SOME EXTREMAL PROBLEMS ON INFINITE GRAPHS

by
J. CZIPSZER, P. ERDOS and A. HAJNAL

1.. A well known theorem of TurAN ([1]) states that every graph G .1
of n vertices and f(k, n) 4+ 1 edges where :

k— 2 7
k,n)=——(n2—1r?) 4+ , n=k—1t+7r, 0Zr<k—1
fllm) = =2t = (7], m =Dt
contains a complete k-gon and that this theorem is best possible since there
are graphs G}, mnot containing complete k-gons, and in fact the structure
of these graphs is uniquely determined.

Some problems in measure and set theory led us to consider the follow-
ing problems. Let the vertices of the infinite graph G(=) be the integers
1,2,...,7n, ....(In what follows G(=) will always denote such a graph.) Denote
by G®™ the subgraph of G(=) spanned by the vertices 1,2,...,n and by
g(n) the number of edges of G™. At first thought it seemed possible
that if g(n) is “large” for all n> n, then this will imply that G(=)
contains a complete k-gon even though g(n) does not have to be as large as
f(k, n). But it is easy to see that no such theorem can hold. To see this let the
edges of G(=) be (7,j): ¢ odd, j even. Clearly g(n) = f(3, n) for every n and
nevertheless G(=) does not contain a triangle. Nevertheless it will be possible
to obtain using our function g(n) some results which do not seem uninteresting
to us. First some definitions: By an [,-path (increasing path of length %) of
G) (or of a finite graph with vertices 1, 2, ..., n) we shall mean a path
Ty oo Uplpyy (6, <8y < ... <0y <ipy). A path of length %k will denote an
ordinary path of k edges. Clearly if G(~) contains a complete graph of £ -1
vertices it also contains an I ,-path, but the converse is not true.

By an I.-path of G(=) we shall mean an infinite path 4,4, ... 7, ...
Where et far s e < <8 o

ErpGs and Garraz [1]found nearly best possible estimates for the smallest
integer hy(n) for which every Gi, ., will contain a path of length k, but these
results will not concern us here. It is easy to see that there is a graph with
vertices 1, 2, ..., n and with f(k + 1, »n) edges which does not contain an 7 -
path. To see this it suffices to consider TURAN’s well known graph Gf}}; .
and enumerate its vertices in an obvious way. Nevertheless the situation chan-
ges completely if we assume a suitable lower bound for g(n) which holds for
all sufficiently large n. In fact we shall prove
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Theorem I. Let G(=) be a graph and asswme that for all n> n, and an
e>0

1 1
1t n) > [— — — 4 ¢|n?
(1) o) > (3= 15+
where k = 2 or k = 3.
Then G=) contains infinitely many I ,-paths.

The theorem holds perhaps for £ > 3 also, but at present we can not
decide this question.

Remarks. Since f(k + 1, n) :% [1 — %’ n*+ 0(1) for m—> oo our

theorem implies that if £ = 2 or 3,¢(n) > (é 4 sJ f(k 4+ 1,n) for all n <mn,

then G(=) must already contain infinitely many I ,-paths.

It is easy to see that our theorem is best possible.

To see this define G(=) as follows: Let m, and m, (m; < m,) be two vertices
of G=). m; and m, are connected if and only if 1 < ¢; <14, < k where m, = i
(mod k) and m, = i, (mod k). It is easy to see that for our G~}

gm=§P—am+mm

and it clearly does not contain an [ ,-path. In fact we shall prove the following
sharper

Theorem II. Let G(=) be a graph for which

1
32

n? n2

5 if n>mn,.

g(n) > +(

log2 n

Then G=) contains infinitely many I,-paths. The result is best possible since
there exists a G(=) for which

g(n) - n? 1 n2

— 0
8  32log2n

n2
log? n)

and which does not contain any I,-path.
By the same method as used in the proof of Theorem IT we can prove the
following theorem: Assume that for n > n,

n2

n? it
g(n) > ) — [3—2- + &

log2n

Then G(=) contains infinitely many pairs of I,-paths whose first and last
endpoints coincide, i.e. it contains infinitely many quadruplets 4, < ¢, <1i,,
i, <3 <14, (i, 51, and the edges (i, %,), (4y, %3), (45, 2,), (43, 4,). We do not
discuss the proof. By induction we can easily prove the following Turdnian

