ON THE GENERAL NOTION OF MAXIMAL CORRELATION

by
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Introduction

In their recent papers [3], [4] the authors discussed some properties
of the maximal correlation of two random variables as introduced by H. GEBE-
LEIN [5]. The natural idea of the straightforward generalization of this measure
of connection for random vectors, for stochastic processes and even for o-
algebras has been already realized in [8] and [9]. The present paper aims at
adding some further properties to those described in the alluded works.

In §1 a notion involving the maximal correlation is considered in the
general Hilbert space. § 2 deals with topological and metrical problems. § 3 is to
show how the maximal correlation may be defined in the non-commutative
probability theory developed in [11]. §4isabout some properties of the maximal
correlation between o-algebras. In § 5 the intuitive background of the pos-
tulates given in § 1 isrevealed. Finally, § 6 contains some particular cases and
examples.

§ 1. General notions

To commence with, the notions and facts from the Hilbert space theory
needed and the symbols used in this paper are explained.

1.1. Let H, and H, be two real Hilbert spaces with scalar products
(2, @), (@, € Hy, z, € H,) and (y,, ¥,)s (y; € H,, y, € H,), the respective norms
denoted by ||z ||, (x € H,) and || y ||, (y € Hy).

Let T be a linear bounded operator whose domain is the space H,
and which takes on its values in the space H,. It is known that there exists
a uniquely determined linear bounded operator T* whose domain is the
space H, and it takes on its values in the space H,, furthermore

(1.1) (T2, y), = (¢, T*y)
holds for all # € H, and y € H,. The operator T* will be called the adjoint of the
operator T. The equality ||T || = || T* || is valid.

The real number 1 is called an eigenvalue of the pair of operators T, T*
and the pair of elements v € H,, y € H, is said to be a pair of eigenelements
(of T, T*) belonging to A if
Tx=2y
¥y —dx

excluding the case when both x and y are equal to the zero element.

(1.2)

27
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As it is known, the operator T being completely continuous, the members
of the pairs of eigenelements form complete orthogonal systems in the respective
spaces and || T || is the greatest eigenvalue.

The square root of the quantity

(1:3) Il = T** = 2 (T @, 90

is called the double norm of the operators T' and T*, where {x;} and {y,} are
complete orthonormal systems in the spaces H, and H,, respectively. It is
known that — {4;} being the sequence of eigenvalues —

(1.4) e = 3

is equivalent to the statement that the members of pairs of eigenele-
ments furnish complete orthogonal systemsin the respective spaces. If even
[l]T ||| < o then the operator T is completely continuous.

1.2. Henceforth, let us treat the Hilbert spaces as subspaces of the same
given H in which the scalar product will be denoted by (x, y) and the norm
by ||« ||. Let & denote the set of all subspaces of H except the subspace
containing the single element zero. Let P, denote the operator of the ortho-
gonal projection on the subspace Hy ¢ 27 ie. the linear bounded operator,
which has the following properties:

1. Having x € H,
(1.5) (@, y) = (%0, 9)

for some x, € Hyand for all y € H if and only if x, = Py .
2. Having x € H,
(1.6) min [[@ — y| = [z — x|
Y€H,
for some z, € H, if and only if v, = Py.
Further, it is kown that P};, = P}, = Py, -
As to the relative position of two subspaces H, € # and H, € ¥ the
quantity
(1.7) 0(H,, H,) = inf||x — Py, 2||
€H,
[[x][=1
may be esteemed characteristic, though this quantity does not represent a
distance in the metrical sense as this will be shown in § 2. However, the basis of
the postulates given in Section 1.3 will be the quantity (1.7) because certain
intuitive meaning can be attributed to it for the probability theory in some par-

ticular cases (see § 5.).
Now, some simple properties of the quantity (1.7) are listed.

Theorem 1.1. For any subspaces H, ¢ # and H, €
1* 0= d0(H Hs) = 1;
2° O(Hy, H,) = 6(Hy, H,);
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8° 8H, H) =04 H,(YH;€X;
4° O6(H,, H,) =1 if and only of H, and H, are orthogonal;
5° 6(H,, H,) = 6(H;,H,) +f H, C H; and H, C H,.
Proof. The statement 1° follows from the inequalities
0= o — Pyt =1—||Ppat<1 el = 1.

For the proof of 2° let z € H,, ||z || =1 be arbitrary. If Py, =0
then || 2—Py,z || =1 = é (H,, H,); on the other hand, if Py, x & 0 then

2 2
& — Py 2|t =1 — [|Py,2lt=1— (Py,®, Py, ) - (Pﬂlszx;x) 5
HPHg ZH2 HPH?. x”-
21— BaPudl o sy — By ol 2 00 By,
1P r, [[*
where y = H—i% Therefore 6 (H,, H,) = 6 (H,, H,). The converse inequa-
ng

lity may be verified analogously, thus 2° is proved.

If H, N H, ¢ ¥ there exists z,€ H, N H, such that [[z,]|| =1 for
which Py, x, = x,, hence || z,—Py, z, || = 0 and this proves 3°.

If H, and H, are orthogonal then || Py, x |]* = (2, Py, x) = 0 holds,
ie. [|z—Py,z||=1 for all ze¢H,, ||z||=1, thus é(H;, H,) = 1. Con-
versely, if &(H,, H,) =1 then ||Py, z|?=1—| 2Py, z|? =0 for all
zeH, |[z]|=1,1ie. (2, y)=(Py,x, y) =0 for all z ¢ H,, y € H, — thus 4°
is proved.

Finally, if H, C H; then Py, = Pp, Py, hence if even H, C H;

0%(H,, H,) = inf ﬂx — P,L,zacH2 = inf {1 — |]PH2 Py x|?} =
Fi{ xEH{ i
|1x]|=1 |1x]|=1
> inf {1 — HPW x“} = inf |l — Py tz — 0 (H{ H;) .
Hj L x€EH{ -
[Ix]|=1 [Ix|=1

thus all the statements of the theorem are proved.

1.3. In order to characterize the "’similarity of position™ of subspaces let a
real number a(H,, H,) correspond to every pair of subspaces H, € %, H, ¢ &
such that the following Postulates are fulfilled:

1. a(H,, H,) = a(H];, H;) if and only if é(H,, H,) < é(H;, H3).
2. o(H,, H,) = 0 if the subspaces H, and H, are orthogonal.
3. a(H;, Hy)—1 if 6(H;, H;) = 0.

