ON THE ISOPERIMETRIC PROPERTY OF THE REGULAR
HYPERBOLIC TETRAHEDRA

by
L. FEJES TOTH

Theisoperimetric property of the regular Euclidean tetrahedron, according
to which of all Euclidean tetrahedra of equal surface-area the regular one hasthe
greatest volume, is equivalent to the easily shown fact that of all tetrahedra
circumscribed about the unit sphere the regular one has the least volume.
Another simple way of proving the isoperimetric property of the regular
tetrahedron in Euclidean space is Steiner’s symmetrization.

None of these methods can be applied in non-Euclidean spaces. Since,
on the other hand, the measurement of volume in non-Euclidean spaces is
rather complicated, every information concerning the volume of a non-

Juclidean tetrahedron must be considered as a valuable contribution to this
subject. Thus it will be of some interest to give a simple direct proof of the
following

Theorem 1. In the hyperbolic space of all tetrahedra of given surface-area
the regular tetrahedron has the greatest possible volume.
Unfortunately, our proof fails to hold in the elliptic space.

The following lemmas operate in a Euclidean or non-Euclidean plane.
They touch upon the momentum

M(D) = { f(OP)dp

of a domain D with respect to a fixed origin O, where dp is the element of area
at the point P and f(x) is a strictly decreasing function. We shall denote a
domain and its area with the same letter.

Lemma 1. Let ¢ be a circle centred at O and s a segment of ¢. Then the
SJunction M(s) is convex for 0 < s < ¢/2.

In order to distinguish this particular function of one variable from our
general symbol of the momentum we shall denote it with w(s).

Lemma 2. Let o be a straight segment contained in the circle ¢ but not
containing the point O, o’ the central projection of o on the boundary of ¢ and t the
convex hull of o and o’. Then

M(t) = w(t).
As to the proofs of Lemmas 1 and 2 we refer to [1] and [2].
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Lemma 3. Of all convex n-gons of equal area the reqular n-gon with centre
O has the greatest possible value of M.

Let 7 be a convex n-gon. We may suppose that 7 contains the point O.
Otherwise we could displace 7 in such a way that each point of it would
get nearer to O. By this means M obviously increases.

Let @ be a regular n-gon centred at O and having the same area as =.
Consider the intersections oy, . . ., o, of the sides of 7 with the circumcircle
¢ of @, as well as the corresponding domains ¢,, . . ., ¢, (some of which may be
empty) defined in Lemma 2. Then, denoting the part of @ outside ¢ by a*, we
have

M) =M(c) — M(t,) — ... — M(t,) + M(z*)
whence, in view of Lemma 1 and 2 and Jensen’s inequality,
M(#) < M) — o) — ... —ot,) + M@xn*) <

< M(o) — na 'J;:_Jﬂ") + M(a%).

n
On the other hand,
A=c—t— ... —t,+A*=c—ns=m,
where s is a segment of ¢ cut off by a side of 7. Hence
t 5% % t ¥
.l,i,_., i_,,” :8+7t_
n n
which enables us to write
l £ %% t
» (”f MJLJJ = w{e) £ Mia)

n

u denoting a domain which completes the segment s to a segment of area
s+ a*/n. Bearing in mind that « lies within ¢ whilst z* lies outside of it, we
have

nM(u) = M(7*)

on account of which
M(n) < M(c) —naw(s) — nM(u) + M(z*) < M(c) — nw(s) = M) .

The case of equality is obvious.

Note that Lemma 3 remains true if the function f(z), instead of being
strictly decreasing, is non-increasing and satisfies the additional condition
f(x)) > f(z,), whenever ¥, <r < R <ux, where r and R are the inradius and
circumradius of 7. In this form Lemma 3 involves the well-known facts that of
all m-gons of given area the regular n-gon has the greatest incircle and the
smallest circumecircle. Thus Lemma 3 seems to be interesting in itself. Since
it turns out to be useful also in other problems see ([3] and [4]) we shall refer to
it as to the momentum lemma.

Lemma 4. M (7) is a concave function of the area 7.

Let =, 7y, 75, 7, be regular n-gons each centred at O in such a way that
a ry issuing from O and containing a vertex of one polygon contains a vertex
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of each of the remaining three polygons as well. Suppose furthermore that
< 7wy, < 7wy < 7, and that nm,—n;, = n,—n,. It is easy to give an area-pre-
serving transformation of the polygonal ring R, enclosed by the boundaries
of 7, and m, onto the ring R, defined by =z, and =z, in such a way, that each
point gets farther from O. It follows that M(R,) < M(R,) showing that the
slope of the function in question is at z, greater than at z,. The slope being
decreasing, the function is concave.