2 g
theorem (see [1]): If Gisagraph with vertices 1,2, ..., nand —Z—:' 4 [n 5 ] +1

edges then G' contains two I,-paths whose first and last endpoints coincide.
The estimation for the number of edges is best possible.
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Theorem III. Let G(=) be such that

1
(1.2) g(n);znz— Cn.
Then G=) contains an infinite path. This result is best possible in the sense that

C can not be replaced by A(n) where A(n) — oo.

It seemed to us likely that g(n) > {% + ¢|n? will also imply the exist-

ence of an /. -path. But this is not the case. In fact we have

Theorem IV. There exists a G(=) with
lim inf 9% 5 1
n? 4
which does mot contain an I.-path. But there exists a constant o > 0 such that
every G=) with
lim inf 9(n) = A a
n> 2
contains an I.-path.
VeraA T. S6s asked the question: What condition on g(n) will imply that
G(=) should contain an infinite complete subgraph? We prove

2
Theorem V. If g(n) > —E— — Cn for infinitely many n then G(=) contains

an infinite complete subgraph. But if we only asswme that

(1.3) gln) > "= — f(n) n

&

for all n where f(n) tends to infinity as slowly as we please then G(=) does not have
to contain an infinite complete graph.

At present we can not answer the following question: Let ¢ be any in-
finite graph every vertex of whichisincident only to a finite number of edges
what has to be assumed about g(n) to make sure that G(<) should contain
a subgraph isomorphic to G'? In fact we get two problems here depending whe-
ther we require the vertices of ¢ to be ordered or not. Our example used in the
proof of the negative part of Theorem V (cf. § 5.) shows that we have to assume
that every vertex of G has finite valency.

Without proof we state a few results connected with Theorem V. Assume

that g(n) > (Z

contains an infinite complete graph whose vertices form a sequence of positive

— (1 — a)n for every n > n, and some o> 0, then G(=)

lower density. If we only assume g(n) > "l _a + o(n) it is easy to see that

this does not have to remain true. If we only assume that g(n) > Z —Cn

for infinitely many n and some C then G(=) contains an infinite complete
graph whose vertices form a sequence of positive upper density. In fact the
following stronger result holds: To every &> 0 there exists a k so that G(=)
contains k& complete graphs the union of the set of their vertices forms a sequ-
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ence of upper density > 1 — e. Finally if we assume that g(n) > Z — Cn
for every n and some C then to every ¢ > 0 there exists a £ so that (=) contains
k complete graphs, the union of the set of their vertices forms a sequence of
lower density > 1 — e. We leave the proof of these statements to the reader.

2.Proof of Theorem I for & = 2. We shall show that if G(=) contains
only finitely many I,-paths then
(2.1) tin i I <

B

1
n? 8

which contradicts (1.1) for £ = 2. Omitting a finite number of edges we can
assume that G(=) does not contain any I,-path. Then if a vertex u is the upper
endpoint of an edge it can not be the lower endpoint of another edge. Denote
by wu, <wu, < ... the vertices which are not lower endpoints of any edge.
Clearly the u, sequence is infinite and two w, are never connected. Hence

g(n) éukg (e — k).

Now we establish a lemma which belongs to the theory of series and which
clearly implies (2.1).

