,i_r^{(2)}),\ldots,(i_1^{(a)},i_2^{(a)},\ldots,i_r^{(a)})$ are all disjoint in case α is odd, while at most two r-tuples have common elements (say l $(l=1,2,\ldots,r)$) in case α is even.

The numbers $S_a^{(1)}$ in (37) are defined as follows: $S_0^{(1)}$, = 1; and

$$S_a^{(1)} = \sum_{}^{(1)} \mathbf{P} \big(B(i_1^{(1)}, i_2^{(1)}, \ldots, i_r^{(1)}) \ B(i_1^{(2)}, i_2^{(2)}, \ldots, i_r^{(2)}) \ \ldots \ B(i_1^{(a)}, i_2^{(a)}, \ldots, i_r^{(a)}) \big) \,,$$

$$\alpha = 1, 2, \ldots$$

where the summation in $\Sigma^{(1)}$ is taken over all combinations of order α chosen of different r-tuples (i_1, i_2, \ldots, i_r) such that the r-tuples $(i_1^{(1)}, i_2^{(1)}, \ldots, i_r^{(1)})$, $(i_1^{(2)}, i_2^{(2)}, \ldots, i_r^{(2)}), \ldots, (i_1^{(\alpha)}, i_2^{(\alpha)}, \ldots, i_r^{(\alpha)})$ are all disjoint in case α is even, while at most two r-tuples have common elements in case α is odd.

According to lemma 1,

(38)
$$\mathbf{P}(B(i_1, i_2, \dots, i_r)) = \left(\frac{s}{2^r}\right)^n,$$

hence

(39)
$$S_{2\varrho+1}^{(0)} = \frac{\binom{N}{r} r! \binom{N-r}{r} r! \dots \binom{N-2\varrho r}{r} r!}{(2\varrho+1)!} \left(\frac{s}{2^r}\right)^{n(2\varrho+1)};$$

$$(40) S_{2\varrho}^{(1)} = \frac{\binom{N}{r}r!\binom{N-r}{r}r!\ldots\binom{N-2\varrho\,r+r}{r}r!}{(2\varrho)!}\frac{\binom{s}{2r}^{n2\varrho}}{\binom{s}{2r}^{n2\varrho}}.$$

Further

(41)
$$S_{2\varrho}^{(0)} = \frac{\binom{N}{r}r!\binom{N-r}{r}r!\ldots\binom{N-2\varrho r+r}{r}r!}{(2\varrho)!}\frac{r!}{\left(\frac{s}{2r}\right)^{n2\varrho}} + R_{2\varrho}^{(0)}$$

where

$$R_{2\varrho}^{(0)} = \sum^* \mathbf{P} \left(B(i_1^{(1)}, i_2^{(1)}, \ldots, i_r^{(1)}) \, B(i_1^{(2)}, i_2^{(2)}, \ldots, i_r^{(2)}) \ldots \, B(i_1^{(2\varrho)}, i_2^{(2\varrho)}, \ldots, i_r^{(2\varrho)})
ight).$$

In Σ^* the summation is taken over all combinations of order 2ϱ chosen of different r-tuples (i_1, i_2, \ldots, i_r) such that among the r-tuples $(i_1^{(1)}, i_2^{(1)}, \ldots, i_r^{(1)})$, $(i_1^{(2)}, i_2^{(2)}, \ldots, i_r^{(2)})$, ..., $(i_1^{(2\varrho)}, i_2^{(2\varrho)}, \ldots, i_r^{(2\varrho)})$ there are exactly two, which are not disjoint. Let these two r-tuples (containing l elements in common $(l=1,2,\ldots,r)$) be $(i_1^{(\varrho_1)}, i_2^{(\varrho_1)}, \ldots, i_r^{(\varrho_1)})$ and $(i_1^{(\varrho_2)}, i_2^{(\varrho_2)}, \ldots, i_r^{(\varrho_2)})$, and suppose, that

$$i_{h_j}^{(\varrho_1)} = i_{k_j}^{(\varrho_2)}, j = 1, 2, \dots, l; \ 1 \le h_j, k_j \le r; \ 1 \le \varrho_1 < \varrho_2 \le 2 \varrho.$$

According to a previous consideration (see (27))