Evidently, these Postulates are satisfied by an o if and only if it is a strictly
decreasing function of ¢, taking on the value 1 at the point 0 and the value 0
at the point 1. However, the choice of such a function of ¢ is equivalent to the
choice of the scale measuring the relative position of subspaces. Therefore a is
uniquely determined but scaling. It is advantageous to choose the scale such
that a(H,, H,) = S(H,, H,), where

(1.8) S(H,, H,) = VT_ 0*H,, H,) .
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Theorem 1.1. may be written by the aid of S(H,, H,) in the following
form:
Theorem 1.1’. For any pair of subspaces H, € " and H, € 7

19 0<S(H, H,) <1

2° S(Hy, Hy) = S(H,, H,) ;

39 S(H, Hy)) =1 H, ' Hiek;

4° S(H,, H,) =0 if and only if H, and H, are orthogonal ;
B S(Hy, H3) = S(H H).nf Hyc Hi and Hyc Hi:
Theorem 1.2.

(1.9) S(H,; H,)= sup (2,9).
X€H,,||x|| =1
YeH,,|lyl|=1

Proof. If x € H,, ||z ||=1and ye H,, ||y || =1 then

(1.10)  (@9) = (P2 y) < [Pl = VT — [r— PP <
< V1 —=0H,, H,) = S(H,, H,) .

In the case of S(H,, H,) = 0 the statement follows from inequality (1.10).
If S(H,, Hy) > 0, let the sequence of x, € H, be such that ||z, || =1 and
|| 2, —Ppy, 2, || > 6(H,, H,) ie. || Py, 2, || — S(H,, H,); hence the sequence

{x,} may be chosen so that P, x, # 0. Choosing y, = - 8 "
%‘PHz il'nl
T, Py, i
(@ y) = EnLenZn) _yp, o> S(H, Hy)

”PHzx

from which the statement follows.

1.4. Let P} denote the restriction of the operator P, to the subspace
H,, i.e. the domain of PH1 is equal to the subspace H, and P”1 =By vl
%€ Hj.

Theorem 1.3.
(1.11) (PH)* = P2

Proof. If € H, and y € H,, then
(P2, y) = (Py, 2, y) = (x,9) = (=, Py, y) = (v, P2 y) .

all

Theorem 1.4.
(1.12) S(Hy, H,) = |PH| = ||P&|
Proof.
]’P |—sup”P;x[]_sngl—!|x—PH2xH2 S(H,, Hy).
ilx[|=1 [x]|=1

The following theorem specifies the cases for which the supremum is attainable
n (1.9).
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Theorem 1.5.
(1.13) S(H,, H;) = (Zos Yo) onHv”on =1;y,€H,, H?/OH =1

if and only if x,, y, form a pair of eigenelements — belonging to the eigenvalue
8 = S(H,, H,) — of the pair of operators P}, Pfa.
Proof. If (1.13) holds then for any y € H,

lleo — l? =1 —2(xo, ) + Wl>= 1 — 28 |ly|| + |ly]* =
=1—824(8—|y)2=1— 8%= ||z, — Sy,

wherefrom owing to (1.5)

Pz, = Sy,
and similarly

Pl yo = Sz,

Conversely, if x, y, form a pair of normed eigenelements,
(%0, Yo) = (PH: %o, Yo) = (SYo, ¥o) = S(H;, H,),
with which the statement is proved.

Theorem 1.6.
sup {||[Py, | [Py, 2| — ||t — Py, || ||x — Py, ||} =S(H,, H,).

[1x][=1
Proof.
(114) [Py, [Py, || — |& — Py, || o0 — Py, 2| < S(H,, Hy),
for all z¢H, ||jz|| =1
holds as proved by H. P. KRAMER [9]. Let 2, €H,, ||z,||=1(n=1, 2,...)
be chosen for x in (1.14) such that || P, z, || — S(H,, H,); then the left side
of (1.14) converges to S(H,, H,), wherefrom the statement follows.

Now, let H, and H, be two separable subspaces of H and {z;}, {y,} be
respective complete orthonormal systems. Introduce the quantity

(1.15) C(H,, H,) = [12’: (4 ?/k)zlyg-
Theorem 1.7. ,
(1.16) C(H,, Hy) = |[PH| = [[IPH: -

Proof. From the definitions (1.3) and (1.15)
”IPHHHZ = %‘ (Pﬁ; T, Yp): = 2(9’:" Yi)?

i i,k

{x;} and {y;} being complete orthonormal systems in /, and H,, respectively.

§ 2. Topological problems

As mentioned in § 1, 6(H,, H,) defined by (1.6) represents no distance in
the set #°. The existence of a non-vanishing function of 6 defining a distance
on ¥ was first inquired in [9]. Theorem 2.1 which will be formulated in
general form, excludes even the existence of a non-vanishing function of 6 the
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neighbourhoods generated by which would form a basis of a topology. (The
definition of topological space and related axioms of bases see e.g. [7] pp.
34— 35)

Theorem 2.1. Let X be an arbitrary set. Let us suppose that for the function
@(z, y) of two variables defined on X and for any x ¢ X and y € X there exists a
z € X such that

(2.1) P, 2) = ¢(2y) = ¢(2,2) .
If f is a non-negative function defined on the range of ¢ such that the subsets
V(z,e) ={y:y(® y) <& £>0

( the neighbourhood of x with radius € generated by y) satisfy the axioms of bases
where

y(@, y) = f(p(z, ), veX,ye X
then

y(®,y)=0.

Proof. Let z € X, y € X. In consequence of the condition on ¢, there
exists a z € X satisfying (2.1), wherefrom y(z, z) = y(z, y) = y(z, 2) follows.
According to the first axiom of bases z € V (2, ¢) for all ¢ > 0, thatis y(z, z) < ¢
for all ¢ > 0, i.e. y(z, 2) = p(2, y) = (2, 2) = 0, therefore

(2.2) z€V(z, &) for all & > 0,

(2.3) yEV(z ") for all &” > 0.

According to the third axiom of bases for any ¢ > 0 there exists ¢’ > 0 such that
for any point of V (2, ¢’) and thus by (2.2) for z, there exists &” > 0 such that
V(z, ¢")CV (z, ). From this and (2.3), yeV (x, ¢), that isy(x, y) < e for all e >0
is valid, hence y(z, y) = 0 for all x ¢ X and y € X.

From this Theorem it is evident, no non-vanishing function of ¢ with
property (2.1) may generate a quasi-distance.

Corollary. There is no non-vanishing function of the quantity defined by
(1.7) to generate a topology in ¢ .

Proof. For any H, € ¥ and H, ¢
o(H, H)y=»38H,H,) = 6(H,H)="0.

Hence 6 satisfies the condition of Theorem 2.1, thus the statement holds.

