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§ 1. Introduction

1. Let w(0) be a non-negative function of the class L(0,2xr) which is not
a zero function. It is convenient to interpret it as the weight function of a
distribution w(0)d0 on the unit circle z = ¢ . More generally we may consider
an arbitrary distribution (measure) da(0) on the unit circle; in what follows,
however, we restrict ourselves, for the sake of simplicity, to the previously
defined case, i.e., to the case when ¢(60) is absolutely continuous.

It is well known ([1], chapter 2; [2], chapter 11)? that a uniquely deter-
mined system of polynomials {g,(z)} can be formed which is orthonormal on
the unit circle with respect to the given distribution; more precisely,

(a) pu(2) = &, 2" ... +1, is a polynomial of the precise degree n;
Kni=40;

T

(b) 2L J Pn(2) om(z) W(O0)dO = 0,,,, 2z == €% n,m=0,1,2, ... .
7

In the following we shall use the standard notation in (a).

In an analogous manner we may consider a weight function W(z) (not a
zero function) on the real interval —1 < x < 1, and form the uniquely deter-
mined system of orthonormal polynomials {p,(x)} defined by the following
conditions:

(@) pu(x) =kpa™+ ...is a polynomial of the precise degree n; k, > 0;

1
(). [ pal) plee) Wiw) dat =8 Bm=0,1,9,,.:
-1

A simple and useful relation exists between these two classes of ortho-
normal polynomials ([2], 11.5). We assume that the weight function w(0)
of the unit circle is even, w(—0) = w(0). We further assume the following
relation between the weight functions w(0) and W (x):

(1) w(0) = W(cos ) |sin 0],
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or in another form, w(0) d0 = W(z) | dx | where x = cos 6. The meaning ot

the last condition is obvious; it expresses the invariancy of the mass elemenf

in the transition from the upper (or lower) semi-circle to the interval.
Under the condition (1.1) the following identities (1.2) hold:

pa() = (2m)-112 {1 + %]_”2 (7 @an(2) + 2 Pyalz—1)) =

2n

= (2m)~12 [1 el kﬁ]_llz (z_”+1 @Pyn—1(2) + 2771 ‘Pzn—1(z_1)) >

2n

1.2)
V(1 Iy )2 gy(z) — 2" ganlz)
)= |= 1___22 2n 2n St
Rl (nJ ( kzn] z—z7!
. (g 12 (1 L b)) — (5 bt
7 ks, 2—z1 : 2

Here {p,(2)} and {p,(x)} have the same meaning as above and {g,(x)} desig-
nates the orthonormal system associated with the weight function (1 — 2?)W ()
on —1 < x < 1. These relations can be used for the calculation of the systems
{pn(®)} and {g,(x)} provided the system {g,(2)} is known, as well as for the
solution of the inverse problem. Indeed, ¢,(z) can be expressed as a linear
combination of two appropriate polynomials of the systems {p,(x)} and
{¢.(®)}; we observe also that each function (1 — 2?) ¢,,_,(2) is a linear combi-
nation of p,_,(z), p,(x) and p, ,(x) [cf. 2, 2.5].

2. The purpose of the present investigation is to extend these relations
to the case when the weight w(6) is not necessarily even. In this more general
case it is convenient to introduce a certain bi-orthogonal system of trigono-
metric polynomials which are orthogonal with respect to the given weight
w(f). They represent natural generalizations of the simplest bi-orthogonal
trigonometric system, namely {cos 20, sin n0}, corresponding to the weight
w(f) = 1. The trigonometric polynomials thus defined depend only on w(6).
They can easily be expressed in terms of {p,(z)} and {g,(x)} in the case when
w(f) is even. From this point of view they appear as certain generalizations
of the orthogonal polynomials on a finite interval.

We shall study the principal properties of these trigonometric polyno-
mials systematically; some of these properties are of algebraic (formal) charac-
ter, some others are of the transcendental (asymptotic) nature. One instance
of the latter kind is the question of the asymptotic behavior for large values
of the degree and the connected expansion problem. This expansion of an
arbitrary function in terms of the bi-orthogonal trigonometric polynomials,
represents a very natural generalization of the classical Fourier series.

