ON SEQUENCES OF QUASI-EQUIVALENT EVENTS, I

by
P. REVESZ

Introduction

Let {2, ., P} be a probability space, 4,, 4,, . .. be a Sequence of events
(ie. 4;(¢=1,2,...)is an element of the o- algebra &) and &, &, ... be a
bequence of random variables (ie. & (¢ =1, 2,...)is areal-valued measurable
function defined on ). We use the followmg notations: B(A4,, 4,, . ..)1is the
smallest o-algebra which includes the events A,, A4, .... %(&, &, ...)
is the smallest o-algebra with respect to which &, &, ... are measurable. The

o-algebra H HB(A,, 4,4, - . .)is called the tail of the sequence 4,, 4,, .. ;

analogously the ¢-algebra II&Q (& &niqs - - -)iscalled the tail of the sequence

&, &, .... The o-algebra 7 is called trivial if for each set 4 ¢ ¥ P(4) = 0
or P(A) = 1. Especially if the o-algebra .7 is the tail of a sequence 4,, 4,, . . .
or &, &, ... and .7 is trivial then we say that the tail of 4,, 4,, ... is trivial
resp. the tail of &, &,, . . . is trivial. We say that the o-algebras .7 and ¢ are
equivalent (7 ~ ) if for every F ¢ .7 there exists a G € ¢ such that!
P(Fo(@@) = 0 and conversely for every G € ¢ there exists an F ¢ .7 such that
P(Fo@G) = 0.

An important question of the theory of probability is the following:
how can be characterized of the sequence of events (random variables) having
trivial tail. A classical result in this direction is the zero-one law of KoLmoco-
RrRov [1]:

Zero-one law. Let A, A, ... (&, &, ...) be a sequence of mutually inde-
pendent events (random variables). Then the tail of the sequence A, A,, . ..
(&, &, ...) is trivial.

In his paper [2] SUCHESTON obtains a characterization of the sequence of
events having trivial tail.

Another direction of the generalization of the zero-one law is the following:
we have a given sequence of events having the tail #, how can .7 be charac-
terized. In this paper we characterize the tail of a special type of sequences of
events, namely we will consider the sequence of equivalent events and further a
more general class of sequences which will be called sequences of quasi-equiva-
lent events. The characterization of quasi-equivalent events from other points

1 Here and in what follows 4oB denotes the symmetric difference of the events
A and B.

73



74 REVESZ

of view will be given too. Namely we will obtain the generalization of the well-
known properties of equivalent events for quasi-equivalent events.

In the present paper we use some concepts and results of papers [3],
[4] and [5]. For the convenience of the reader we recall these concepts and
results.

Definition 1 (see [3]). The sequence of events 4;, 4,, ... is called mixing if
lim P(4,|B) =4

where 0 < A < 1 and B is any event such that P(B) > 0 (P(A4|B) denotes the
conditional probability of the event 4 under the condition B).

Definition 2 (see [4]). The sequence of events 4,, 4,, . . . is called stable
if for every B € .9 the limit

lim P(4,|B) = Q(B)

exists. It is easy to see that @(B) is a measure defined on the space {2, .&}
which is absolutely continuous with respect to the measure P. Let the Radon-
Nikodym derivative of @ (with respect to P) be A(w), i.e

Q(B) = [ A(w)dP.
B

The random variable A(w) is called the local density of the sequence 4;, 4,, . . ..
Definition 3 (see [5], [6]). The events A4, (n =1, 2,...) are called
equivalent if the probability of the event 4, 4, . . =/= i,if j == 1) depends

only on k£ and it does not depend on the indices zl, zz, .., ty. The numbers
ak:P(AilAlg"’Aik) (k=1,2,...)

are called the moments of the sequence 4,, 4,, .. ..
It is easy to see that a sequence of equivalent events is a stable sequence.
The following five theorems are proved in [3], [4] and [7].
Theorem A ([3]). If {A4,} is a sequence of events such that
lim P(4,|4,) (=152 w5 0)
where 0 < A < 1 and A, = £, then the sequence {A4,} is mixing.
Theorem B ([4]). If {A4,} is a sequence of events such that

llm P(An|Ak):2-[‘- (k: 1,2, ...)
where A, = £ and 2, is a sequence of real numbers (0 < A, < 1) then the sequence
A, s stable.