§ 3. Remarks on the case of non-commutative probability theory

In this section a special Hilbert space is briefly discussed implying the
functional ones arising from the ordinary or the non-commutative probability
theory as particular cases (see [11]). In this abstract formulation we deal with
the special projectors which provide the conditional expectation with norms
equaling the maximal correlations.

Let L°be a real linear space in which the following further operations are
defined:
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1. Multiplication. An element wxy € L° corresponds to every x € L° and
yel® so that

a) x(yz) = (xy)z for all x € L°, ye L° z ¢ LO,

b) there exists a unit-element e € L° such that xe =ex = x for all x € L,
c) x(y +2) = axyt+azand (x+y)z=az+yzforallz € L0 y € L° z¢€ L°,
d) z(ay) = (a 2)y = a(xy) for all z € L°, y€ L° and any real number a.

2. Involution. An element 2’ € L° corresponds to every x € L° so that

®

) (') == for all z¢lL°,

b) (x+y) =2 +y for all x€L° and y € L°,

¢) (ex) =ax" for all x¢ L° and any real number «,
d) (xy) =y " for all x€ L° and ye L°.

It is easy to see that the unit-element is unique and 0 x =0 for all x ¢ LO.
The elements z € L° for which 2’ =« are called self-adjoint. They form a linear
subspace which contains the unit-element and the zero element. The elements of

the set

(3.1) P = {xx’ : x € L%}

are called positive elements. The unit-element and zero element are positive
ones and the positive elements are self-adjoint.

Let up be a real-valued function defined on the linear subspace L!c L°
with the following properties:

1. u is linear on L'

2. If xx’ € L' then p(xx’) = 0 and if u(xx’) = 0 then xz = 0.

3. If ax” ¢ L' and yy’ € L' then zy” + yx’ € L.

4. e € Ltand u (e) = 1.

Put
(3.2) P=1{n:as" cli}.
From the property 3 it follows that L? is a linear subspace of L°.

For elements x € L? and y € L? let the scalar product and the norm be
(3.3) (@, y) = u(@y + y2') and ol = V(z, 2),

respectively, with which the space L? forms a — not necessarily complete —
Hilbert space.
Further, let P be a linear transformation on L! to itself with the following

properties:
1. If xeL>* N L' then z(Px) + (Px)x' € L.
2. If z(Py) + (Py)«' € L* then P[z(Py) 4 (Py)2'] =
=Pa(Py) + Py(Px) .
3. u(Pz)=p().
4. Pe=c¢.

3 A Matematikai Kutaté Intézet Kozleményei VITI. A/1--2,
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Theorem 3.1. If x € L> N L' then P x € L*.

Proof.
2 Pz(Puz) =Plz(Pz) + (Px)x']elr.

Theorem 3.2. If x € L>N L' then Px is the orthogonal projection of x on
the subspace

(3.4) H=[Prixe 2N L}
Proof.
(Pz,Py)=uw(Px(Py) + Py(Px)') = uPlz(Py) + (Py)v']) =
= wz(Py)' + (Py) ') = (z, Py)
for all Py € L? hence the statement follows from (1.5).

Therefore the restriction of P to L? N L' is the projection P;;. However,
not every projection has the above properties. These particular projectors
represent the conditional expectation either in the ordinary or the non-com-
mutative probability theory. The quantity

|
250!
X€EH,,, |1x|| =

S(H 0 Hyp) = [PHsl| = sup /‘EII/’ + yx'),
YEH,, [ly[| =1
is called the maximal correlation of H, and H,, where H, , and H, , are the
orthogonal complements of the subspaces of the above types H, and H,.
respectively, to the unit-element.

§ 4. Maximal correlation of ¢-algebras

4.1. In the present section let us consider the case of (commutative)
probability theory. Let (£2, F, P) be a probability space and L* = L¥Q, F, P),
further L}, = L2, F,, P), where F', is an arbitrary sub-c-algebra of the
o-algebra F. Let us denote the subspace of the elements with zero expected
values of the space L3, by L%, . It should be remarked that not every sub-
space of L? is of the form L% . (R. R. BAHADUR [1] has given necessary and
sufficient conditions for a subspace to be of this form.)

Let F, and F, be two sub-g-algebras of F. The quantity

(4~]) S(F]? Fz) = S( %-‘,,()-Lze,o)

is called the maximal correlation of these sub-¢-algebras.

It should be remarked that no topology may be introduced among the
sub-g-algebras of F by the aid of non-vamshing functions of the maximal
correlation as it follows from Theorem 2.1 in consequence of S (F,, F) =

—S(F, F)=S(F, F)=1.

4.2. In the subsequent part of the paper the following symbols will be
used for particular cases:

F, for the smallest o-algebra with respect to which every element of V is
measurable, V' being an arbitrary set of random variables; F, = F(s) and
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Ff = F{&}, further the spaces
Ly = Lk, Ly = Ly,
(4.2) L3 = Ly, Lo = Lig) 0,
Lt = La{s}» Liy = Lz{s},o ;

moreover, the projectors

PV == PL’V ,
(4,3) PE: = P{g,} ,
P; =Py ;
finally,
(4'4) S(EU 77!) S(FE:’ ) ’
S(é,n) =S(F F,)
and
Pr=Pg
- . L%
9 Al
P: —P"‘°

n
r]f)

where &, 7, denote stochastic processes and &, 7 vector random variables
(including single random variables as one-dimensional vectors), {&}, {7} and
{&}, {n} denote the sets consisting of the components of E, n, and &, n,
respectively.

It is worthy of note that S(H,, H,) is equal to the correlation coefficient
of the random variables {, € L?, {, € L?, if H, and H, are the sets of the linear
functions with zero expected values of {; and {,, respectively. If H is the set of
the linear functions with zero expected values of ( ¢ L2 and & is a random
variable then S(H, L?,) is the correlation ratio of { on &.

4.3. Now, we consider the extreme cases 0 and 1 of maximal correlution.

The sub-c-algebras #, and F, are called independent if every element
of F, is independent of each one of F,. It is easy to see that the independence
of sub-g-algebras (including that of stochastic processes and that of random
variables) is equivalent to zero maximal correlation (see e.g. [2]).

The common elements of probability one and zero of two sub-o-algebras
of F are called their trivial common elements. Obviously, the empty set and
the whole set  are the trivial common elements of any two sub-o-algebras.
If the sub-o-algebras F, and F, have non-trivial common elements then
S(F,, F,) = 1, because of havmg such ones is equivalent to L% , and L%, ,
having non-zero common elements. Especially, S(&, n)=1 if for the vector
random variables & and 7 non-constant Borel-measurable vector-valued
functions f and ¢ exist such that f(&) = g(7).