3. A trigonometric polynomial of degree n with the highest term
a cos n - a’sinn@ is called of the precise degree n if the constants @ and
a’ are not both zero. Two trigonometric polynomials A4(0) = a cos nf +
+a’sinnd + ..., B(@) =bcosn) +b"sinnd + ... of degree n are called

’

linearly independent if the determinant is not zero. As a consequence,

A(0) and B(0) must be of the precise degree n.
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Given the weight function w(f), we define the corresponding biorthogonal
system of trigonometric polynomials {4,,(0), B,(6) } by the following conditions:
(a) 4,(0) and B,(0) are linearly independent trigonometric polynomials
of degree n;
(b) they are orthonormal in the following sense:

1 1

L (404 6 woydd=-" (B (6)B (6)wb)dd =5,

%J A(0) 4,,(0) w(0) d 2nj W(0) B,o(0) w(0) d0 = 8,
(1.3) .l —a

k3 J A,(6) B,(6) w(0)d9 =0, nym=0,1,2,....

2n

The system {4,(0), B,(0)} is of course not unique; the most general
system of this sort arises by multiplying each vector (matrix) (4,(0), B,(0))
with an arbitrary 2x 2 orthogonal matrix O, with constant elements depend-
ing on n:

(Aﬂ(o)’ Bn<0)) 2 On ”

As mentioned above we may replace w(0)df by an arbitrary distribution
do(0).

4. The trigonometric polynomials under consideration can be obtained
by a straight-forward application of the Gram-E. Schmidt process. Another
way of generating them is a simple relationship which permits us to derive
the bi-orthogonal system from the polynomials {p,(z)} defined in 1. The
resulting formulas are generalizations of the identities (1.2) to which they
reduce when w(0) is an even function, w(—~0) = w(0). In this case the bi-ortho-
gonal trigonometric polynomials can be expressed in terms of the polynomials
{pn(2)} and {g,(x)} which are orthogonal on the interval —1 < x < 1. Another
interesting specialization appears when w(6) is the reciprocal of a positive
trigonometric polynomial.

There is a simple recurrence relation satisfied by the bi-orthogonal
trigonometric polynomials, generalizing the classical difference equation
satisfied by the polynomials orthogonal on the real interval —1 < z < 1.
Also the location of the zeros of the bi-orthogonal trigonometric polynomials
is studied together with a formula for a mechanical quadrature.

In the further course the finite kernel function of the bi-orthogonal
system is introduced and its relation to the finite kernel function of the system
{p.(2)} is discussed.

This terminates the part dealing with algebraic properties. So far as
asymptotic theorems for the trigonometric polynomials are concerned, they
can be easily deduced from the corresponding results on ¢,(z); the same
holds for the equiconvergence theorem of the ,,Fourier expansion”.

In a short closing section we deal with a corresponding system of surface
harmonics which are orthogonal on the unit sphere with respect to a given
distribution on this sphere.

5. The relationship between the three orthogonal systems defined above
can be described as follows:

The transition from 4 to B is given by the formulas (1.2); the weight
function is even.
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The transition from A4 to C is given by Theorems 1 and 2 of Section 3;
the weight function is arbitrary.

The transition from C to B is obtained when the weight in C is even;
the suitably normalized bi-orthogonal trigonometric polynomials are in this
case pure cosine and pure sine polynomials, respectively, and for cos 0 = @
they yield the polynomials of the type B.

A : orthogonal polynomials
on the unit circle

B : orthogonal polynomials C : bi-orthogonal trigono-
on the finite interval metric polynomials

6. Section 2 contains certain preliminaries on trigonometric polynomials
in general and on the polynomials orthogonal on the unit circle (cf. 4). In
Section 3 we describe the generation of the bi-orthogonal system and the
transition from 4 to C. Section 4 deals with a generalization of the recurrence
formula well known in the case B. In Section 5 we discuss the location of the
zeros of the bi-orthogonal trigonometric polynomials and the associated
mechanical quadrature. In Section 6 we define the finite kernel function.
In Section 7 we deal with some special cases and in some generality with the
asymptotic behavior of the bi-orthogonal trigonometric polynomials and of
the kernel function. In Section 8 we prove an equiconvergence theorem.
Finally, in Section 9 we define the space analog of C, namely the linear com-
binations of surface harmonics orthogonal on the unit sphere with respect
to a given distribution.

