ON CLASSICAL OCCUPANCY PROBLEMS 1.

by
A. BEKESSY

1. Introduction Let there be n “‘cells’” or “urns”’, and suppose that N
“balls” are thrown in the cells independently of each other with the same
probability 1/n. As a result, there will be cells occupied by 0, 1, 2, ... balls
resp. Denoting the number of cells, which contain exactly m balls by &(n, NV, m),
an ‘“‘occupancy problem’ is to determine the probability distribution of the
random variables & This well known problem is treated and the probabilites
in question are computed by elementary combinatorial methods e.g. in
W. FELLER’s book [1]. However, the expressions for these probabilities are
rather inconvenient, so that various authors worked on determining the cor-
responding limit distributions. In this respect there are some earlier results
due to R. von MisEs [3] and to S. M. BERNSTEIN [2]. Recently, I. WE1ss [4]
has proved that supposing n — oo, N — oo, N|n = const., the number of the
empty cells, more precisely the standardized variables &(n, N, 0) tends to be
normally distributed. Moreover, F. N. Davip and D. E. BArTON showed that
the same is true more generally for &§(n, &V, m). Their results are summarized
in [10]. In a recent paper [5] A. RENYI generalized the theorem concerning the
normal limit case in an other direction, he proved namely that the condition
N|n = const. is not necessary, the sufficient (and at the same time necessary)
condition being D — oo, where

D?=ne[1 — (1 + a)e "],
ik N +1

n

’

but his paper deals with the special case m = 0 only. The purpose of the present
paper is to generalize RENYT’s result to m =0, or with other words, to extend
the corresponding theorem of Davip and BARTON.

Theorem. If both n and N tend to infinity and o.= (N + 1)|n is restricted by
(1) name=* — oo

(since o may be eventually unbounded), whereas m = const., x = const. and
m = 2, then the asymptotic relation

tmN,m) —E@Nom) _ | 1 ( .
(2) Pi D(n, N,m) L x] Vﬁje B
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holds with
3 e T P
(3) ) =
and
= I " —a - 2
(4) D2(n,N,m):namg 1_0”9 1_+_(‘1 m) !
m! m! o

As for m = 0 and m = 1, the same is true with the only difference that
for a. not bounded from below the condition

(5) na2— oo

is necessary (instead of (1)).

The conditions (1) and (5) are equivalent to D(n, N, m) — oo.

If D*(n, N, m)—y == 0, then the corresponding random variables are
distributed on the limit according to Poisson’s law. In order to give a more
detailed description, if n o™ e “/m !>y =0 because o tends to infinity, then

)/k e~

(6) P{&(n, N,m) =k} — 5

with no restriction on m, (see e. g. [1], [3], [8] ), butif na™ e~?/m ! — y because
a tends to zero, then (6) holds only for m = 2, and for the exceptional cases
we have

and
N — &(n, N, 1) R
(8) P = w}_} ,20 e

where y = lim no?.

Remark. It follows from (8) that the probability of N—&(n, N, 1) being
an even number tends to 1. This somewhat queer phenomenon may be roughly
explained as follows. The variable N—&(n, NV, 1) is the number of balls placed
in cells containing more than one ball. In the case lim na? < oo there are
relatively few balls at all, therefore with probability tending to 1 the small set

of cells containing more than one ball consists of cells having exactly two
ones.

2. The G-functions of the &’s. In the course of proving WEiss'theorem,

A. RENYI has found that a certain generating function of the characteristic

functions of &(n, N, 0) turns to be a very simple expression. In fact, denoting the
characteristic function by @(n, N, 0, t), the G-function

= N

G(n,20,0) = S d(n, N, 0, p (Y

N=0 N
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is simply (e + eif — 1)". Similarly, the G-function of the variables &N, n, m)
is relatively simple,

(9) G(n,z,m,t) = [ez + (¥ —1) Z_'] ,
m!
where G(n, z, m, t) is defined as
= N
10) 2 E {¢its(nNm) (";3 .