(42)
$$\mathbf{P}(B(i_1^{(\varrho_1)}, i_2^{(\varrho_1)}, \dots, i_r^{(\varrho_1)}) B(i_1^{(\varrho_2)}, i_2^{(\varrho_2)}, \dots, i_r^{(\varrho_2)}) \text{ on condition (**))} = \left(\frac{\sigma_l}{2^{2r-l}}\right)^n$$

where for σ_l it follows from (26), (30) and from the condition that the relation is strictly regular:

$$\sigma_{l} = \sum_{m=1}^{2^{l}} s_{m}(h_{1}, h_{2}, \dots, h_{l}) s_{m}(k_{1}, k_{2}, \dots, k_{l}) \leq \frac{\operatorname{Max}_{h_{1}, h_{2}, \dots, h_{l}} S^{2}(h_{1}, h_{2}, \dots, h_{l})}{s_{m}(k_{1}, k_{2}, \dots, k_{l})} \leq \frac{\operatorname{Max}_{h_{1}, h_{2}, \dots, h_{l}} S^{2}(h_{1}, h_{2}, \dots, h_{l})}{s_{m}(k_{1}, k_{2}, \dots, k_{l})} \leq \frac{1}{r} (l = 1, 2, \dots, r - 1)$$

and it is easy to see, that

$$(44) \sigma_r < s$$

Hence by (38) and (42) we have:

$$R_{2\varrho}^{(0)} \leq \sum_{l=1}^{r-1} \frac{\binom{N}{l} \binom{N-l}{r-l} \binom{N-r}{r-l} r!^{2}}{2} \times \frac{\binom{N-2r+l}{r} r! \binom{N-3r+l}{r} r! \dots \binom{N+l+r-2\varrho r}{r} r!}{\binom{N-2r+l}{r} r! \binom{N-3r+l}{r} r! \dots \binom{N+l+r-2\varrho r}{r} r! \binom{s}{2r}^{n(2\varrho-2)} \cdot \left(\frac{\sigma_{l}}{2^{2r-l}}\right)^{n} + \frac{\binom{N}{r} r! (r!-1)}{2} \frac{\binom{N-r}{r} r! \binom{N-2r}{r} r! \dots \binom{N-(2\varrho-2)r}{r} r!}{(2\varrho-2)!} \cdot \left(\frac{s}{2r}\right)^{n(2\varrho-2)} \left(\frac{\sigma_{r}}{2^{r}}\right)^{n}.$$

$$(45)$$

Let now be $N \sim c \left(\frac{2}{r}\right)^n$, then using again (17), the right hand side of (45) is asymptotically equal to

$$\begin{split} \sum_{l=1}^{r-1} \frac{r!^{2} N^{2\varrho r-l}}{2 \, l! \, (r-l)!^{2} \, (2 \, \varrho - 2)!} \left(\frac{s}{2^{r}}\right)^{n(2\varrho - 2)} \cdot \left(\frac{\sigma_{l}}{2^{2r-l}}\right)^{n} + \\ + \frac{(r!-1) N^{(2\varrho - 1)r}}{2 \, (2 \, \varrho - 2)!} \left(\frac{s}{2^{r}}\right)^{n(2\varrho - 2)} \cdot \left(\frac{\sigma^{r}}{2^{r}}\right)^{n} \sim \sum_{l=1}^{r-1} \frac{r \, !^{2} \, c^{2\varrho r-l}}{2 \, l! \, (r-l)!^{2} \, (2 \, \varrho - 2)!} \cdot \left(\frac{\sigma_{l}}{s^{2-\frac{l}{r}}}\right)^{n} + \\ + \frac{c^{(2\varrho - 1)r} \, (r!-1)}{2 \, (2 \, \varrho - 2)!} \cdot \left(\frac{\sigma_{r}}{s}\right)^{n}, \end{split}$$

from which it follows according to (43) and (44), that

(46)
$$R_{2\varrho}^{(0)} \to 0$$
, if $n \to \infty$.

Furthermore we have

(47)
$$S_{2\varrho+1}^{(1)} = \frac{\binom{N}{r} r! \binom{N-r}{r} r! \dots \binom{N-2\varrho r}{r} r!}{(2\varrho+1)!} \cdot \binom{s}{2r}^{n(2\varrho+1)} + R_{2\varrho+1}^{(1)}$$

where

$$R_{2\varrho+1}^{(1)} = \sum^* \mathbf{P}(B(i_1^{(1)}, i_2^{(1)}, \dots, i_r^{(1)}) B(i_1^{(2)}, i_2^{(2)}, \dots, i_r^{(2)}) \dots B(i_1^{(2\varrho+1)}, i_2^{(2\varrho+1)}, \dots, i_r^{(2\varrho+1)})).$$

In Σ^* the summation is taken over all combinations of order $2\varrho+1$, chosen from different r-tuples (i_1,i_2,\ldots,i_r) in such a way that among the r-tuples $(i_1^{(1)},\,i_2^{(1)},\,\ldots,\,i_r^{(1)}),\,(i_1^{(2)},\,i_2^{(2)},\,\ldots,\,i_r^{(2)}),\,\ldots,\,(i_1^{(2\varrho+1)},\,i_2^{(2\varrho+1)},\,\ldots,\,i_r^{(2\varrho+1)})$ there are exactly two, which are not disjoint. Similarly we have

(48)
$$R_{2\varrho+1}^{(1)} \to 0$$
, if $n \to \infty$.