Turning now to the proof of Theorem 1, let 7' be a tetrahedron in the
hyperbolic space, O the centre of its insphere and ¢ one of the four partial
tetrahedra determined by O and a face A of 7. We shall perform successive
transformations on these tetrahedra. Terms like ‘“‘increases’” will be used as
abbreviations instead of “‘increases, unless the transformation is an isometry” .

Let O’ be the foot of the perpendicular drawn from O to the plane p
of /. Let dp be the “element of the plane p” at the point P (as well as its area),
dv the volume of the “cone’” with basis dp and apex O and da the solid angle
subtended by dp at O. Writing OP = p, < OPO’ = f and denoting the sur-
face-area and the volume of a sphere of radius ¢ with S(p) and V(p) we have

: Vo) si
Smﬂ(lp and dv = ,jéﬂl!ﬁ dp .

S(e) S(e)

da =4n
In view of

S(p) =4 ash?p, V(o) = (S(x)dx = n(sh20 — 20)

and

we deduce
da. = shrsh=3pdp and dv= %shr sh—3p(sh2p0 — 29)dp.

Note that sh™3p is a decreasing function of p. In order to show the
same for

g(e) =sh™g(sh2¢ — 2¢)

we introduce the function
1
h(o) = = sh®0¢g’(0) = 3ocho — sho(3 + sh?p)
and observe that A(0) = 0 and

h'(0)=38h9l9—58}129)<0. g0,

This involves, for p > 0, h(p) < 0.

Obviously, the considered functions are at the same time decreasing
functions of the distance O’P. Thus we can consider the volume v of the tetra-
hedron ¢, as well as its solid angle a at O as momenta of 4 with respect to the
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point O’ formed with strictly decreasing functions. Therefore, replacing A by
a regular triangle of the same area centred at 0’, both » and a will increase,
according to the momentum lemma.

The considered transformation of A involves a transformation of the
tetrahedron ¢ into a “‘straight tatrahedron’. In a quite similar way, we trans-
form into straight tetrahedra the remaining tetrahedra based on the faces
of T' and having O as common apex. Again, we transform the obtained four
tetrahedra into new straight tetrahedra leaving their altitudes invariant,
replacing, on the other hand, their bases by equal (regular) triangles having the
same total area as before. In view of Lemma 4 and Jensen’s inequality, the total
volume of the tetrahedra as well as the sum of their solid angles at O will
increase also in this step. Now we subject the tetrahedra to a last transforma-
tion: we leave their bases invariant but increase their altitude. By means of
this the volumes of the tetrahedra continue to increase, but their solid angles
at the apex obviously decrease. Since before the last transformation these
angles were greater than z, we can perform this transformation so as to obtain
tetrahedra with solid angles equal to . These tetrahedra can be put together
so as to form one regular tetrahedron, having the same surface-area as the
original one. But since the total volume of the partial tetrahedra has increased
in each of the above steps, the volume of the regular tetrahedron is greater than
that of 7', unless 7' was originally regular.

This completes the proof of Theorem 1.

Using the expression tangent polyhedron for a polyhedron circumscribed
about a sphere, we can state the following more general

Theorem 2. In the hyperbolic space, let 1T be a tangent polyhedron bounded by
n v-gons. Let S be the surface area of I1, V its volume and v the volume of a straight
v-gonal pyramid having a reqular basis of area Sn and a solid angle at his apex
equal to 47t/n. Then
V < no.

Equality holds only for the Platonic solids.

For instance, in the hyperbolic space, of all isoperimetric tangent dode-
cahedra bounded by pentagons the regular dodecahedron has the greatest
volume.

(Received January 9, 1963.)
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06 W3O0NEPUMETPUUECKUX CBOMCTBAX PErYJISAPHOI0
TMINEPBOJIMYECKOI0 TETPA3IPA

L. FEJES TOTH
Pe3iome

OCHOBHBIM CO/IEPYKAHUEM CTATLY SIBJISETCS 10 Ka3aTeJIbCTBO M30TIepUMeTpUye-
CKOTO CBOMCTBA 3KCTPEMaIbHON BeJIMUMHEL, OTHOCSIILEHCS] K PErysisipHOMY TeTpa-
9/py B runepb0JIM4yecKoM mpocTpaHcTBe: Cpey TeTpadipoB 3aflaHHOr0 00bema
B runep00JMyecKOM IPOCTPAHCTBE HAMMEHBINYIO IJIOIIA/b MOBEPXHOCTH MMeEeT
PEryJISIpHBIA TETPad/Ip.
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