N=0

In order to prowe (9), the starting point will be the joint distribution of
the variables & (for various m). Denote p(n, N, k,, ki, ... k,,) the probability
of the event that after having distributed NV balls, the number of the cells

containing 0, 1, 2, ..., m balls is k, k,, ks, . . ., k,, resp. For the probabilities
p(n, N, ky, ky, . . ., k,) the following recurrence relation holds:
n—ky— ... —k
p(n, N+ 1, ko, ky, ..., k) =2(0, N, ko, - - -, k) - m 4
n
+pn, N, kg + 1,0, —1, ...,%,) s A +
n
k 1
(11) 4 p(n, N, kg by + Ly — 1, .., k) 1: b s
km—l + 1
.+ pn N, ky, ... by + 1, k,—1) =
k 1
+P("’ N’ kO’ i '7km—1’ km + 1) m: 4
expressing the change in the probability of the event characterized by the
numbers k,, k,, . . ., k,, after having thrown one more ball. Denoting the cha-
racteristic function by @ (n, N, ¢, t,, . . ., t,,) and the G-function
2(15( N, bt t)(nz)”
n, sboylyy « - s U
~ e N!
by G(n, 2z, t,, . . ., t,), we obtain from (11) the partial differential equation
4
186 _ G +i (itti—td — 1) .8(1 ER
n 0z n 1 0t
=8 1 (eitt:=t) — 1) .6(’
n 10ty
(12)
& + __1_ (pi(tm_tm—l) = l) Z aG +
n 10,4
|- oG
— e‘ltm T | "
ks n ( )iatm
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which may be solved e.g. by the method of characteristics, and the solution
satisfying the suitable initial condition G(n, 0, t,, .. ., t,,) = ei"'v is

n
(13 6,2, to by - -1 [ez+ b p,,,,_ll.

From (13) the equation (9) immediately follows.

Probabilities of various events are easily derivable from (9) or (13) by
differentiating; e. g. the probability of having k cells, each occupied by m balls
is (see [1])

1 8N+k zm n
e S e
nN k! 9zN oxk + ) m! 329
(= l)"n!lﬂzn__ (—1)® (n — g)N-ms
nN k! = (s —k)! (n —s)!  (m!)S (N — ms)!

(Put (a!)~1 equal to zero for a < 0).

3. Expectation and variance. By differenciating (9), we have for the
expectation E{&{(n, N, m)} and for the quadratic moment E {& (n, NV, m)}

k9 8N+1 n (N
14) { E{&(n,N,m Gn,z,m,[zz— n— 1)N-m |
( { * )= N it 02N ( )273 nN [mj( )
and
1 9N+2
E {&2(n, N, m _— —~Gn z,m,t =
(15) l =t Lo nN dtzdz ( ),z 0
5
n (N Nem  Bn—1)[N}[N —m -
= ](n—-l) st J( )(n—-) s
nN \m n m m

Supposing N — oo, n—> o and N/n*— 0, it follows from (14) that
asymptotically

m ,—a

(16) E {&(n, N,m)} ~n >

= E(n, N, m),
m!

(where a. = (N -+ 1)/n). With more difficulties, — altough the computation is
quite elementary — under the same conditions as former one has

D2 {&(n, N,m)} = E {&3(n, N,m)} — E {£(n, N, m)}? ~

B el m ,—a o 2
__na™e ll _ale [1 Y (o0 —m) = D2(n, N, m).
m! m! o

(17)

The difficulty said above arises because of the fact that E { £} is asymptotically
equal to E {&}* and D?{&} being their difference, one must take account of
asymptotic terms of lower order in E {&} and E {£}*> — too.
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The rate D?E tends to 1 for a — 0, but only if m = 2, whereas for m = 0

D a2
—a e

E 2
resp. for m = 0

—~2a.