Lemma. If u;, u,, ... s a sequence with positive terms then
n2
Uyt oo + Uy — = q
(2.2) lim inf =—.
ug 8

Put lim supz;l =c¢. If ¢ =0, (2.2) obviously holds. If 0 <c¢ < o we

choose a sequence u,, for which

Im 2 —=c¢.
n’s
Then
Nng 2 Nng ng .
=i et A —lo— 1) == 21
Zuk _ch + o(n?) =(c ) z + o(n?)
and
Ng 9
uk—zbz—s
(2.3) : : R | 1
< o(l) £ —+o0(1),
7 — o) = —+o(1)

which proves (2.2).
Finally if ¢ = oo, we choose a sequence u,, such that

Y <¥ (1<k<n) and Y5 oo,
E n ng
Putting ,:i"' = ¢ (2.3) holds with ¢, instead of ¢ and consequently (2.2) holds

S
also.
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Remark. It is clear that in (2.2) there is strict inequality unless

lim sup % = 2. This statement can be inverted in the following sense:

If u,, u,, ... is an increasing sequence of positive numbers and

9

n
ul+...+un—? i

B

2.4) lim inf

IV

2
un

then b — 2.
n

In the proof of (2.4) we can suppose lim sup % = 2 8o that
U, < 2n -+ o(n).
Put lim inf % = a and suppose a < 2. We choose two numbers g and ¢ such

that

e ( 2
a<ff<2—e<2 and — l E)
2 2
and two sequences of integers m,, m,, ... and n;, n,, ... such that
Um,
Ny <My < Vv WM<, —=P,
m

v

U, Un, . .

—<2—¢for m<n<mn, and —2=2—c¢.
n n

Hence for any 1 < 7 < m, we have

v

Zuk32(2k+o +2m B 2“ (2—ek400) =
éluro(m+(m,—l)mvﬂ+(2—8)"—7’—"3+o<uﬁu>-

Putting I = [m;ﬂ] we obtain from here

ny

ZukSm,[ﬂ——]—{- (2 — )ﬁ%’”—zur o(up) =

1 =_(|_§T_%%ﬁ+p—§%&+dﬁ9§

2 2 _¢)2 2
<T PP P w2
2 8
'n2 ’uz &2 2 2
< =42 —u, + oy
"2+8 32 U (n,)

which contradicts (2.4).

14 A Matematikai Kutat6 Intézet Kozleményei VII. A/3.



446 CZIPSZER—ERDOS—HAJNAL

3. Proof of Theorem I for &k = 3. We suppose that G{=) does not con-
tain infinitely many 7,-paths. We shall then show that

(3.1) i el e L

n? 6
which contradicts (1.1) for & = 3. Moreover we can suppose that G(=) does
not contain any I,-path since the omission of a finite number of edges of G(~)
does not alter the validity of (3.1). We denote by N the set of natural numbers
and by C the set of those numbers which are not lower endpoints of any edge.
Analogously let B be the set of natural numbers which belong to N — (' and
which are not connected with any greater number in N — €. Putting 4 =
= N — (B U 0), it is clear that if two numbers m, n (m < n) are connected
then m € A,m € B J C orm € B,n €C. It is also clear that C is infinite since
otherwise (=) would contain an I.-path.

Let u,, u,, ... be an enumeration of the elements of B | C in increasing
order. Let v, <v,< ... <9, < ... be those indices for which u, € C. Since
C is infinite, the » and v series are also infinite. For every u, the number of
elements of A less than u, is w, — k and for every u,, the number of elements
of B less than u,, is v; — [, consequently

1 £ 1
9(%)§u1+---+us——(82 ]—i—vl—}—...—l—vt—‘[ i ]

2
where
Us SN < Uy, V=8 < Vpyg-

For every natural number £ we denote by w; the number of v, less than k.
By an elementary computation we get

v+ ... t+o=8—(w;+ ... +w).

Hence
s it |
(3.2) o < D= ="~

1 Z

J—{—st.

Since u, = k> wy, we have u; — wy > 0.
We can select a sequence sy, 8,, ... (s,— =) so that

(3.3) S - =

S;”(us., — wy,) + o(ul) .