Hence from formulae (39), (40), (41), (47) it is easy to obtain by means of (46) and (48), that

(49)
$$S_j^{(0)} = \frac{c^{rj}}{j!} + o(1) \qquad (j = 0, 1, ...)$$

and

(50)
$$S_j^{(1)} = \frac{c^{rj}}{j!} + o(1) \qquad (j = 0, 1, ...)$$

where $o(1) \to 0$, if $n \to \infty$; and from (49) — (50) by (35) — (37), our statement (33) follows.

We have seen that if R is a relation among r sets, the normal form of which contains s atoms, the regularity of the relation is a sufficient condition for

(51)
$$\lim_{n \to \infty} P_n \left(c \left(\frac{2}{\frac{r}{\sqrt{s}}} \right)^n, R \right) > 0$$

for any c > 0. We shall show now, that the balancedness of R is necessary condition for the validity of (51).

Theorem 3. Let R be a relation among r sets, the normal form of which contains s atoms. In order that (51) should hold, the relation R has to be balanced.

Proof. Let R_1 be a subrelation of R among $r_1 < r$ sets such that the normal form of R_1 contains s_1 elements, and $\frac{1}{r_1} > \frac{1}{r}$. It follows from (51) that $\sqrt[r]{s_1}$

if we choose $N \sim c \left(\frac{2}{r}\right)^n$ subsets of a set having n elements at random, there

exists with probability $\geq p > 0$ at least one ordered r-tuple of these sets for which the relation R holds. Then it is obvious that there must exist with probability $\geq p$ at least one r_1 -tuple of the N sets $(r_1 < r)$ for which the relation R_1 holds.

On the other hand,

$$P_n(N, R_1) \leq \mathbf{M}(\eta_1)$$

where η_1 denotes the number of r_1 -tuples among the N sets for which R_1 holds; as further by (18) we have

$$\mathbf{M}\left(\eta_{1}\right) \sim N^{r_{1}} \bigg(\frac{s_{1}}{2^{r_{1}}}\bigg)^{n} \sim c^{r_{1}} \left(\frac{\sqrt[r]{s_{1}}}{\sqrt[r]{s}}\right)^{nr_{1}}$$

and thus $\mathbf{M}(\eta_1) \to 0$ for $n \to \infty$. Thus we obtained a contradiction, which proves theorem 3.

Let us mention that theorem 3 contains a second proof of the fact, men-

tioned earlier, that every regular relation is balanced.

I wish to express my thanks to Professor A. Réyyı for his helpful suggestions and valuable advices.

(Received July 13, 1962)

REFERENCES

[1] RÉNYI, A.: "Egy általános módszer valószínűségszámítási tételek bizonyítására és annak néhány alkalmazása." A Magyar Tudományos Akadémia III. (Matematikai és Fizikai Osztályának Közleményei 11 (1961) 79-105.

[2] Birkhoff, G.: Lattice theory. New York, 1948.

[3] Erdős, P.-Rényi, A.: "On the evolution of random graphs." A Magyar Tudományos Akadémia Matematikai Kutató Intézetének Közleményei 5 (1960) 17-61.

0 СЛУЧАЙНЫХ МНОЖЕСТВАХ

KATALIN BOGNÁR

Резюме

В статье автор занимается со следующей проблемой от А. Rényi

(в частном случае от Р. Erdős) (см. [1]):

Пусть \mathcal{H} множество из n элементов. Пусть $R(X_1, X_2, \ldots, X_r)$ любая реляция от r величин, определенная на подмножествах \mathcal{H} , выражаемая с помощью булевых операций и выполняемая и через r различных подмножеств. Выребем случайно, независимо друг от друга и с равной вероятностью $N(n,R)\stackrel{\text{def.}}{=} N$ подмножеств множества \mathcal{H} . При каких N и которых типах реляций существует, с вероятностью близкой к 1 при достаточно больших n, хотя бы одна r-адка множеств из этих N подмножеств, удовлетворяющая данной реляции?

Указывается класс \mathcal{R} реляций («регулярные реляции», см. опр. 1, (8)) такой, что для $R \in \mathcal{R}$ и подходящего N ($N \sim (C(R))^n \omega(n)$, где C(R) > 1 — некоторая постоянная, зависящая только от реляции R; $\omega(n) \to \infty$, если $n \to \infty$) между N выбранными случайно подмножествами \mathscr{H} найдётся с вероятностью, сходящейся к 1 при $n \to \infty$, хотя бы одна r-адка множеств,

выполняющая реляцию R. (Теорема 1.)

Далее указывается класс $\mathcal{R}_1(\subset \mathcal{R})$ реляций («строго регулярные» реляции, см. опр. 1, (9)) такой, что для $R \in \mathcal{R}_1$ и $N \sim c(C(R))^n$ (c>0— зафиксированное число) вероятность того, что между N случайно выбранными подмножеств \mathcal{H} найдётся хотя бы одна r-адка множеств, удовлетворяющая реляции R, стремится к $1-e^{-c^r}$ при $n\to\infty$. (Теорема 2.)