§ 2. Preliminaries

1. An expression of the form
ay+ 2 (@, cos 0+ b, sin 0) + 2 (aycos 20 + bysin 20) +-. . . 4 2(a, cosnb 4- b,sinnb

with real coefficients a,, b, is called a trigonometric polynomial of degree n.
It is of the precise degree n if a, and b, are not both zero. The well known
special cases are the cosine and sine polynomials.

Let A(0) and B(0) be two trigonometric polynomials of degree n. They
are linearly independent, if and only if each element of the linear manifold
2 A(0) + u B(0) is of the precise degree n, unless 42 and u are both zero. This
is equivalent to the definition in 1.3.

In what follows we shall consider certain systems of the form

Ay(0); {A,(6), Ba(0)} n=123,...,
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where 4,(0) and B,(0) are of degree n and linearly independent for each n.
Every trigonometric polynomial 7'(0) of degree n can be written in the form

T(6) = 20 A44(0) + 24,4,(0) + py B1(0) + . .. + 2,4,(0) + p,B(0)
where the constants 4, A, u;, ..., 4,, p, are uniquely determined. Indeed
we can find unique 4,, p, such that
T(G) e (ln“{ln(e) I luan(a))
will be of degree n— 1.
2. A trigonometric polynomial 7'(0) of the precise degree n has exactly
2n real or complex zeros 0y, 0,, ..., €, provided we count the zeros as usual

with their multiplicity and we restrict ourselves to the strip —z < Re(0) < .
Let o and f be arbitrary constants; then

i g — P
2 2
represents a trigonometric polynomial of the first degree. The trigonometric
polynomial 7'(6) considered above can be written in the following form:

no 0—0, , . 0—0
T(0) =c JJ sin L= 2, =0,
r=1 2 2
This representation is of course not unique.
Let 7'(0) vanish for given values 0 = oy, 0,, ..., a,,, m < n; we form

the trigonometric polynomial

U(6) = ]ml sin b—apy sin i
y=1 2 2
of degree m; then 7T'(0) is ,,divisible” by U(0), i.e., a trigonometric polynomial
V(0) of degree n — m can be found such that 7'(0) = U(0) V (0).
3. Let
g2) =¢y -2+ ... 2t

be a rational polynomial of degree n in z with arbitrary complex coefficients.
We say that

g*R) =2"gz" ) =c,+ Ch12 + ... + 2"

is reciprocal to ¢(z). If {z,} are the zeros of g(z), those of g*(z) will be {z;1}.
(The modification necessary for z, = 0 or oo is obvious.) A polynomial ¢(2)
is called self-reciprocal, or briefly reciprocal if ¢(z) = g*(z), i.e., ¢, = ¢,_,.
Let T'(0) be a trigonometric polynomial of degree n; then 7'(0) = z=" G(2)
where (G(z) = G*(z) is a reciprocal polynomial of degree 2n, so that 7'(0) =
—a= M Glz) = Ger )=l

4. Theorem of L. Frsir and F. Rriesz. Any trigonometric polynomial
T(0) which is non-negative for all real 0, can be written in the form |g(z) |?, z = €™,
where ¢(z) is a polynomial of the same degree as T'(0). This representation of T(0)
will be unique if we subject g(2) to one of the following two conditions:

(a) g(z) =0 in |z | <1; ¢(0) is real and positive;
(b) g(2) =0 in |z | > 1; the leading coefficient of g(z) is real and positive.



260 SZEGO

Conversely, if g(z) is any rational polynomial, the expression |g(z) 2
z = e, represents a trigonometric polynomial which is non-negative for all
real 0.