Theorem C ([4]). If H is a Hilbert space and f, is a sequence of elements
of H such that
lim (., f) = A k=1,2,...)
and
Il = C

where C is a positive constant and 2, is a sequence of real numbers, then f, con
verges weakly to an element f of the Hilbert space H, i.e.

(fn9)—> (1, 9) (7= oo
Jfor every element g of H.
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Theorem D (see [5], [6] and [7]). The real numbers o,, a,, ... are the
moments of a sequence of equivalent events if and only if there exists a distribu-
tion function F(z) defined on the interval [0, 1] such that

oy, = j x*dF(x) .

0

Theorem E ([7]). Let {4, }be a sequence of equivalent events. Let 1 = Aw)
be the local density of the sequence {A,}, considered as a stable sequence. Then
we have

P(A;, 4;, ... A, A) = Ak (with probability 1)

fork=1,2,...and i, <i,<...<7,. Le. the events A, are independent under
the condition that X takes on a fixved value.

In this paper we introduce the following two concepts.

Definition 4. The events 4, (n = 1, 2,...) are called quasi-equivalent
if the value of the ratio

P(A, A,‘ "'Alk) ) . o
1 2 Ry t l
P(A,‘)P(Al_) P(A ) a,, (115&11 1 73& )

depends only on k and it does not depend on the indices 4, i,, . . ., % (k = 1, 2
.). The numbers a,, a,, . .. are called the moments of the quasi-equivalent
events Ay, 4y, ...

It is clear that any sequence of equivalent events and any sequence of
independent events is a sequence of quasi-equivalent events.

Another example for quasi-equivalent events is the following:

Let us consider two urns one of them containing R, red balls and W,
white balls, the other one containing R, red balls and W, white balls. We sup-
pose that R, + W, = R, + W, = N. We choose at random one of the urns,
with probability p (0 < p < 1) and with probability ¢ = 1 — p we choose the
other one. From the chosen urn we choose at random a ball (we choose every
ball with the same probability). We put back the ball to the urn and we put
in the first urn a red ball with probability p, (p, < R,/R,) and a white ball with
probability ¢, =1— p,; in the second urn we put a red ball with probability
p* = A p, (where A = R,/R)) and a white ball with probability ¢%¥= 1 — p*.
In the next step we choose a ball at random from the urn from which we have
already chosen the first ball. We put back this ball to this urn and we put in the
first urn a red ball with probability p, (p, < B,/R,) and a white ball with proba
bility ¢, = 1 — p,; in the second urn we put a red ball with probability p¥ —
= A p, and a white ball with probability ¢¥= 1 — p%. We continue this process,
so that in the k-th step we choose a ball from the urn from which we have
chosen the first ball and we put back this ball to this urn and we put in the
first urn a red ball with probablhty P (P < RBy/R;) and a white ball with
probablllty ¢r = 1 — p,; in the second urn we put a red ball with probability
p} = Ap, and a white ball with probability ¢f = 1 — p}.

Let A4, denote the event that we choose in the k-th step a red ball.