If lim sup us;——ws = oo then we choose the s,-s in such a way that ol Sl ; =% =

= Y —%s should hold for 1 < k < s, and for this sequence (3.3) is clearly
SV
satisfied. If lim supwz o < oo (3.3) will hold for any sequence s,
s
Ws

v

o g e
for! 'which —*——"
s

v
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From (3.2) and (3.3) we have for s = s, and » = u,

u s s2 A st
Hth) o 3 g AP
T 2u? 2u2. - 2ud - wd

Considering that w; > i — 1 we deduce from here

1 1 st t
g(us)éwil_g LR
s 2 g, U 2 u? s s
1 1 s2 2\2
é—i(l—i e e L e
2 u, U 8 s Sl 3 6

for s = s,. This proves (3.1).
4. Proof of Theorem II. First we show that there exists a G(=) with

9

a o(l)] ~
log®n

1
(4.1) g(n) = 3 = {3—

‘which does not contain any 7,-path. To see this put

wy =1, =2, wy==2%k+ f (k=138,4,...)
log k

and consider the graph G(=) in which m and » (m < n) are connected if and only
if » is an u, and m is not an . Clearly G(=) has no /,-path. A simple comput-
ation shows that if u, < n < wu,,, then

V r._, : v k
g(n) = 2 i) = Zlogk+ o) =
v2 v2 v? Ll
= — + _{_ + 0 —
2 2logy  4log?» log? v)
2 2 2 2 2 2
:&+_1_ us v :n__*_i n +o(n
8 32 log?u, log?» 8 32 log2n log?n

‘which proves (4.1).
Theorem 11 is clearly implied by the following lemma which is essentially
a refinement of the Lemma in § 2 and which may deserve interest for its own.

Lemma. If u, u,, ... is a sequence with terms > 1 for n > n then for any
£ > 0 the inequality
2 2 I 2
DEETE R PR N -
2 8 32 log? u,, .

holds for infinitely many n.

14%*
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To prove this we shall distinguish several cases.
Case A. For infinitely many »n wu, > 2n.

Case A. 1. lim '\*up!»g—)( u,—2n)=0.
n
Put u,=2n+ 4, s (p=2.48
log®n
then
A4, =< o(logn).
If lim sup A4, = oo for infinitely many » the relation
A=A (=12 .

holds and for these =

g n® _ n? Nk
——=—+4 —
pol e n210g2k+0(rz)

ne n* n2 uz
=—+ A4, +o < -Tlg
2 2log*n log* n 8

2
U,

log? u,,

If lim sup 4, = ¢ << oo then for a suitable subsequence of the u, we have

— 20+ (¢ + o(1)) —

log®n
and for these u,

Su—2< 21 4o )Elog -+ 0(n)

1

2 2 2 2 n2 n2 2 Y
:n+pn o SO N ey R g U
2 2log*n logzn) 8 log® n 8 log? u,)
1
Case A. 2. O<]imsupﬂ(un—2n):c< oo .
n
Put
u,=2n+ B = (n > ).

I
log n log log n
We can choose a subsequence B, so that B, < B, if m < n, and

B,

——r —=c+o0(1).
log log n,

We have by a simple computation for n = n,

B + B, +o0 o ]
2 2 log n log log n 4log?n log log n log?n |
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and

uZ [ 1 SJ ul n? n?
32

RTINS
8 log?u, 2 v "21log nloglog n

2 2 2
B i i [—- 14 a) LB I L R
8 log2n(loglog n)? 8 log? n log?n
We have to show that
B, n? o n? ( 1

n?
= —+ |— 4 o(1
4log2nloglogn ~— 8log?n(loglogn)? ( ))

8 logzn’
i.e.
2
L T L
4loglogn — 8(loglogm)> 8

for sufficiently large n = n, but this amounts to

o 1

4 8 8

which is true.

log n
n

Case 4. 3. lim sup (U, —2n) = oo.
Put

un:2n—|—0n——7—b——.
log n

For a suitable subsequence C,,, we have C,,<C,, if m<n, and Cp, — oo
Hence
$ n? _ n? Nk
y——=<—-+0, —— 1 On) =
Su-Far+o. 3k 1 om
2

T
2 2
(8] 0( " ]gﬂ

log?n

n? n

n2
_ 2 " 2logn 4 log>n 8
it n = n, and » is sufficiently large.