This peculiarity shows that for a— 0 the asymptotic behaviour of the distri-
bution of &(n, N, 0) resp. &(n, N, 1) will eventually be different from that of
&(n, N, m) with m > 2.

4. Preliminary remarks concerning the proof of the theorem. It follows
from (9) by Cauchy’s formula that the characteristic function of &(n, N, m) is

| . mAn
1 .A-.¢[ez+(eil_l)_z_] z_N_ldz,
m!

18 D(n, N,m,t) =
18) ( ) 278 nN

where the path of integration may be taken to be along a circle about the
point z = 0. Having the characteristic function in the integral form (18), its
asymptotic behaviour can be effectively analysed by Riemann’s and Debye’s
method of steepest decents well known in the analysis [9]. On the other hand,
according to the continuity theorem, the asymptotics of the characteristic
function and that of the distribution correspond to each other. In the present
case however, saddle points on the z plane, necessary for employing Debye’s
method, are not real for real values of the argument ¢. In order to avoid the
inconvenience involved with complex-valued saddle points, we regard in
what follows the variable ¢ as pure imaginary, in which case it can be shown
that there exists at least one saddle point b on the real positive z axis. As for the
validity of the continuity theorem, I. H. CurTiss has shown [7] that it is suf-
ficient to analyse the behaviour of y(x) = @(—ix) for real a’s in the both
sided neighbourhood of @ = 0. More precisely, in the sense of Curtiss’ theorem
it is sufficient to show that for x real and constant the asymptotic relation

‘F(n,N,m,ll-exp —ﬁ ~ eX*s
D D

is valid (since we expect normal limit distribution), where £ and D have the
values (3) and (4) resp. Hence it is to be proved that

N B 2m
19 =S SR 1 RN
i nN 271 ( +pml

n / r2
g—N—1 dz ~ exp {% ~k f.)_

X
where p denotes eP—1 as abbreviation) under the restrictions imposed upon
2, n, N and a previously.
The saddle points b, defined as values of z, for which

o)
0z m!
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are now determined by the equation
pme—tb

(20) b=oa-+ (a—m)p
m!

There lies on the real positive z axis at least one point b satisfying equation
(20). (The later estimations will show that for sufficiently large » only one
positive b exists.)

Considering the integral (19), let us take the path of integration through
the saddle point b. Putting z = bw we have

(21) ‘F(n, o | = BT,
D
where
N 1 it
22 = -|e? —| N
(22) nN |J2aN [ +pm!J
and
B eb0r=1) | pypm bme® 4"
VN ¢ m! o
(23) = V2_<p , P w ldw .
1y2n g
1+p =
m!
2 ’ . NI A :
The factor # in (21)is |apart from a factor — M] the valueoftheintegrand
7’l.N V27ZN;

in the saddle point b, and as a matter of fact, the asymptotical behaviour of
y is wholly governed by F, because the other factor J tends to 1 in all cases
considered later on.

The proof of the theorem (including also the ‘“Poisson-cases”’) may be
conducted in three steps these beeing the analysis of the behaviour of the saddle
point b, the factor F and the integral J respectively.

5. The expansion of b. Let us suppose first D — oo, then p = o(1), more
precisely

ea/Z 1
24 — XD = | ———— 0| ==
(24) p=e (arNIZ Vn) + [a Ve

If o is bounded away both from zero and from infinity, then

Vn
because of (24), but (25) involves

bme=bt gme—o

m! m!