It is easy to see that the events 4, are neither independent nor equivalent
if 2= 1. We prove that they are quasi—equivalent events. Let B, denote the
event that the first ball was chosen from the first urn and B;; denote the event
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that the first ball was chosen from the second urn. It is clear that the events
A, 4, ..., A; are independent under the condition B,, therefore we have

P(A,.IA,-2 v e gl Bi)= P(A".I B, P4, ) oo P(A,~,‘| By)
and

1 . . .
P(4y4.| B)) = NIk iEJ (By, + 1) P(y, =)

where », denotes the number of red balls which was put in the first urn at
the first k steps. So we have

B+Mp) R +a

P(d;yi| B;) = =
(Aksr | By) Nk Nk
where o, = p, + p, + ... + px A simple calculation gives
P(4,) = P(4,| B)) (p + 49) (k=12,...)
and similarly
P(“1I~() = P(A/\'\ Bll) (p/l —** (]) (k =1, 2, ks )
so we have
Sty salle) ... B g

P(4,)P(d,) - P(4i)  (p+2)* " (plA+ 0"
which proves our statement.

Definition 5. The sequence of events 4,, A,, ... is called quasi-stable if
for every B €. the limit

oL T
n-= P(4,)
exists.

It is easy to see that a stable sequence is a fortiori a quasi-stable sequence,
and the set function u is a probability measure on {£2, .9’} which is absolutely
continuous with respect to P.

In § 1 we give the generalization of Theorem B for quasi-stable sequences
and the generalization of Theorems D and E for quasi-equivalent events.
§ 2 contains a strong law of large numbers for quasi-equivalent events and the
characterization of the tail of quasi-equivalent events.

§ 1. The generalizations of Theorems B, D and E

In this § we formulate and prove Theorems 1, 2 and 3 which are the gene-
ralizations of Theorems B, D and E resp. The proofs of these theorems are
very similar to the original proofs. We can only obtain the generalizations of
the mentioned theorems under a restriction. Namely we have to assume that

lim inf P(4,) > 0.

N—>eo
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Theorem 1. Let A,, 4,, ... be a sequence of events for which
liminfP(4,) > 0

n-—»oo

and the limit
0.,( = lim _P(An ‘ Ak)

E=1:2 ..
Lael P(An) ( )

exists. Let the random wvariables a;(w) and n(w) (k= 1,2,...) be defined as
follows

ak(w)={1 7if (1)€Ak
0 if ogd,
and
)
n(w) = _P(Ak).

Then the events A,(n = 1, 2, . . .) are quasi-stable and the sequence n,(w) converges
weakly to a random variable A(w) which will be called the relative-density of the
sequence {A,}.

Proof. It is easy to see that the conditions of Theorem C are fulfilled
(if we substitute f, by #,) because 7, is an element of the Hilbert-space

12 {Q, P} for which
1 1t+e
Iy = = &
[ 76| mG) = Vlim infP(4,)

N—>oo

if k= ky(e), and

lim (nn’ nk) = lim :

P(A\P(A) Jan(w) a,(w)dP = lim P(4, 4y
n-—>e n-= P(A4,)P(4,)

—_——— =0y
fisree P(An) P(Ak)

Q

If B is an arbitrary event and

1 if wéeB
poy=1" 1 ¢
0 if w¢B
then by Theorem C we have

Rl T (nn,ﬁ)=(’1"3)=PdP
B

N—>oo P( n n—>oe

where 4 is the weak limit of #,. So we have proved Theorem 1.

Remark. A simple example shows that Theorem 1is not valid without the
condition lim inf P(4,) > 0.

N—>oo

The generalization of Theorem D will be given in Theorems 2a
and 2b.

Theorem 2a. If A, A,, . .. is a sequence of quasi-equivalent events with the
moments a,, 0, ... such that

liminf P(4,) = K > 0

n—>oo
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then there exists a distribution function F(x) defined on the interval [0, 1/K]

such that
1/K

o= | a*dF(x).
o

Proof. Let the quasi-density of the sequence 4,, 4,,... of quasi-equi-
valent events be A(w) and denote the indicator function of 4, by a,(w). Let us
put

Na(w) = (=12, =o)

and

I (‘11' ‘41'. SR ‘11'1;) i P -
e NG TRR SO — i, - -Ni d = i ECRTRC ir— 11 .
o I (Ai,) I (Ai,) s P(AE) _J Ni, Ni, Mig (i, 7, Nig—y» Mir)