Case B. u, < 2n for n®= n,. If lim sup ~7;—” = () then the statement of the
lemma is evidently true. If 0 < lim sup% < 2 the lemma directly follows

from (2.3). So we can suppose lim sup%: 2. Putting %, = 2n — D,n

we have lim inf D,, = 0 and for a suitable n, and infinitely many n D, < D,
if n, < m < n. For these n

This concludes the proof of the lemma.
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5. Proof of Theorem V. First we prove the second statement of the
theorem. Let %(n) tend to infinity sufficiently fast and connect n with all the
m for which either n <m < h(n) or m <n < h(n). Clearly our G(=) does .
not contain an infinite complete subgraph since in fact every vertex has
finite valency and if h(n) tends to infinity sufficiently fast (1.3) is clearly
satisfied.

Now we prove the positive part of Theorem V.

If G(=) does not contain an infinite complete graph we can construct
by induction a sequence 1 =14, <¢; <, < ... so that if 4, < y then y is
not connected with at least one vertex lying in [i;_;, ¢;). Now if k is fixed and
n = i then for every 7, < y < n there are at least k vertices to the left of y

n k
——n
=

if n > 24, If k> 20, this is a contradiction which proves the theorem.

which are not connected with y. Hence g(n) < Z —(n—i) k<

6. Proof of Theorem III. We can assume that G(=) does not contain any
infinite complete subgraph. The proof will be based on the following lemma.

Lemma. Let us say that an infinite graph G whose wvertices are natural
numbers, has property 5 if
a) G has no infinite complete subgraph,

b) Denoting by v(n) the number of vertices < n and by g(n) the number
of edges connecting vertices < n the inequality

(6.1) g(n) = —v*}(n) — Co(n)

holds for some C and for every n. If G has property & G has an infinite component
who has also property .

First we deduce the theorem from the lemma. Applying the lemma to
G) we get an infinite component G} of G(~), with property .%7. Omitting
an arbitrary vertex i, of G, we get a graph @, which clearly also verifies 5.
Hence G| has also an infinite component Gj with property % and because
of the connectedness of G, G} contains a vertex i, which is connected with i,.
Putting G, = G5 — {i,} G, has also property .55. Repeating this construction
ad infinitum we get a sequence i,, 4,, ... of distinet vertices which form an
infinite path.

In the proof of the Lemma we can assume that G is a G(=)-graph that
is v(n) = n and g(n) has the usual meaning. Let us denote by G, G,, ... the
components of G. v,(n) and ¢,(n) denote the number of vertices < n of G
respectively the number of edges of G, which connect vertices < n.

First we prove that

(6.2) There exists a subscript k, such that the function vy (n) majorizes
the functions vy(n) for every n > n, and for every k.

The negation of (6.2) would clearly imply the existence of an infinite
sequence 7, << m, < ... satisfying the following condition.

For every » there exist numbers k), kj for which %, < k) and for every
kvin,) < vgn,) = vig(n,).

Putting

(63) Y= vkl'z(nv) = ka’(nv)
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it follows
n
6.4 =
(6.4) =
and
1 2 1 2
g(nv) é ’]k,,(n,,) + _2_ Vv E vk(nv) é
k#k;

1
= gk:’:(nv) o E (nv = yv) yv'l

Combining this with (6.1) we obtain

1 n, (N
6.5 s e 2 S wpl
(6.5) gz 7+ [ F =20
Considering that g, (n,) < %yﬁ, we have
(6.6) L T |
2
From (6.5), (6.4) and (6.6) it follows
(6.7) Guln) 2 5 ¥ — 207, — 40"
Considering (6.3) it follows from (6.6) that
(6.8) vin) <4C i K F£kE.
- Let v, be an integer for which
n,, > 120,
In view of (6.6))
¥ > 40,

Thus for » > »,
v (n,)>4C and oy (n,)>40
and so in view of (6.8) we have
==k, k=FK,.
Hence (6.7) means that G/, satisfies the hypothesis of Theorem V and
80 it must contain an infinite complete subgraph which contradicts our

assumption on @. Thus (6.2) is proved.
We can suppose k, =1 i.e.

v(n) L v,(n) for n > n,.