5. Finally, we note a few basic properties of the orthogonal polynomials
{pn(2)} defined in 1.1 (cf. [1], chapter 2; [2], chapter 11).
(a) The polynomial ¢,(2) is determined (except for a constant factor)
by the following property:

§ #a(2) &) w(®) &9 =0 2=,
where ¢(2) is an arbitrary polynomial of degree n — 1.
(b) The polynomial

=

i > 9,(0) 9,() = 8,(0, 2)
v=0
is called the kernel polynomial of degree n. It has the reproducing
property:
1 s b _
| suta 2 g wi®)d = q(@ 2= et
2n

—n

where ¢(z) is any polynomial of degree m. This kernel can be rep-
resented as follows:

) — (@) PE1C) = Pnn(®) Pra(a)

(2.2) $n(t, 2 R
1—az

(¢) From (2.2) we conclude easily the identities where k, and [, are
defined as in 1.1:

(2.3) { knz (Pn(Z) 5
kn (pn-i-l(z) T

kn—!—l (Pn+1(2) - ln+1 (}7ﬁ+1(2) ’
kn+1 Z(Fn(z) + ln +1 (fﬁ(z) 4

(d) We have

n

2.4) SlpE=k2.
0

Y=

(e) All zeros of ¢,(2) are in the open unit circle |z | < 1.

(f) Let w(6) = 1/h(6) where h(0) is a positive trigonometric polynomial
of the precise degree h. Representing h(6) in the form | g(2) |
z = € where g¢(z) is the (uniquely determined) polynomial of degree
h with all its zeros in |z | < 1 and such that its leading coefficient
is real and positive, we have

(2.5) Pa(z) = 2"""g(2) , nzh:
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§ 3. Construction of the bi-orthogonal system

1. Let w(0) be a given weight function characterizing a distribution on
the unit circle. We define a linear function space by the following scalar
product and norm:

14

e
(3.1) o= | 1090 w0 D,
IfI2 = (f, )

Here w, f, and ¢ are such that the integrals occurring exist in the Lebesgue
sense and w is not a zero function.
With this metric we orthogonalize the elementary functions

1, cos 0, sin 0, cos 20, sin 20, ..., cosnb, sinnf, ...,

arranged in a linear order, according to the Gram—E. Schmidt process. This
leads at once to certain trigonometric polynomials 4,(6), B,(0) having the
property described in 1.3. The matrix of the leading coefficients in A4, (0),
B,(0) has the form

a 0]

i)

where a and b’ are different from zero. The most general system of this kind
arises by the formula

A,(0) cosd — B,(0) sin 6, + (A4,(0) sin 6 + B, () cosd),
where 6 = 0, are arbitrary real constants. In what follows we shall describe

another way of generating the same bi-orthogonal systems, based on the
polynomials {¢,(2)}.

In the special case when w(6) is even, the functions defined by the
Gram—E. Schmidt process are obviously cosine and sine polynomials, respec-
tively.

2. We prove the following

Theorem 1. Let {¢p,(z)} be the orthonormal system of polynomials associated
with the weight function w(0), ,(0) = 1,. Let the angle v,, be chosen such that
exp(—2¢ y,,) « Loy, 28 7eal. The trigonometrz’c polynomials f,(0) and g,(0) defined by

(3.2) exXp (— t¥ap) - 27" Pon(2) = fr(0) + ig,(0), z2=¢e%n=0,1,2, ...,

satisfy the orthogonality (but not the normalization) conditions (1.3).
Thus multiplying f,(6) and g¢,(0) by appropriate constants, we obtain
another generation of the bi-orthogonal system. We have

) 2O = XD (< 7 5 D) + X (7)), |
2 ”‘gn(e) = exp (_ i‘yZn) " <P2n(z) — exXp (7:‘}/2,,) = ¢2n(z—1) ’ g=e",

We note that y,, is determined mod(n/2) provided I,, = 0. If 1, = 0, y,,
is arbitrary. The different choices of y,, (y,, + @/2 and y,, + 71) cause only
unessential changes of the vector (f,(0), ¢,(0)).
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The proof is immediate. Indeed, any trigonometric polynomial of degree
n—1 is a linear combination of the functions 2> =¢e" —n -1 <1 <
< n—1. Now

1
5n | # Panle) ) 20 =
2n

-7

w
1
x.