Thus by Theorem 1 we have

oy = Hm (i, mi, - - - Ny M) = (M, N4y -+ - N s A = MM, - - - Niny b Mii,) -

ig—>oo
Applying the same argument again we obtain

o = Hm (1,7, - - N, A Mi) = M, - - - i A) -

gy —>°
Applying the same argument again k — 2 times we obtain that

1/K
oy, =P(d, 4y,. .. )= { WMw)dP = | z* dFy(x)
Q2 0

where F,(x) is the distribution function of A(®). (It is clear that P(0 < A(w) <
<1/K) = 1). Thus Theorem 2a is proved.
Theorem 2b. If A(w) is a random variable such that

PO o) <1/K)=1 and {Aw)dP=1,
Q
K is a positive number in the interval [0, 1] and a, is a sequence of the real numbers

Jor which 0 < a;, < K then there exists a sequence of quasi-equivalent events
A, A, ... such that

(1) P(4,) = a;

Pl Ao dg)
P(4;)P(4;) ... P4,)
Proof. Let us define a probability space Q as follows:
P=1Ixl,

where I, is the interval [0,1/K | and I, is the interval [0, 1]. Let the probability
measure P on Q be the product measure

= M) = q,.

P = u Xp,




ON SEQUENCES OF QUASI-EQUIVALENT EVENTS 79

where u, is the Lebesgue—Stieltjes measure on I, defined by the distribution
function F,(x) = P {4 < x} and pu, is the ordlnary Lebesgue measure on I,
To define the events 4, in 2 we need to define a set of polynomials

() B0 18 s P = 5% o)
as follows p{(z) = 0 and

P, (2) 2 (a,) o (1— alx)“’('h (azw)eg) (1— azx)“e('h o (a”x)‘s(’p (1 —anx)"‘('p

i1

if ¥ > 0, where &) denotes the /th digit in the dyadic expansion of 1 — =

more exactly

. n (])
1_?+1:28‘ (e, is 0 or 1).

Thus for instance

p(x) =
PP(x) = a,a,a,0
PP(@) = @,0,0,2° 0,0, (1 —ayz) = a,a,7*
PQ(x) = a,a,22+a,2(1—a,x) ax +a,x(1—a,x) (1—a,z) = a,x
PP(@) = a 24 (1—a,2) a,a5%
PP (2) = a @+ (1—ax) a,a,2%+ (1—a,x) 4,2 (1 —aux) = a,@ + (1—a,x) ayx
PP) = az+( l_alx) a@+(1—ax) (1—a,x) ax
)

The condition 0 < a, < K implies that p{(z)< pP(z) < ... < pfd(x) in
the interval [0, 1/K].
I\ow let B{®be the set of all points (z, y) of 2 for which p(")( j =

T

P (x) and let 4, be the union of the sets B}t") k=0 1.8, .. ,8" )
i e.
21y
An P 2 B}(n).
k=0

It is easy to verify that the events A4, are quasi-equivalent and (1) and
(2) hold.

Theorem 3. Let {A,} be a sequence of quasi-equivalent events for which
liminf P(A4,) = K > 0. Let A(w) be the quasi-density of the sequence {A,} consi-

de’;'g(; as a quasi-stable sequence. Then we have
®) Pld A, ... d ] =FPA P4, ... Pldg)—
= Pl 4] ... P(A, 13 (with probability 1)

Jork=1, 2, ...008 4 <, <:..<l
By other words the events A, are independent under the condition that the
value of A(w) is fized.
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Proof. First of all we prove (3) for k = 1. Let us put

a(w) = :
0it wg 4,
and
= ak(w)A
7 (@) P(4,)
Let us assume that
(4) M(nn’}‘) :1_*—8!1 .