ol

(26) b=a+<a—m)p‘ﬁ}“[1+0(iﬂ

7l V=

so that from (20)
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follows. After repeated application of (20) and (25) also the more elaborate
asymptotic expansions, needed for the subsequent calculations

m g—a . 3 2m ,—2a
B D=aifemjps e Blaal g +0|
m! a (m!)2 V”
and
bm e_b b -_— am ! e ((L —_— m)2 a2m e—-2a
28 - —_ _— 2
S s o T gl 5 (m!)2 " (nVn

can be deduced.
If o — oo then first we have from (20)

b>ca>m, ,
for a large with a ¢ positive and tending to 1. It follows therefore that

pm e—b (c a)m e—¢ca
<

=(0(af &)
m! m!
and
pm e-a/(2+77)
a—m = 0
Pl )m! Vn J

(where 7 — 0), i.e. (25) holds in the present case, too. The expansions (27)
and (28) are now deducible as former.
If a — 0 and m = 2, then from (20) we have

b b b'" 1g-b
—<l+mm o
o m!

b
<14 —m?|p|,
[ 2 4

thus b/a is bounded from above. With sufficiently large » it follows then
b < C a < mwith a C bounded from above so that we have

Y g~¥ =0 (™)
and
P S B
m! Yn)’
thus :
29 b=all ol—1].
(29) L %]

With repeated application of (20) and (29) the expansions (27) and (28) are
deducible again.

For o —> 0 and m = 1 we obtain in the same manner as former the
asymptotic expansions (27) and (28), but now with the remainder term

0 - : ) . Similarly, for o — 0 and m = 0 the second of the expansions
a’nln
(30) b=a+pae*—p?a’e —z“+0[
n Vn
i "
(31) pod = ~— pet— pae 2“‘+Ol l
a an)n |

f A Matematikai Kutato Intézet Kozleményei VIII. A/1—2,
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corresponding to (28), has the remainder term O

— | instead of 0[—1——

anln n)n
As D— y = const. == 0, we take p = e*—1 = const. and the asymp-
totic behaviour of b may be expressed by

(32) beso 4 fo—m) EL{1 4 a(1))

n

if @ — oo (without restriction on n) or if a— 0 but m & 0,1. For a— 0 and
m = 0,1 it is enough to show that

Y. Vr

~

1+p (1+p)n

where now y = lim na?.

n—>oo

6. The asymptotic behaviour of the factor /. In order to have a con-
venient form for #, we make use of Stirling’s formula and of the equation
(20). Thus we obtain

pm —b

m ,—b
-+ nlog[l—{—pb = }—
m!

(33) log F = n(a — m) p
m!

" m,—b
% 1y . bfeﬁ,] _+_ ()(1)

— Nlog|l +p
a m!

as starting-point. Supposed D — oo, the terms with logarithmic factors in
(33) can be expanded down to o(1), and regard to

x x2 1
s D e ol=L
# D+2D2+ [D-”]

and to (28), we easily obtain

ol | a?
34 log F =— +— 4+ o0(1).
(34) g L AR

However, this simple procedure can only be applied if the terms
i e—?/m! have the order O(1/)/n), that doesnot hold

pb™ e tIm! and p
in the cases « — 0, m = 0 and m = 1. If m = 0, then
log F =nape®+ (n —na)log(l + pe—®) + o(1) .

and in order to avoid the mentioned difficulty, let us put

3

—
log(1 + pe~*) =log(1 + p) + log(l - BLEEY
1+p

the term p(1—e?) beeing O(1/)n). Similarly, if m = 1, then

log F =n(a — 1) pb e ® + nlog(l + pb e?) — nalog

1+a;l—pb e“”}.
o
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Considering that from (20)

—1 b
1+ e pbe b =—,
a o
and that the quantity b/a may be expressed in the case m = 1 more con-
venient by
1

]

a 1 — (@ —1)pe?
we may put

nalog[l + = pb e—'):

a

= —noalog(l + p) — nalogvl

B p(1 ~e”+ae—”))
1+p '

After expanding the logarithmic terms and using (28) the result will be (34)
again, nevertheless, the computations are, however elementary, somewhat
more cumbersome, because the remainder term in (28) as said above is now
considerably greater then O(n=").