— j Fan(2) 2" w(6) 9 = 0,
2qv

Here f,(6) and g,(0) are orthogonal to any trigonometric polynomial of degree
n— 1. Further we form

_7; J (exp (— i’yzn) 2" (p2n(z))2 ’w(@) df = anHZ T Hgan = 2i(fn’ gn)’ = em'

In view of the orthogonality this integral is

3 1 amn
= exp (— 2%yy,) - E; Pan(2) 272" @yn(2) w(0) dI =

- 1 ;
= exXp (— 29¥2q)" = Pan(?) lyp 272" w(0) dB =

!
]

g b i
= exp (— 21¥,,) * kZ—— + |k2 |
2n 2n

S0 tha‘t (fm gn) =0 and |!fn“2 e HgnH2 = i ‘l2n]/k2n' AISO’ an“z + HgnH2 ==
so that

Il = ( ZZ‘) gl =2(1¥Z22:'J

Let us choose y,, such that the upper signs hold. The trigonometric polynomials

4,(0) = 21/2(1+ ']?"‘ J_'fn(0)=

2n

L.1\-1/2 ) ) Tl
_ g [1 T ';—'] (6XP (—8741) - 27 Panle)+6xP (i727) - 2 FanleD)),
2n

3.4
( ) !l2n| \—]/2

e J 9.(0)

B0) = 211

I, |12 , : : -
— g1 [1 ks 'k—'] « (e (= $72,) 5 P ()~ XD (70 Fanle=Y),
2n

2=4",
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form then a bi-orthogonal and normalized set. We note that

21/2 exp (— 7:Vzn) g (P2n(z) G

(3.5)
IZZnI i . [fan] |2 i
[+ 2 o i - 2 B, a=en.
kyn “on
If exp(—2¢ vy,) lyn = — | by, |, the normalizing factors in (3.4) and

(3.5) have to be modified replaclng |l | By — | Ly |-

. In the first identity (2.3) we replace n by 2n — 1 and we obtain the
following formulas in which the same symbols are used as in 2.

Theorem 2. For each n

exXP (— 1¥zn) "2 7" Pan—1(?) =
— (= + B s 4 s o £ - 0,

) kzn k2n 2n an
[Zan| J”Z( S
gllie. LY L dm b
[ k‘.zn + k2n ] f( )

= exp (_ 7:72") e q)Zn—l(z) -+ exp (H/Zn) i (?52”_1(2_1) ’

12 =0
[1+ 112,,|J/ (1_ [zznlj R
an 2n
— eXD (— 7a) - 2" Pany(2) — XD (i7g)* 2 Ppma(27Y),
212 0xp (— 73n) 21" Pans(2) =
I} 4 (0 4 i Pt -
——-[1——") An(0)+z|1+,:—") B,(0), P
2n

2n
Indeed, z = e,
kyn—12'7" Pan—(2)=
= kon 27" an(2) — Uy, 2" Pon(z™h) =
= kyp ©XP (1720) - (fn(0) + 19n(0)) — L, €XP (— i755) - (fn(6) — ig4(0))

and
kzn — exp (_ 2 1:72n) 3 lzn o an oW IIZn[
Ky (g — [l
Ky + xp (— 2 693,) e i kon + [l
- (k3n — [lanl? /2 ‘

Here we used (2.4). Again we assumed that exp(—2i7y,,) b, = |b, | If

2
exp(—2i yy,) + by, = — | Iy, |, the normalizing factors in Theorem 2 must
be modified as in 2.
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§ 4. Recurrence relations
1. In the second identity (2.3) we replace n by 2n and obtain
Kon2™ Qon11(2) = kop 112 27" Pon(2) + lyn 112" Pan(277)
so that in view of Theorems 1 and 2:
Ky €XP (1¥3n+2) * (Pnfn+1(0) + 14,9041(0)) =

= kyn 41 2 €XP (172,) - (fn(0) + ig,(0)) +
+ lont1 ©XP (— 173) - (Fr(0) — 19,(0)) =
= K412 XD (i720) - (fa(0) + iga(0)) +
+ lon+1] €XP [#2¥2n41 — V20)]* (Fal0) — i9,(6)) »

where
(41) pn = gt = [ Lantal/ Fants
1 + .1211+2[/k2n+2;
and
eXP (— 2 173n+1) * lant1 = [lana » z=¢".