Here ¢,(w) is a Baire-function of A by the definition of the conditional proba-
bility. Let ¢,(w) = g,(A(w)). Then we have

M(7,) = M(4) = M(M(5,[2)) = M(2 + &,) = M(4) + M(e,)
therefore M(e,) = 0 (n =1, 2, ...). Similarly we have

M(n,;) = M(4%) = M(An,) = M[M(4n, | 4)] =
= M(A(A + &) = M(A2) + M(4g,) .

Therefore M(4¢,) = 0. Similarly we obtain

11K
M) = [ 2"g(@)dFz) =0 (*=12,:..;2=12,...)
0

where F,(x) is the distribution function of A(w). (It is clear that 0 < A(w) < 1/K.)
The fact that the sequence {2"} is a complete sequence in the space L%, [0, 1/ K]
(the space of functions in the interval [0, 1/ K ] which are square integrable with
respect to the measure defined by the distribution function F,(x) (implies that

g.(2) is equal to 0 almost everywhere with respect to the measure defined by
F,(x), so we have

P, =0)=1 k=12 ...)
therefore
M, | 2) = 2
and
. 5) P(4,|4)=4P(4,).

The proof for k = 2 is completely similar to the above written proof. Let us put
M, |3) = 22 + & .
where ¢, is a Baire-function of 2. With these notations we have
M(n.2) = M(2%) = M(M(97, | 4)) = M(2* + &)
SO

M(sr'l:) =0.
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Similarly we have
M@mm) = M@23) = M) = M(M(n2;4 | 2) = M(A(22 + ¢;))) .
M(eyh) = 0

SO

and in general we obtain

Mz ") =0 (n=1,2;...) ie Plep=0)=1.
Therefore
M7 | 4) = 22
and

P(4; 4, |2) = 2P(4;) P(4,)

and using (5) we obtain (3) for k = 2.
The proof of (3) for any value of k is essentially the same.

Remark. From Theorem 3 easily follows that P|0 < 1 < - L — !

sup P(4,)

and that it is the best possible estimation follows from Theorem 2b.

§ 2. Some further properties of sequences of quasi-equivalent events

In this § we prove a strong law of large numbers for quasi-equivalent
events and we give the characterization of the tail of sequences of quasi-
equivalent events.

Theorem 4a. Let A, A,, . .. be a sequence of quasi-equivalent evenls such that

liminftP(4,) =K > 0.

Nn—>oco
Let us denote the quasi-density of this sequence by A(w). Then we have
P ! l = (Lk((/))

&5 ll(w)} — |
n P(4,)

where a,(w) is the indicator function of A,.
: 1
Proof. Let us represent the events 4,, 4,,...in the rectangle | 0, X X [0,1]

of the plane as we did in the proof of Theorem 2b. Then by the strong law of
large numbers we have
1 <y %@, Y)
B SHy — A()
n P(4,)

: ; 1 : ;
for every z,in the interval |0, z and for almost every y in [0, 1] (with
respect to the ordinary Lebesgue measure). So by the Fubini-theorem we have

n P(AI‘)

k=1

. il .
almost everywhere in the rectangle lO, E] % [0, L)

6 A Matematikai Kutaté Intézet Kozleményei VIII. A/1—2.
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The validity of the strong law of large numbers does not depend on the
concreterepresentation of the random variables, therefore the proof is complete.
By the same method it is possible to prove the following version
of Theorem 4a.
Theorem 4b. Let A,, A, ... be a sequence of quasi-equivalent evenls
such that
liminfP(4,) = K > 0.

n-—>o

Let us denote the quasi-density of this sequence by A(w). Then we hove
P -:Z«Z[ak(w).—z P(Ak)]ﬁo} =1
) k=1

where o, (w) is the indicator function of A,.
Theorem 5. Let A,, 4,, ... be a sequence of quasi-equivalent events for which
lim inf P(A4,) > 0. Let A(w) be the quasi-density of the sequence {A,}, considered

n—seo

as a quasi-stable sequence. Let us denote the tail of the sequence A, 4,, . . . by .
Then € ~ FH(1).