Since F',C F, if and only if L} CL%,, therefore S(Fy, F;) < S(F,, F,),
whenever F{CF, and F,CF, as it follows from 5° of Theorem 1.1°.

3*
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Especially for vector random variables & and % S(f(£), g(n)) < S(&, n) where
fand g are any Borel-measurable vector-valued functions, because of Fy, CF,
and Fy,CF,.

4.4. In this section it is dealt with the pair of operators Pf: and PZEe.

Theorem 4.1. For two normed random variables f € L% , and g € L,
the following statements are equivalent:

1° fand g form a pair of eigenfunctions of the pair of operators Pf!, P2,
2 ||PE = IPEgll = (f.9)-
3° f and g are linearly correlated* and |PLf| = |[PELf||; |Pfg| = |[PF2 9]

Proof. Analogous to that of Theorem 1 in [4].

In the sequel, let us examine under what conditions the operators Pf:
and P§: form a pair of integral operators. The Theorem on this subject will be
formulated in general.

Let (£2,, F,, P,) and (£,, F,, P,) be two probability spaces and let T be a
linear bounded operator defined on L% and taking on its values in L%,, for
which

1. T xo, = %o,

2.if Ael; then T y,=20,

3. { Tfd P,= [ fdP, for all fe L,
a, 2,

where 7, denotes the indicator function of any 4 € F,.
Theorem 4.2. There hold
1° T™* %0, = Xoys
2° if BeF, then T* x5 >0,
3° ([ T*gdP,= ( gdP, for all geL%,.

2, 2,

(For the adjoint T* see (1.1).)

Proof. According to Condition 3, (T* yq,, /) = (%, TS = (%ap
for all f € L%, therefore 1° follows.

Since
5 T* x5 dPy = (34 T* 2)r = (T x> XB)2 = \ T y,dP, =0 for any A€ F,,
A B
according to Condition 2, thus T* 3, > 0.
Finally,

S T*gdP, = (1o, T*g), = (T %2, 9): = (o, 9): = \ gdP, .
e 9,

%

! The correlation of f and giscalled linear, if both the regressions of them are linear.
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The conditions imply that the set function
(4.6) P(AXB) = (T 2 25>

is non-negative on intervals of 2 = Q, x ©Q,, hence it can be uniquely extended
as a measure on ¥ = F, X F,.
Thus, being P(2) = 1, (2, F, P) is a probability space, whereas

P,(4) =P(4 x£2,) for all A4deF,,
P,(B)=P(Q, % B) for all BeF,
are the marginals of P. Hence, if f = f(x)e L%, and fi(x, y) = f(x) for all
y € 2,, then
{{fidP = | f2adP,,
o, 9,

which means that L% can be considered as a subspace of L? (2, F, P) con-
sisting of its elements not depending on the elements of 2, while #, as the
sub-o-algebra of the elements A4 x Q,. L}, can be characterized in a similar way.

Theorem 4.3.
- ls A Li
(4.1) T — PL;; .
Proof. (4.6) implies
(2as 28) = (T X a: X8)
for each 4 € F, and B € F,; thus

(4.8) (f,9)=(Tf. 9

whenever f € L% and g € L%, are step functions; by the continuity of the
operator T', (4.8) holds for any f€ L%, and g € L%,, whence the statement
follows from (1.5).

The operator T is called an integral operator with kernel K(x, y) if

J M — SK(’I‘ y) f(x) dPy(x) € L%, for all felL3 .
Q2

Theorem 4.4. T is an integral operator with kernel K(x, y) if and only if
P(E) = ( { K(x,y)dP,(x)dPyy) for all E€F,

/ o
ie. P<P,xP,

Proof. Analogous to that of Theorem 1 in [3].

§ 5. The intuitive background of the postulates

In section 1.3 three postulates were given. Let us examine what is their
intuitive background in spaces L? from the view-point of stochastic connection
between two random variables.

As a matter of fact, the meaning of intensity of connection is not at all
unambiguously determined. Thus, no system of postulates can be adapt to cha-
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racterize it in all possible senses. This section is to explain the sense correspon-
ding to our system of postulates.

Let & and 7 be arbitrary standard random variables. As it is known,
L% and L? are the spaces of functions (having finite standard deviations) of
& and 7, respectively; further P; 7 represents the conditional expectation
(regression) of 7 on & If only the &-values are observed, the values of # may be
inferred by the aid of P; 5. Of course, the closer the connection between & and
7, the better is the inference. On the other hand, the inference is better, when
the root-mean-square error of it, i.e.

(5.1) [n — Penl|,

is less. However, this standard deviation depends not only on the intensity of
connection between & und 7, but also on the scale, on which the values of 7 are
measured, i.e. on the univalent transformations of 7. Hence, the degree of
dependence is regarded higher, when (5.1) may be lessened by normed uni-
valent transformations of 7, that is the quantity

(5.2) inf g — P g]|
is less, where the infimum is taken for univalent g ¢ L2, ||g || = 1. Though
(5.2) does not seem to be (L% ,, L2 ), the following Theorem is true.

Theorem 5.1.
(5.3) sup (u,v) = S(&, 1),
where the supremum is taken for uwe Ly and ve€ Lk, univalent functions of
& and n, respectively, with ||u | =|v| =1.

Proof. Let f, € L, and g, € L3, (||, = [|g,| = 1) be such that lim (f, g,,) =

= S(é,7), further let ¢,, € L}, v,, € L2, be step functions which take on
only a finite number of values, such that lim [|@,, — f,|| = lim ||,,—g,|| = 0
m= m=ee
for all n. Then lim |¢}, — /.|| = lim ||y¥%, — g.]| =0, too, where ¢}, =
m=ee m=oo
y)nm

SO ... I Yhm = —2—, for lim ||¢gk, — @um|* = lim (1 — ||@,n)*=0 and
H(pnmll ]‘ermH L= m=ee

hm H‘Pﬁm—an é hm [I‘Pﬁm_‘(pnmn + llIII H(pnm_an :O!
m=oco m=oo m=ece

which can be analogously verified for || %, —¢ ||, too.
Let

Unmr = Enmk t(E) -+ (pﬁm and Unmk = €nmk f(’?) i Wﬁm ’

where #(z) is a univalent bounded measurable function: | #(z)| < C. The posi-

- a
o . . : — nm
tive numbers ¢, are determined so that lim e,,, = 0 and ¢, < "2 |

k= 20
where a,,, > 0 are less than any of the absolute values of the non-zero differ-
ence of the values of the step functions ¢¥ ., y¥ . With this choice of ¢,,, the
functions «,,,,; and v,,, are univalent, since if u,,,(x,) = U,,.(%,), either

a
anm = |¢?Igm(x1) - (Fﬁm(xz) I = 8nmk !t(wl) e ’(wz)l < 2’271 G 20 i anm ’
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which is impossible, or @}, (z,)—@k.(®,) =0, in which case #(x,)={(x,) and,
owing to the univalence of ¢(z), x; = x,. Similarly, the functions v,,, are also
univalent. Because of

Hunmk = (p;'l‘mll _—S_ Canmk and anmk i w’rl:mH _S_ CY““nmk ’

and?
i {| e — |2 = T [(1 = 0t — M) [)* + M2 ()] =
= lim “vﬁmk - vnmkHz = 0,
loes
hm | u e — Pl = hm ||v%, — ¥En]| =0 for all » and m, where u},, and

v,,mk are the standardlzed of u. ... and ,..;..