! Deducing the second inequality we used the fact that if Zz; = a, ; < b then
Zz; < ab, all numbers occuring being supposed nonnegative.
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We have then
o) = go(m) £ ST o) < g4(m) + - (n — v, (1)) ()
k>1

(cf.p. 447, footnote?). In view of (6.1) we get from here
1 1

(6.9) gi(n) 2 n2— - (n = v,(m) vy(n) — Cn —

— |5 =[5 om+ 0J)2+ ~oi(n) — (é v,(n) + 0]2
and finally
(6.10) () 2 - vi(n) — Ovy(m) — €

It is evident from (6.9) that ¢, is infinite; this together with (6.10)
means that ¢, has property %9 and the lemma is proved with G = (.

To show that our theorem is best possible we have only to choose a
sequence n,; << n, < ... of positive integers and consider the graph G(=) in
which two vertices are connectid if and only if they belong to the same interval
[y, nyyy). Clearly G(=) does not contain any infinite path and if A(n) — oo
is given and the sequence is chosen to increase sufficiently fast then we clearly

2
have g(n) > % — A(n) n.

7. Proof of the first part of Theorem IV. We choose a sequence 7, 1, I, . . .
of integers such that

lo=0y. Bl << 2l li—>0.

We put i e
0 if l=n=21l,
_[1 if 2], <n<3l,
B if 3L =n=sl,
10 L5 <7,

P,(n) = ]

#n) = 3 pn),

and consider the graph G(=) in which two edges n, and n, (n, < n,) are connected
if and only if @(n;) = ¢(n,).

Since ¢(n) > v if n > 5l, we have lim ¢p(n) = oo. Consequently G(=)
can not contain an /.-path. We shall show that on the other hand

liminfg(—n)zl—l—L

nt T 4 36
We estimate g(n) from below if 21, <n < 2[ ,,. First we have g(n) >
> g,(n) where g,(n) is the number of the edges of G(=) whose endpoints belong
to the interval (5/,_;, 2{,,,]. Now in this interval all functions ¢,(n) except
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for u = » are constant (namely ¢, (n) =1 if p <» and g,(n) = 0 if » <p)
so that for 5I,_, <n, <mn, < 2l,,;, n; and n, are connected if and only if
@,(n;) = @,(n,). Using this remark we easily obtain

2l§+l n—21)2 4 o(n? 2L <m=381L),
2( .

(1) gm) =) SB+—(n—3L) + 3L — L) +o(n) (3, <n=5L),

2211?,+—;—(7L—5l,,)—{—l,,(n—5l,,)+0(n2) (6l <n=<2l,,).

In these relations » should be considered as function of n defined by the
inequalities 2/, <n < 2[,,,. We obtain by a simple and elementary compu-
tation that

9(n) > g,,(:l) > min g”(yf) =il + o(1)

n? ne T 2y<m<2h,,, M2 18

which completes our proof.

@(n) is an integer valued function which assumes each value on a finite
number of places. We shall somewhat modify ¢(n) by introducing a function
@’(n) in the following way: If k is any value of ¢(n) assumed for n,, n,, ..., n,
(n,<m < ...<m,) then we put

(p'(n,):)c—{—% =012, .. .50},

It is clear that ¢” is schlicht and for any two positive integers n” and »n””
p(n’) = @(n’’) is equivalent to ¢’(n’) > @’(n’’). The range of ¢’ is an infinite
set of positive numbers without a limit point, hence it can be mapped by a
strictly increasing function y onto the set of natural numbers. Thus » = pog’
is a permutation of the set of natural numbers for which »” and »”” are connec-
ted in G(=) if and only if (n” — n”’) (#(n") — %(n”’)) < 0. So we can state
the somewhat paradoxical fact that the positive integers can be rearranged
in a series k, k,, ... in such a drastic way that the number of inversions
devided by the number of all unordered pairs formed by k,, &, ..., k, is more
than a half plus a fix positive number for all sufficiently large n.