Hence we conclude the relations

EonPnfnt1(0) = (Egpyy cos (0 4 6,) 4 |lan44] €08 07) fr(6) +
+ ( 2n+151n (6 + o ) I }l2n+l} sin 6;1) gn(o) 5

(4.2) \
k?nQrzgn+1( == (k2n+1 sin (9 + 5 ) + ‘;l2n+1‘ Sill ()r,l)fn(e) +
+ (k2n+1 cos (9 + 0 ) I 2n+l‘ co8s o; )qn(e) ’
where
(4.3) 0, = Yan — Van+2s On = 2¥an41— Yan — Van+2 -

It is easy to transcribe these relations into some others between the normalized
functions A4,(6), B,(0). Here we have chosen exp(—2i yy,40) lonqs and
exp(—24 Yg,41) * bnyy to be positive (= 0) and exp(—2i y,,) - L, real. In the
case when the first of these three quantities is negative, p, and ¢, must be
interchanged; when the second quantity is negative, |l,, ;| must be replaced

b‘ i l Z2n+1 l " 4 .
The relations (4.2) can be written in the matrix form

,(0) bn(9)]

(4.4) (fr41(0); 9n41(0)) = (£2(0), 9n(0)) c,(0) d,(0)

where the elements of the 2x 2 matrix are trigonometric polynomials of the
first order.

A typical instance is the trivial case w(f) = 1; the recurrences assume
the form

(4.5) {cos(n—{—1)0:cos@cosn@—sin&sinnO,

sin (n + 1) f = sin 6 cos n6 + cos 0 sin n0 .
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2. The special case when w(6) is even, w(—0) = w(6), is of particular
interest; the recurrences (4.2) become then the classical recurrence relations
for orthogonal polynomials of a finite real interval. Indeed, in this case all
coefficients of the polynomials ¢, (z) are real, thus [, isreal. We choose y,, = 0
for all », so that f,(0) will be a cosine and ¢,(0) a sine polynomial. Also we
choose p,,., = 0 or z/2 according as l,,,, is positive or negative. We have
then the relations

(4.6) . { kanPrfns1(0) = (kan sy €08 0 4 Loy 1) Fa(0) — kpngy 8i00-9,(0) ,
k2nQn gn+1(6) = k2n+1 sin 6 fn(e) + (k2n+l cos § — l2n+1) gn(a) ’

1 _l2n+2/k2n+2 e
1 + l2n+?/k2n+2

From the first equation we derive

== k2n+1 sin - gn(a) = anpnfn-H(O) = (k2n+1 cos 0 + Z2n+1) fn(o) ’
— kyntg 8N 0-g,11(0) = KypiaPnirfnra(0) — (Kanys 0080 4y 5) fri1(0) -
Combining this with the second equation (4.6) and taking the identity

pn=q;1=[

2
k2n+1 cos f o l2n+1 — % Yo, lZn+1
T 2nd1

k2"+1 k2n+1

kyn 18020 4 (kypyy CO8 0 — lypyy)

into account, we obtain a recurrence of the classical type

fn+2(0) == (rn cos 0 i Sn) fn+1(0) + tnfn(o)

for f,(0). Similarly, we can derive a recurrence for g,(6).

§ 5. Zeros. Mechanical quadrature

1. We use the previous notation and prove

Theorem 3. Let a and b be real constants, not both zero. The trigonometric
polynomial af,(0) + bg,(0) has real and distinct zeros. The zeros of f,(0) and
g,(0) are interlacing each other.

More generally, the zeros of

an(e) Sk bgn(e)r v bfn(a) S agn(o)

interlace. The assertion is an immediate consequence of the argument prin-
ciple applied to the rational function

(@ — ib) 6XP (— 772n) * 27" Pan(2) = W,
which has a pole of order n at the origin and 2n zerosin |z | < 1. (The modi-

fication is obvious if z = 0 is a zero of ¢,,(z).) Hence the index number of
the curve described by w as [z| =1, is 2n — n = n. Consequently every
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half ray issued from the origin w = 0, will be intersected by this curve at least
n times in such a manner that the argument of w at the point of intersection
is increasing. Choosing for these rays the real and imaginary semi-axes, we
obtain at least 2n, hence exactly 2n zeros for both trigonometric polynomials
n question. The interlacing property will be obvious also.