Therefore, (u¥,, v¥,;) may approach S(§, 7) with arbitrary accuracy.

In consequence of this Theorem, (5.2) is equal to (L%, L} ,). Accord-
ingly, in 1.3 Postulate 1 asserts the closer the connection, the greater the
maximal correlation.

Postulate 2 needs no commentary: it simply asserts, the maximal correla-
tion being zero in the case of independence.

Postulate 3 expresses the case of ““strict dependence”. However, not only
the case of & and/or 7 being a function of the other should be regarded as that
of strict dependence, but also the more general type of dependence f(£) = g(7)
where f and ¢ are non-constant Borel-measurable functions.

In this case

(5.4) O(LE g, Lio) = 0.

Moreover, (5.4) may hold in the “irregular’ cases, when there exist sequences
of fn€Lto gn €L, such that ||, |[=1[gn[|=1 and lim ||f;—g, [| =0,

but no function of & is equal to a function of 7. (See an example for this case in
[10].) For sake of uniformity, these cases are also considered as those of
“strict dependence”.

A. RENYI [10] has given some Postulates for quantities measuring the
intensity of stochastic dependence which are satisfied by the maximal correla-
tion. If his Postulates are modified by substituting our Postulates 1 and 3 for
these Postulates F) and E), respectively, then the obtained system of
postulates is satisfied by the maximal correlation only.

It is to be noted, that C. B. BELL [2] also dealt with the modification of
A. RENYT’s Postulates, but the maximal correlation does not satisfy his modi-
fied system.

§ 6. Particular cases and examples

In this section the netation & = (§,, . . ., &y) will be used for an N-dimen-
sional and 7 = (n,, ..., 7, for an M-dimensional random vector, where
N< M.

? Henceforthlet M( ) denote the expectation of the random variable in brackets.
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6.1. Canonical distribution. The random vector (£, 5) is said to be canonic-
ally distributed if the joint distribution function of it equals the product
of the distribution functions of (&, y), . . ., (&n, nn) and of ny .4, .. ., Mpp, 1.0
(6.1)H(@y, - N, Yy - Ym) =Hy (@1, 91) - - - HN@N YN) 1 (YUn ) - - Hp(Y ) -

Lemma 6.1. For canonical distributions (&, ..., &, 15y - . o n i) s inde-

i
pendent of (Ei;, - . . &ty Nyl + - o 771:) whenever all the mdwes]z and i’ differ from
all the indices i and j. Hence if f, € L}, .. ., fn € L3, ,9, € L2, € L%, then the
productsf, . . . fny € L2 and g < € Ln,further ||fl fNH = ||f1 || | fn 1l
gy .. ‘]M” = ”91H HQMH‘md (fr- Sno G0 - QM)—(fp.‘h) (fN:gN)
(gN +1) .. M(gp). f {fin} and {g]m,} are complete orthonormal systems in
L2 resp. L (z =1,..,N; j=1,..., M) then the sets of all the possible pro-

ducts {flm. - [rng} and 10 2o .ngM} are complete orthonormal systems in
L%, resp. L2.

Proof. The statements may be verified directly from the definition of the
canonical distribution.

Lemma 6.2. For canonical distributions
(6.2) S TSSO
(6.3) Peg, - g = Pegy - Py gnMgn+1) - - - Mlgu),
where fi€ L, and g;¢ L2, (¢=1,...,N;i=1,...,M).

Proof. Let {g;,} be complete orthonormal systems in L2, (j =1, ..., M)
and g = Z Bum-..mu Gimy - - - mmu an arbitrary element of L2. Thus

(mel'-' P'I_va'g): 2 ﬂm,..-m,u(mel "-vafN’glm,"-(/Mm,u):

my, ...,my

= 2 Brmy...my (f1s G1m,) - - - (Fns Gnmuy) M(9N+1,mzv+,) oo« M(gMmy) =

My ore:v.5 LM
=(f-- /N> 9)
which proves (6.2). The proof of (6.3) is analogous.

Theorem 6.1. Let f;, g, - - ., fir, 9i, be pairs of eigenfunctions of Pf,:',
i OO by P"‘k and belong to the respective eigenvalues 2, , . . ., Xy, of a canonical
” K

distribution. Then the pair of products f, . .. fu, 9i, - . - gip forms a pair of
eigenfunctions of P;, P and belongs to the product A, ... Ay for any k™ order
combination (7, . . ., 1) of the elements 1, .. ., N.

Proof. According to Lemma (6.2),
Pf] fil"'f —P)]:‘fh' P,]? /11:4 f:"';".kgl'n"'gl.ka
Pigi- - 9u=Pggi- - Plgn=2 - Jufi - fu

Theorem 6.2. For canonical distributions

(6.4) S(&,7) = max S(£,.7).

i)



ON THE GENERAL NOTION OF MAXIMAL CORRELATION 41

Proof. Let {fi,} and {gjn,} be (omplete orthonormal systems in 12,
resp L%, such that fy=g0=120 ¢=1,..., N;j=1,..., M). Let further

== 2 an "mvflnl anNGLEOa’nd 9= 2 ﬂm1 : muglml“'ngueLn,o

n.+ +n1v> my+...+my>0
be arbitrary normed random variables. In this case one obtains
I(f’ g)‘ = ‘ 2 2 anl,..nlv ﬂml...my(/lnly 91m1) Koo X
n+...+ny>0 m+...+my>0

X (fnys Inmy) M(Gns1mys) - - - M@uma)| =
é 2 2 Ianl...n_\' ﬁml.‘.m;vﬂ,..o(flnn glnn) SO (anN’ gNmIV) ’ + R +

Nyyeey NN Myy...,My
n,>0 m, >

-+ 2 2‘ [ %y...ony Po...omyo...o( nnys INmy) I =

ny>0 my=>0

= 5(517 ) 2 2‘ [an,...nN ﬂm,...mNO..,Ol = a5 2

+ S ) 2 2 |90..0ny Po..omyo..0] £

ny>0 m\\

< max S(f,', 7],‘) 2 2 [an,...nN ﬁm,...myo...ol =< max S(Ei: "7:') .
t=l 605N n+..+ny>0 my+...+my>0 i=1,..,N
On the other hand, S(&;, n;) =< S(& ») (¢ =1, ..., N) is trivial, thus (6.4) is
true.
Theorem 6.3. For canonical distributions
(6.5) L+ C&m) = [1 4 C¥&pmy)] - - - [1+ CP(En, mn)]
where C(Cy, £,) = ||| P& ||| is the mean-square contingency of (vector) random

variables &, and £,.