Supposing D — y = const. == 0 the corresponding results are

1
log F =—yp+ (n—N)log(l + p) +o(1)
for m =0, a—> 0,
)

T I s el e ) o oy B

42
1
(+)+0()

for m = 1, o — 1 with y = lim » a2, and

N—>oo

log F =yp+o(1)

with y = lim n a™e~?/m! in all other cases.

n—>oo

7. The asymptotics of the integral J. As to the integral (23), according to
Debye’s method, one must find and take the steepest descent’s path through
the critical saddle point. This is, however, in general not necessary, it is suf-
ficient to find such a line as a path of integration, which is convenient to
apply Laplace’s method (see e.g. [9]). The fact that the integrand will be
eventually complex-valued, does not matter, rather the difficulty arises that
in the present case the integrand has two parameters, both tending to infinity,
their rate a beeing not previously fixed. Applying Laplace’s method according
to its sense, the integral will be divided into three parts; the first, ,,essential’
part .J,, containing the close vicinity of the saddle point b, tends to 1, whereas
the other two, ‘““‘unessential”’ parts tend tozero. This will be proved as follows.

a) a— oo, lim inf na™e~* > 0. We take the straight line through the
saddle point parallel to the imaginary axis to be the path integration. It is
easy to see that the new path is equivalent to the original circle. Putting

H*
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w = 1 + iu, we have
v bme=b\n
o iub 1 o) —mMm
VN e ( + Qu) + P m! B
o = Vom e (1 + @) du .
i

Divide the integral into three parts, the “essential’’ part beeing

E
o= f f(u) du,

_n—l[s
where f(u), with respect to (20) may be written as

log f(u )_nlog(l - m(( i

T ')_n(a—m)log(uriu)..
Expanding log f (u) in prowers of « to O(u*) we obtain
log ) = — FE2 ( - ”‘]( _w ——] + Ot ),
m
i.e: 5
7 I J axpi— 2t L oan Loy oyl ae =14 a0y,
/2n 2
—n—ts

because of O(a?u) = O(a?n=15) = o(1) and N2p 15 —» oo
As to the “unessential”” part

B o
=y jf()du

we have the inequality

n—'ls
m —b —b
“e“’”(l—{—iu) +pb 3 1+|| L )
| pm =1 “*b = O(ectn)
e‘ e

where ¢ is bounded from above, so that

Ll = O(e‘Vﬁ)-O(;LEﬂ,;) -O(JN) =o(1),
(hns) 2
B Vl% J f(w) du = o(1) .

— oo

and similarly




ON CLASSICAL OCCUPANCY PROBLEMS, 1. 69

b) lim sup a < oo. For the path of integration we take the unit circle
around the point w = 0 on the w-plane. Putting w = ', we have from (23)

T

bme —b n
VI_V exp {__ ) exu } + peimu
o o= Vom — e gy =
7 er
I +p =l
= V—l Jg(u) du
V27t
the essential part being now
. L)
V¥
J, = S— u)du ,
1 Vo J g(u)
=4
where 6 > 0 is arbitrarily small, but fixed.
For the unessential part
VN [
g = —— u) du
2 V27Z : g( )
0
with respect to (20) and (35) the inequality
112 = ()(Vﬁ) . p—nb(1—cosd) . g ¢ exp {n ’p| |ezmu+b(l Ca) T -b|
I<usn —

is easily obtainable. Since the function C = exp {imu + b(1—e™)}—e~b is
bounded,

(36) JIZl = O(VN) . ()((’Xp {—- nb(] s =l eORD = 0(1) lpl pm—1 )})
follows.

If p — 0, then the final result is
(37) 1| = O(YN) - O(e~N7) = o(1)

(where lim inf # > 0). For m = 0 the proof seems at first sight to be incorrect,
but considerlng that for m = 0 the function C is bounded by O(b) the term
o(1) in (36) can be now replaced by O(b).