2. Theorem 4. Let us denote by 0, 0, . . ., 0,, the zeros of the trigonometric
polynomial af, (0) + bg,(0) defined in Theorem 3. There exist certain positive
constants 2y, Ay, ..., Ay, such that for any trigonometric polynomial T(0) of
degree 2n — 1 the following identity holds:

T

1 2n
(5.1) = J T(0) w(h) d — 21 2,70,).

—3JT

The proof follows the classical pattern. We write «(0) = af,,(0) + bg,(6)
and form the expression

2n 2
wo) = 1, (»_ Sl ) :
v=1

20y o ———

Here u’(0,) == 0. Let u be any value different from »; there exists a trigono-
metric polynomial »(6) of degree n — 1 such that

u(f) = sin ——~ sineae”-v(ﬂ),
2 2
so that

o 2

(9) 2 (Sine 20#)
% ”
o =BT e (o0

2u'(0,) sin 5 Y

Hence A(0) is a trigonometric polynomial of degree 2n — 1, and obviously
h(0,) = T(0,). Consequently, 7(0) — h(5) = wu(0) v,(0) where v,(0) is of degree
n—1, so that

[ (T(6) — h(6)) w(B)d) =0.
Writing

—n

e i J ( ) ‘)zw(e) a9

’ oo iffns v
2u'(f),) sin 5

the assertion follows immediately.
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§ 6. Kernel function

1. We define the finite reproducing kernel function of the bi-orthogonal
system by

(6.1) Ag(a) 4y(0) +

k/ﬂ

(Au(a) ‘4v(6) + Bv(a) Bv(e)) = Kn(aJ 6)

=

where o and 0 are real variables. Obviously, each term A( ) 4,0) +
-+ B,(a) B,(6) will be invariant if we multiply the vector (4,(6), B,(0)) by an
arbltrarv orthogonal matrix with real constant elements. Thus K. (0,:0)
depend% only on the weight function w(6) (and, of course, on «, 0, n).

The kernel function possesses the reproducing property

(6.2) 4 J K (o, 0) - 1(6) w(0) 46 — 1(ar),
27

where #(0) is an arbitrary trigonometric polynomial of degree n.

2. Theorem 5. Let s,(a, z) be the kernel function associated with the system
{pn(2)}; let a = e z=¢"® We have the identity

(6.3) K, (a,0) = (az)" 8y,(a, 2) .

Thus, the right-hand side is real. This follows also from the identity
83n(@, 2) = (@)™ 8,,(271, @~ ) [ef. 2, (11.3.4)] for |a|=]|2]|=1.

For the proof of (6.3) we verify that the right-hand expression has the
reproducing property. We choose #(0) = z* = ¢ where » is an integer,
—n < v < n. We have, using the reproducing property of s,,(a, z):

<

2n 2n

J " Son(a, ) - 1(0) w(0) db = X, Ja" Son(@, 2) - 2% w(0) d =

3. Combining Theorem 5 with (2.2) and with the last formula in Theorem
2, we obtain a closed form for the kernel function (6.1). Indeed,

oK. (a 0) — (aE)"—l q’;n—l(a) ‘p;‘n—l(z) Lz (pzn—l(a) (P2n_1(2) 28
Rl 1 —az

(a2)" 12 @y,_4(a )‘Pzn 1(2) — (a2)"~ I/Z%n 1(@) Pan—1(2) =
(az)12 — (az)'i2

= Im {(@2)" 12 @y, 1 (@) Pon—1(2)}
Im {(az)'2} '
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Writing 2r, = 1 — |, |k, 28, = 1 + |1, |[ky,, we find
Im {(ﬁz)n—l/2 Pan—1(2) ¢2n—1(2)} =
= Im {(@2)'2 (r}2A,(a) + is¥2B,(a)) (ri24,(0) — isk2B,(0))} =

—%(4,(6)B,() — 4,(@)B,(0)) +

U
= (r,8,)2cos

tain P =% (. 4,(a) 4,(6) + 5,B.(@)B.(0)).
so that
k G —
K,_y(a, 0)=; 211 otg = (4, (@) B,(0) — A,(0)By(c)) —
(6.4) i

e (rnAn(a) n(e) i San(a)Bn(e)) 2

Here we used the formula

k3 k

2n

(6.5) D« Da, =] on? [ ik 1J ;

2n

which is a consequence of (2.4).