8. Proof of the second part of Theorem IV. We suppose that G(=) does
not contain any /.-path and we prove that then

(8.1) T L e A S
n2 2 16

This means that the second part of Theorem 1V is valid with o = % (although

we do not know the greatest possible value of «).
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Omitting from G(=) all edges (n, m) with n* <m we get a subgraph
G(=) every vertex of which has finite valency? and for which g(n) > g(n) =
> g(n) — Cn’l:, consequently

lim inf‘z@ =lim infM.
n? n?

This means that we can suppose without loss of generality that every
vertex of G(=) has finite valency.
We define by induction the sets 4, Al, Az, ... requiring that 4,= 0

and for k> 0 4, is the set of those n € N — U A, which are not connected

with any m if » <m and m €N — U 4,. (N is the set of natural numbers.)
1=0
The sets A, exhaust N:
(8.1) d ==,
0

To prove this suppose that for some n, n, € N — J Ay. It is clear from the

0
definition of the sets 4, that for every k> 0 n, is the starting point of an
I -path. Since n; has finite valency an infinite number of these I,-paths
must have the same second vertex that is there is an edge (n,, n,) where
n, > n, and n, is the starting point of 7,-paths for arbitrarily large k’s. The .
repetition of this argument clearly yields an I.-path nmn,m, ... against
our assumption which proves (8.2).

Put
k
B, = 190 4;, By(n) = BN [1,n]

and denote by £ the upper density of B that is

By = lim sup bi(m)
n
where b,(n) is the number of elements of B (n). Suppose first that
(8.3) for some k fy ;% :

Denoting by k, the least of these £ we have
Pz, k>0

(since f, = 0) and
1

(8.4) Bro—1 < i

Given a natural number n, and ¢ > 0 we can choose an » > n, such that

(8.5) by,(n) >

2The valency of a vertex is the number of edges emanating from this vertex.

1
;—e n, by—(2n)<mn.
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In view of (8.4) we can not have for every integer v = 0
bpy—1 (2771 ) — by (2"m) = 2,
since this would imply by addition

bko——l(zv—*—1 n) - bko—l(n) = (2, —x l n (’P = 0, 152,34, )

2

which would give By, = % Hence there is an integer », = 0 such that

(8.6) byg—1 (271 ) — by,—1(27m) < 2710
and '
(8.7) br—1(2" 1 m) — by,—1(2°n) = 2-1n for 0 = » < 9.

Putting 2% n = m we get from (8.5), (8.6) and (8.7)

vo—1

bry(m) = byy(270m) = by,(n) + 2 (Dro(2F1m) — By (2°m)) >

v=0
(8.8) . | i .
> [E— s]n'—{—ngw*’ = (2% —¢n= (E_ £)m
and
1
(89) bko—1(2 m) S bko—l(m) ==,

2

(If vy = 0 then the sums figuring in (8.8) are void.)

It is clear from the definition of the sets 4, that if w € A, v € 4, and
u < v,k <1 then « and v are not connected in G(<). Consequently there is
no edge connecting a member of B (m) with a member of (m, 2m] — B, _,.
Now the first of these sets has b, (m) members and the second one m —
— (byy—1(2m) — by,—,(m)) members hence using (8.8) and (8.9)

0(2m) £ (7] = Bum) (m — (pea(27) = Bis () <

2

2 2
<4m = 1—6 ~1—m2=4m —i4m2+im2.
2 2 2 16 4

Since 2m > m = n > n, and n, and ¢ have been chosen arbitrary, (8.1) is
proved under the assumption (8.3)

Next we consider the case that
(8.10) ﬂk<% for £=0,1,2 .ivs

Given n,> 0 we can choose k, so that By (n,) = [1, n,] (cf. (8.2)) i.e.
(8.11) b, (1) = M.
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Let us denote by », the least non negative integer for which

biy(270 M) < 270~ 1 my.

o

v, exists since otherwise we would have g, = T which would contradict
(8.10), (8.11) implies that v, > 0, hence
by (27~ 1m) > 272 p,,.
Putting 2%~1n, = m, we have
(8.9) bi(2m) = m and by (m) > —;—m

The members of B (m) are not connected with those of (m, 2m] —
— By, (m). Using (8.9) it follows

o(2m) < (7] = bulm) (m — (2 m) — bi(m)) <
S4m2—lmm—m—lm —4m2—é—7ﬁ
= 2 2 ( 2 ] 2 16

Since m = n, (8.1) is proved under the assumption (8.10) also.