Proof. If {fi,} and {gjn;,} are complete orthonormal systems in L?

resp. L; such that fy =g, =2 ((=1,..., N; j=1,..., M) then from
(1.15)

1+ C*(&,7) i ‘Zn (Fin- - - Inny s Gam, - - - Goamy)* =
= n2n: (Fino §1m,)® - -n2m (meA gnmy)® = [1 4+ C*&p, my)] - - . [1 + C(én, mN)] -

Theorem 6.4. If the ez’gem)alues Aing for m; > 0 belong to pairs of eigenfunc-
tions of Pf,“, s (=1, N) furnishing complete orthogonal systems in
L3, , and L, , respectively, further if Ao =1 thenthe sequence {A,, ... Anny}
contains all the non-zero eigenvalues of P, P.

Proof. In consequence of (1.4) and (6.5)

= 2 By Bpy=0+ 21 )...(1+n2>‘oz§\,,,ﬁ)=

n+...+ny>0
=[+C&n)] - [1+ CZ(EN’ 1N =1+ €& n).
Regarding Theorem 6.1, this proves the statement.
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6.2. Normal distribution. Let the joint distribution of (&, ) bean N - M-
dimensional Gaussian one with the covariance matrix

=[5 521

where ', is the covariance matrix of &, 35, that of 5; the elements of 3, are
the covariances between the components of & and those of 7. (J'{, means the
transposed of 3,.)

If £ is degenerately distributed i.e. the determinant of ', vanishes then
some components of & can be expressed in terms of the others. Omitting
these components the space L% remains unchanged. Thus a non-degenerate
distribution of &, and similarly of 7, may be supposed without restricting
generality.

There can be made use of the known fact that a non-degenerate N + M-
dimensional normal random vector (£, 1) can be transformed by non-degenerate
linear transformations of its V-dimensional component & and of its M-dimen-
sional component 7 so that the obtained random vector (£’, n’) be of N 4 M-
dimensional zero-vector expectation and of covariance matrix

I =20 0400 0 s a0
Bsse D Bouelipe B o
0 g 1...09 @--.0
(6.7) . o - : 0= 2ln=0
0 Bl wxsl D 0
0 B 0 ) 0
LB ss el Blyaxl Gonal ]

This means that the components of &’ and 7" are standard normal
random variables and that their joint distribution is canonical (see H. HOTEL-
LING [6]). The correlation coefficients p,, ..., oy are called the canonical
correlations of & and 7. Thus, L} = L? and L2 = L} holding, §, % can be
taken as canonically distributed with standard components without any
restriction of generality.

Theorem 6.5. The maximal correlation of normally distributed random
vector variables is equal to their greatest canonical correlation.

Proof. The normally distributed vector (&, 7) with covariance matrix
(6.7) — according to §(&;, ;) = o; (¢ =1, .. ., N) and Theorem 6.2 — has

S(&n) =0,

from which the statement follows.
When transforming the normal distribution with covariance matrix
{6.6) into a canonical distribution, it is to see that S(, 7) is the greatest root of
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the equation
det[eZu 212]:
2 02w

and that the pair of linear eigenfunctions belonging to S(&, #) is

J =i=21‘ai(§i — M), g =i:2; ﬂj(nj = M(’?j)) >

where o = (ay,...,ay) and § = (f;, ..., By) are the vectors satisfying the

equations
2na=S5(n)Ynb
21b=8¢&n3,a

6.3. Multinominal distribution. Let the joint distribution of (&, %) be

Pioc.tndiviin =

L! | o
= i piagh. . .qu(l — P —Q)L-1-J,
A il gL — T — gy i P PR 2 9

where 7, .. ., iy, j;, . . ., ju are non-negative integers, L is a positive one and
P1s - - Py Qo - - - qp are non-negative numbers, further

Tl 4 cunibbn T=Rhdon Lip I4FZ2L
P=p+...4+050 @=0+ ...+ P+Q@=1.

The marginal and the conditional probabilities are

L
il — D) (1—P IsL,
Proetr = o @ oL PR
e L q]ll . qﬂ(l —Q)L—J J = I
Tt —
i =T
S Bl P T A T (e =5

I<L—-J;,J<L,

(L—1)! q, I L Q \L-1-J
Pofso. Jaltyse iz = 7 - ( ' ' 1 ———
i —I—-NI1—-P 1-P 1-P

b A

In order to calculate the maximal correlation for such distributions the for-
mule

(6.9 Sali|pa-p-i= 2a,m

L

—7 = [ RS
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is to be applied where L is a positive integer,0 < p < 1 and a
coefficients with a,,, = 1.

jn are appropriate

Theorem 6.6. The non-zero eigenvalues of the pair of operators P, P! are

(6.9) /1,,:[ . ]f .
(1 =¥ )
and the maximal correlation )
PQ B
6.10 S(&,n)= .
e - [(I—P)(I—Q)]

Proof. In consequence of

(6 4 - - + 0" iy lis e =

T e -
=0 it Et e iyl 1—@Q 1~

St td Be e

I=9 =1

byt tinsSL—J
S 4 [B=d
I

the equality

: z Py

P';i((pn o M(an)): Zajn (ij} (L—%)(L*%—?%— ]) - M((pn)
j=1

=1 =il

and analogously the equality

n J
Pilyn — M) = [ ) (E =) (L 74 1) M)
=

A=l sl
hold, where

Cp=&+ .- + &N and p, =+ ..: + 94" w=1,...,L.

Here a generalized form of Theorem 3 of [4] may be applied. Viz. as it is
obvious, this Theorem may be generalized to any pairs of Hilbert spaces and
any pair of operators adjoint to each other: the proof is analogous. Thus (6.9)
supplies eigenvalues.