The inequality (36) involves (37) also if p =const., @ — 0, na™ — const.
for m = 2, but the cases na®— const., m = 0 or 1 need special considerations.
If m = 1, then

1| = O(JN) - max exp {be'} + pbe " e
d<u<n e+ p

= O(JN)-max |l 4 (p + 1) b(e® —

<u<n
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but with regard to %> = 0O (%) we have

L] = O(/N)[1 — 2b(p + 1) [1 — cos & + O@B)]]"",

and p + 1 being always positive the relation (37) follows. For m = 0 the proof
of (36) is similar to that for m = 1.

There remained to show that the essential part J, tends to 1. As former,
the logarithm of log g(u) will be expanded to O(«*), but care must be taken that,
with regard to the possibility of 56— 0, the remainder term should have the
form O(bu?), therefore it will be convenient to use a special form of log g(u),
easily obtainable from (20) and (35):

o —

log g(u) = nlog (1 Al m[exp fo B9 — T -

b—m

m ,—b ;
+pb - - (efmu — 1)” — iNu
m!

leading to

; bnu® o —m
log g(u) = iu — -

m—1 ,—b 2 o
[1 +b+m‘-’pu;—a—-b e

m! b a—m

]+0wm:

b—m
= iu— 1+ o(1) + 0w,

and, having in mind that 6 is fixed, but arbitrarily small,

J, du—1

o o
VN iu-% [1+0(1) + Ow))
= e
V2n J
—0
follows, making the proof of the theorem complete.

(Received January 11, 1963.)
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0 KJIACCMYECKHX 3AJAYAX 3ANOJJHEHHUSA ALMKOB I.

A. BEKESSY
Pe3iome

ITycTb coOBTUS @y, @y, . . ., @, ABJISIOTCS BCEMM 3JIEMEHTAMM JMCKPETHOTO
¥ KOHEYHOTO M0Jisi COOBITUH U NyCThb MX BePOATHOCTHOE paclpefieleHue paBHO-
mepHo. CripaBUIMBAETCsI, CKOJIBKO OYJeT TaKuxX coOBITHI KOTOpble TOYHO m psia
(m =0, 1, 2,...) coCTOsITCS1 B HEKOTOpPOM 00paslie 3TUX COOBITUIA, COCTOSIILETO
u3 N snementoB. O003HAUMM YUCIO ITUX coObiTUit yepes &(n, N, m). Ilocras-
JIEHHBIA BONpPOC MO)KeT ObTb cHOpMUpOBaH OoJiee HATJSAHO IIOCPEACTBOM
SAMKOB M IUAPUKOB TaKUM o0pa3om: eciaum pacnpejesnutb N IIapUKOB B 7
AMKAX cayyaiineiM  croco0oM, Kakoe OyleT 4YKCJO SIUKOB COJIeprKallux
TOYHO M LIAPUKOB.

CTaTbsi COIEPIKUT CJIEAYIOIIYI0 Teopemy:

ecau m— o u N — o y m = KOHCM. U ecail, Kpome mozao

D= namea[l - e—a(l & (a_m)zJ]qoo,

m! m! a

5 N +1
20e o = , moz20a npedeabroe pacnpedeseHle  CMAHOAPMUIUPOEAHHO20

n
cayuaiinoeo nepemennoz2o &(n, N,m) saeanemcs nHopmasersim. (CpasH. (2), (3), (4))-
B KauecTBe 0noJHEHUST aBTOP NPUBOAMUT B 60JIbLIMX UepTaX TaKyKe IpefesibHbIN
cnyvait D? — y = konst 5= 0.
Teopemy, BrICKa3aHHYI0 B cTaTbe paHee JoKaszas A. RENYI [5] nusa cyact-
Horo ciyvasi m = 0, COOTBETCTBEHHO J0Kasaiu ee /s obwero ciayyass F. N.
Davip u D.E. BarToN [10], ogHako mnpu Gojiee CHMJIBHBIX OI'PAHUYEHHAX.
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