(Received October 12, 1962)
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9KCTPEMAJIbHBIE ITPOBJIEMbI OTHOCUTEJIBHO BECKOHEYHBbIX

I'PA®OB
J. CZIPSZER, P. ERDOS, A. HAJNAL
Pesrome
[yctb G(=) ecTb rpad, BepUMHBI KOTOPOr0 CyTh HaTypasibHble 4YHMCJia
L2,...,m,.... lng KaK10oro » 0603HaYuM yepes g(n) yuciio Tex pebep rpada
(=), BeplIMHBI KOTOPBIX HAXOAATCsl cpejay ymcen 1,2, ..., n. Jlexawmii B G(=)
MyTb 74N, . .. WMy, HA3bIBAETCS MOHOTOHHBIM TNyTeM JUIMHBL k uin [ ,-myTem,

ecI ny <m, < ... <Ny <My Jlexamuit B G¢) GeCKOHEYHBI NYTb 7N, . . 7. . .
Ha3piBaeTcsl 0ECKOHEYHBIM ~ MOHOTOHHBIM — IyTeM Wi [.-TlyTem, ecju
ny <my < ... <mp<....HwKecaerywoupue TeopeMbl 10Ka3bIBAIOT, KAK MOYHO
C MOMOIILIO YCJIOBBIl OTHOCHTEJIbHO NOPSAKA POCTa g(n) rapaHTUPOBAThL CYyILeCT-
BOBaHHe B G(=) QeckoHeuHOro umcia J[,-myTeill, 0OeCKOHeUHOro uyucya 1,
nyTeii, 6ec KOHeYHOr0 NyTH, [-MyTH MM OeCKOHEUHOro IOJIHOrO MoAarpada.
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Teopema 1. Ecau k= 2 uau 3 u 0aa Hekomopoeo &> 0 u 00cmamoyno
Oosvluux n

il 1
g(n)>(——a+€

n2,
4

mo G(=) codepucum Geckoneurno muo20 I-nymed. dmo ymeepyucoeHue MOYHO
6 MoM cmblcae, umo en® He Moncem Oblmb 3ameHeHo Ha O(n).

[Toxa He M3BeCTHO, MMeeT JIM MeCTO Teopema M mpu k > 3.
Teopema 2. Ecau 045 Hekomopozo & > 0 u 00cmamouno GoAbUX 7

n?

o) > T+ 5+

log? n

5 1
mo G cooepucum Gecrkoreuno mHoz2o I,-nymeti. 30ech 3—2H€ Moycerm Oblmb
Y MeHbLLIeHO.

Teopema 3. Ecau 0as 6cex n

1
n) > —n2— Cn
g(n) 7

mo G(=) codepyucum Geckoneunsill nymo. 30eco C He Moxcermn Gbimb 3aMeHeHO HQ
Ay, ecau A, — .

Teopema 4. /i3 moeo, umo

liminfM >l,

n> 4
ewje He caeoyem, umo G<=) cooepucum I.-nyms. Ho cywecmesyem maxas nocmo-

1 ,
AHHaa 0 < a < —, YTO eciH
4

mainef® o L
n2 2

mo G¢) cooepucum I.-nymo.

Teopema 5. Ecau 0asa OeckoHeuro MHO2UX 7

g(n) > g—_ — Oy

mo G() cooepucum Gecrkoreunslll noamblll nodepad. Imo ymeepycoerue MmouHoe
8 mom cmoicae, umo eémecmo C Heav3s nucams A,, ecau A, — .
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