With the aid of identity (1.4) it is proved that (6.9) provides all the non-

zero eigenvalues:

2 . . .
14 CE, ) = N\ _J’M -
byt eset iVt MSL Pis.ciiy- P-juev-in
(L— DI{E—J)] P \L—I—J(l Q L

IHSLI!JI(L—I—J)!?( I—Q} T

.
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% 2 - I!Jl _( P Jil (pN - q H Im ]]M__
ot il bl l—@f T 1—g (1-P]"'(1—P -

L+...+IiN=
h+..+im=J
o (L—D'(L—J)! | P Ll_ p \L1-J Q—Jx
1+2LI!J!(L_I_J)!2[1—QJ ( 1—-@ (1—PJ
X(l_ Q JL"H_ , (5 =BG — I} y
Es y&=, NIV L—I—J =k (L—I—J—) k!
<ksL—-I-]
0<I<L-I-]
+k J+ L L =
e e e B e o D N E
R 1—P m=0 n=0 I—=igl A—, - 1

IR S e

( ) l l(l— ??1—@)]":“213'

Therefore (6.10) holds, too.
6.4. Multihypergeometric distribution. Let the joint distribution of

B T et

Di,...igjyoju = )
f

where %y, ..., iN, 7, . . ., ju are non-negative integers, A4, ..., Ay, B,, ...Byy,
L and k are positive ones, further

T8 Sty s dotl dossv Py « §-LT20,
A=4,+...+4y, B=B,+...+By, A+B=ZL
and k < L.

The marginal and the conditional probabilities are

ol ()=

Pt ig: = =

H
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(Blj By, L——B]
Pt = 2 7'; F=¢ Joz i,
n
[Alj_. dg {L—B—A,
Piy..ix i = &! il';v_z—']_[ T£k=0i TER,
i)
Gl (a2 25
Pjinlivin= ! o} ol — ol =) J=k—0; £k,

7]

Analogously to (6.8) in the preceding example, in the present case

> m 2’(?

is needed where k < L are positive integers and a;, are appropriate coefficients
with a,, = 1.

Theorem 6.7. The non-zero eigenvalues of the pair of operators P;, P! are

4 ) 2
(6.11) I _lzﬁ T
Ll 3
and the maximal correlation
i
Bl Stz :[u:— Af?fz— B)r'

Proof. In consequence of

(¢4 - o FN)" Piprin oo =

Lt Fiysk—J
(L — B — 4 [A]
k=J —— Py n 3 o
221n_’“_'7_1 oy (Al) {1~':2% j (k=J)
1=0 (L — B Wiy AL 'N j= (L = BJ (k—J —j)!
k—J i
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., 1

Pi(p,— M(g,) = D'ay, (E_B) (k—p) ... (k—p—j+1) — Mg,

the equality

=1
/
and analogously the equality
o
n 7 )
Ply, —Mly) = Dap—— (k—g) ... k=g — 7 +1) — M(y,)

e
j=1 { 7' J n:l’...,k,
hold, where

.=+ ...+ &))" and y,= (5, + ... + 5" Il SR

Analogously to the previous example, here (6.11) provides eigenvalues. Finally,
we prove that these are all the non-zero eigenvalues:

2 o &
DPi....injr...in oo

it ot ivthtotiusk Piin-Pojuju

(L—A—B 2
k—I—J] (Al) (AN [Bl] (BM)_
1fj=x (L — A} L — B) i,+.Fiy-1 %, UNAW R Im
P [k—J) St ot fu=J

‘A) (B’ (L A B]'—’
k
N IJWJ)\k—1—J :1_{_222.
1572k (L—A 'L~B) o
k—1I)\k—J

The last equality is the consequence of the fact, that neither side depends on
N and M and that the left side of it is equal to the left side of the first equality
forN=M = 1. Namely, in this particular case the left side of the last equality

is equal to 1 + 2 4%, since both the dimensions of L%, and L2 , equal k, the

number of poss1ble pairs of eigenfunctions.

6.5. The distribution of (&, #) having the joint frequency function
1 1

1 poo 2 f 4 2 \2
i . et T ekl oS il gt

0 otherwise,
where p > 0, ¢ > 0 and

t = \S dx, ... dzndy, ... dy,y, -

o3 +.. +x1’v)‘+(y’+ Vi st
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The marginal and the conditional frequency functions are

M
2 p M
Py wy) = e[l (@ RPN A R S 1
I'l= =1
Pl
N
" 3 s
}lwl...M(?/p’--’yM):**‘fN—‘——[l—(y%—}—...—Jf—y;zw)z]p;yf+---+yio'w§l
tl'l— 41
]
r[%+1) . o
P Ngt.m(@ys - TN Yrs e Ym) = ~—— [1— @+ .- +v)?] ?;
w2
92
B4+ ...+d=1-@+ ...+ .8+ .. =1,
F‘_+1) . _M
h-l...Mll...N(yp -"’?’/M|x11 "'-ZN)_‘ - M [1_ $2+ R +w%\l)2] 2
7Z2
p 2

Bt o +yusl-@+ ...+, 2+ ..+ =1

Theorem 6.8. The non-zero eigenvalues of the pair of operators P;, P} are

3
o .
(pn + N) (gn + M)
and the maximal correlation
NM +
(6.14) S(¢, n)=[ ] :
(p+ N) (¢ + M)
Proof. In consequence of
pﬂ
§-uf - @+ ... +28)?2 N jm(@y - TNy - YM) X
Xt X S—08 +.. 4+ Yy TP
X dx dty = . [1— @3+ + 5 )%]"
RS N_im—l—N i Ym): |
the equality
AY
Pi(p, — Mip.)) =—= 1—p)"—M(p,) n=1,2,
(@ (#n) pn+N( ) (#n)

and analogously the equality
P?(wn_ M(‘Pn)):;‘#—(l —(pl)n— M(Wn) n=1,2,...,
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hold, where
pn qn

Pp=(E+ ...+ &) and y,=@m+ ... +7%)?

As in the above examples, here (6.13) are eigenvalues and (6. 14) holds, for
(6. 13) gives all the non-zero eigenvalues:

JJ B hz(xl,r...,xM,yl, T ><
: hin(@y - 2N b m@ys - - Ym)

4 -
(C 8 TS« S LR (S R U g |

M=l 2y 5w

Ml’(gleJ o
Xy .« ABgaY, + 5 : Oy => ———= jJ [1—(513%+--~+-’E2N)~2—]—_‘7—X
n? Xttty s

by
[1—(x3 .ot X3

~ N
* J (1—0% P oM-ldodz, ...dry=
0
MF(%+1' 2 l*% 1
== V*ﬁ*' '*"2(— l)n e 1)
n? oy n /qn+ M

' »
X JJ [1_(;5%_{—...—{—xﬁ,)z]ndxl,..de:
X+t xp sl

N

= 1

E Ve N
_ - n __ pP\n AN—1 =
VU | | [ At
0

=2w - . :1+2w/1,21.
A+ N g+ M Py

The integrals were calculated by introducing spherical coordinates.