In the proof of this theorem we can follow the known method of the
proof of the zero-one law.

Proof. Let 4 be an element of the o-algebra «# and let ¢ be the class of
measurable sets # with the property that

P(AF |4) =P(A|A)P(F|2) (with probability 1).

Then according to our Theorem 3 ¢ includes the g-algebra %(4,, 4,, .. ., 4,)
(n =1, 2,...). This fact implies that .% includes the o-algebra .5(A4,, A4,,...)

and therefore 4 € (. So we have
P(4|)=P(A|2)P(4|2)
i.e. P(A|2) = 0 or P(4|4) = 1 with probability 1. This last fact implies that

there is a B € $H(A) such that P(4oB) = 0 and therefore there exists a o-
algebra %, C $H(4) for which .5, ~ £.

Let us define the random variable a,(w) (i = 1, 2, . . .) as follows:
1. if A
ao) =11 T O
0 if wgd,.

By Theorem 4 we have

L M—»A (with probability 1).

n &= P(4,)
It is clear that
% lim — M) C o
n—-e N — P(Ak)
ie.
B(A) C A£.

So the proof of Theorem 5 is complete.

(Received July 10, 1963.)
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0 KBA3U3KBUBAJIEHTHBIX IMOCJIEQOBATEJIBHOCTAX
COBBITUN
P. REVESZ
Pe3ome

[TocietoBaTesIbHOCTL coObITHI Ay, A,,... Ha3biBaeTCs KBa3UIKBIBAJIEHTHOIT,

ecJIM 3HaueHue Jpodu
P(4,4;, ... 4;)
PlA P - .. Pl4,)

5%

3aBUCUT JIMLIb OT K U He 3aBUCUT OT UHJIEKCOB &y, &y,. . ., ;. Y BrOJHe He3aBUCHU-
Mbleé COOBITHSI, U 9KBUBAJIEHTHbIE COOBITHS, 0YEBU/IHO, KBa3UIKBUBAJIEHTHBI. [{ennb
paboThl MCCJIe0BATL CBOMCTBA MOCJIE0BAaTeIbHOCTEl KBA3MIKBUBAJIEHTHBIX CO-
ObITHIL.

OCHOBHBIM pe3ysibTaToM paboThl siBJsieTcs cieayromuit: IlycTb KBasu-
9KBUBaJIeHTHBIe coObITusi A, 4,,... onpejiesieHbl Ha noNe BeposiTHocTel {2, ., P}.
[Tpeanonoykum, 4ro

(1j =4, ecnu A j = 1)

liminf P(4,) > 0,

TOT/Ia CYLIECTBYeT ciyuaiiHasi BelnunHa A(w) Takasi, 4To
; P(4,4, ... 4,|A(w))=2P(4,)P(4.)... . P(d,)=
(1) = P4, | P(4,]|2) ;.- Pld,| 4.

. {nZP(A }_1

rjie o (w) MHAMKaTopHasi QyHKUUs coObiTusi A,

(3) I (4, 4pys ) = ()
rne B4, 4,,,,...) obosHauyaer oc-anreGpy NOPOK/IeHHYW CcOObTHAMUH A,
A4y, .., a H(A) obozHayaer o-anre6py MOPOXKJIEHHYIO CIIyYaiiHOM BeJMUYNUHOM

A(w). I1Be o-anreOpbl CUMTAIOTCS pPABHBIMK, ecliM J000# 9JIeMeHT OHOM 13
HUX OTJIMYAETCSI OT HEKOTOPOIO 93JleMeHTa JAPYroi JMLIb HAa MHOYKECTBE Mepbl
HYJIb U Hao0opoT. Popmysty (3) MOYKHO paccmaTpuBaTh Kak 0000lleHle 3aKOHA
HYJIS U eAMHULBL.

6*
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