(Received December 6, 1962.)
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056 OBLLEM MOHATUU MAKCUMAJIbHOW KOPPEJISILUHA

P. CSAKI u J. FISCHER
Pe3iome

ABTOpBI PACCMATPUBAIOT HEKOTOPble CBOMCTBA 00001EHHON MaKCMMAJIbHOM
Koppeasuuu. Llenp cratbu — 006001eHre, COOTBETCTBEHHO JOMOJIHEHHE HEKOTO-
PBIX pe3yJIbTaTOB, MOJIyYeHHBLIX aBTOpaMM a TaK)Ke APYTMMM UCCIe0BaTeJIsIMHU
JIaHHO| 00JacTu.

B § 1 paccmarpusaercsi nousitue S(H,, H,), xapakrepusyioliee B3aUMHOe
pacnosoykeHue noanpoctpancTs H,, H, B o6wem 'uabbepToBOM npocTpaHCTBe,
SIBJISIIOIEMCST B cJlyyae L* paBHBIM MaKCUMaJIbHOM KoppessiLiueii.

Ins 9TOM Lenu aBTOPbl BBOJAT B pasjiesie 1.3 NocTynaThl, 0CHOBBIBAKO-
necst Ha BesnuuuHe O(H,, H,) ompejeneHHoit cootHowenuem (1.7). Benmunna
S(H,, H,), onpejesenHas cooTHoweHuem (1.8) y10BieTBOpPSIeT ITHUM NOCTY1aTaM.
[TpuBejeHHbIE 3/1€CH TEOPEMBI SIBJISIIOTCA TAK>Ke 0000IEHUSAMN U3BECTHBIX Pe3yJib-
TaTOB, OTHOCSILLMXCA K MAaKCHMMaJbHON KOppeJsisiiui (CKaJsipHbIX) ClydyaiHbIX
BeJIMUMH, a Teopema 1.6 naeT HoBoe onpejlesieHue BenuuuHbl S(H,, H,).

B § 2 aBTOpHI N0Ka3bIBAIOT, YTO He CYIIECTBYET TAKOHW He TOXKIeCTBEHHO
ucyesatoleit pynxumeit Bemunnbl S(H,, H,), mpousBe/ieHHble KOTOPO# MHO KeCTBa
V(x, &) mornu Obl CIY)KUTb OGA3UCOM TOMOJIOTUM B MHOYKECTBE TIO/UIPOCTPAHCTB.

B § 3 naercst TonKoBaHUe TMOHSITUS MAaKCUMaJbHOW KOppessliu B HEKOM-
MYTaTUBHOW TEOPUU BEPOATHOCTEIA.

B § 4 aBTOopbl paccMaTpUBaT MAaKCUMMaJbHYI0 KOPPEJISILUI0 MEeXy o-
aaredpamy, o0000was 0NpM ITOM HECKOJIBKO HX 00jieeé paHHUX pPe3YyJIbTATOB
(teopembl 4.1 u 4.4). B KauecTBe 4acTHOTO cJlyyasi pacCMaTpPUBAIOTCSI MaKCH-
MaJibHble KOPPeJISiLMU My CTOXaCTHYeCKMMHM IpoleccaMy a TaKKe Me>xiy
BEKTOPHBIMUA  CJTYUaiiHBIMM BeJIMUNHAMU.

B § 5 aBTopel uccienyroT Bonpoc, B KaKOH Mepe MaKcHMajibHasi Kop-
pessilys, KaK YHCJI0 H3MEpSIollee CTOXAaCTUYECKYI0 CBsi3b, Bblpa)KaeT Hari-
SI/IHOE cOJlepyKaHue TOHSATUS 9TOoH cBsish. OHM XapaKTepU3yHT MHTEHCUBHOCTH
CTOXACTUYECKOM CBSI3N ME)K/ly JIBYyMbsi CJyyalHbBIMM BeJIMUMHAMH BO3MOYKHOM
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MaJoCTbI0 CpeHEKBApAaTHUeCKONl OMOKM 0/IHOM M3 Ci1yyalHBIX BeJIMYMH, pac-
YUTAHHON OT ee 0)KMU/JaeMOH YCJIOBHOW BeJMUMHBI 110 OTHOILEHHIO APYToif ciy-
Ya#HOM BejMYMHe TIpUM B3aMMHO-OJHO3HAUYHOM TpeoOpa30BaHUM  CllyyaHBIX
BeJIMUMH.

B 9T10if cBA3M OHM [I0Ka3bIBAIOT, YTO MaKCHMaJlbHasi KOppessilus ABYX
CJlyuyalHBIX BEJMYMH pPaBHA CIONPEMyMY KOPpPEJISLIMOHHBIX KOID(GUIMEHTOB HX
B3aMMHOO/IHO3HAYHBIX GyHKIWM (Teopema 5.1), 3HaunT OHa TeM O0JIbLIE UeM TecHee
CB5I3b B BBILIEYKA3aHHOM CMBICJIE.

B § 6 aBTopbl OmpeensilOT 3HaYeHHe MAKCHMAJIBHON KOppessilMu B He-
CKOJIBKMX YaCTHBIX CJIy4asix U npumepax. OHHM MOKA3bIBAIOT, UTO MAKCUMAJIbHYIO
KOPPeJISILMI0 BEKTOPHBIX CJyYaiHbIX BEJIMUMH ¢ KAaHOHMYECKUM pacrpejiesieH1em
jaeT Haubosbliasi MaKCUMajbHasi KOPpesAlMsl MeXy HMX KOMIOHEHTaMU
(Teopema 6.2). OTcro/la OHM BOJAT, YTO MaKCHMaJibHasi KOPPEJsiUsl BEKTOPHBIX
CJIy4YalHBIX BEJMYMH C HOPMaJbHBIM pacrpejieJieHueM paBHa UX HauboJblieft
KaHOHMYeCKO# Koppessiuuu (Teopema 6.5). B ciyyae mosimHOMMaIbHOTO pacrnpe-
JleJIeHUsl MaKcMMaJibHasi Koppessuus aaércs popmyioii (6.10), a B caydae mno-
JIUTUTIEPTEOMETPUYECKOTO pacnpejesienust ¢dopmyioit  (6.12). Maxcumasnbhas
KOppeJIsilins pUBeIeHHOTO B pasfiesie 6.5 pacnpesienenust naéres popmyioi (6.14).
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