§ 7. Special cases; asymptotic behavior

1. Let us con81der the special case defined in Section 2.5 (f): w(0) =
= 1/1(0) where h(0) = [g(z) [, z = €”, is a trigonometric polynomial of the
precise degree h; g( z) is a polynomial of degree h, all zeros of which are in
|z| <1, and g(z) has a positive leading coefflclent

We assume that 272 — 1 > h. In view of (2.5) we have l,, = 0 so that
Von = 7 1s arbitrary. We have by the last formula in Theorem 2:

(7.1) 9112 ¢~i7z1~hg(z) — A (0) + iB,(0), 2= e,

Here y is arbitrary real. Formula (3.5) yields the same result, and in addition
also the case 2n = h; we have then [,, = [, = ¢(0) and y is defined as in
Theorem 1.

2. Now let w(0) be a positive weight function defined on the unit circle
and satisfying the Lipschitz-Dini condition

(7.2) [w(0 + 0) —w(0)| < Ll|log |~

where L and 1 are positive constants. This case was considered in [2], chapters
10, 12 and 13; we refer here to those results which are relevant for our
purposes.
There exists an analytic function D(z) regular for | z | < 1 and continuous
for |z] < 1, such that w(6) = | D(¢”) [*. By the additional conditions D(z) %0
n|z| <1 and D(O) > 0, this function is uniquely determined.
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For each n there exists a polynomial k(z) of degree n — 1, h(z) 5= 0 for
|z | =1, such that A '
(7.3) |D(z) — (h(2))7| < Q(log n)~*

uniformly in |z | < 1 [ef. 2, (10.3.12)]. From this we conclude [cf. 2, (13.7.4)]
that

(7.4) |D(ei®*+9) — D(e®)| < L’|log é|~*.
Finally we have [2, Theorem.l2.l.3]
(7.5) 7a(2) = (D@} + £,(2), |en?)] < Cllogn)~, 2= e,

Here @ and C depend only on L, 2, and on the minimum and maximum of
w(9). We have, z = e,

n

b= 51; f Pal2) dO = 2%, [ (D)}~ d9 + O[(log n)~*] =

(7.6)
L. J [{D@)}— — h(z)] @6 + O[(log n)~*] = O[(log n)~*] .

Thus we find from (3.5) that for n — oo, z = €,
(7.7)  4y(0) + iB,(0) = 212 exp (— iyyy) -2{D(2)} ™ + Ol(log m)~] . *
We conclude that 4,(0) and B,(6) are uniformly bounded as n — oo. Another
important consequence is that for a = ¢, z = ¢, we have
1 Ky
2 an

(1.8) = P I () — B, () (4,00) + iB,(0)} =

2n

- (An(a) Bn(e) s An(o) Bn(a)) =

— M1ty fexp [in(0 — )] [D(@)]~* [ D@ + O [(log m)~],
a =eia’ Z=ei07

since k,,_,/k,, is bounded. We note also that in view of (2.4) and (7.6)

Kan—y

(7.9) =

=1+ O([l,,]?) = 1+ O[(log n)™*] .

This formula will be used later.

41t would be possible to make more precise statements about the constants
occurring in the various remainder terms. For the sake of brevity we omit these details «

2 A Matematikai Kutato Intézet Kozleményei VIIL. A/3.
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§ 8. Equiconvergence

1. Based on the previous preparations we prove now the following:

Theorem 6. Let f(6) be an arbitrary bounded and measurable function.
We denote by

l k14
8.1) = Jf(e) K, (a, 0) w(0) do

-7

the n'* partial sum of the expansion of f(0) in the generalized Fourier series
proceeding in terms of the bi-orthogonal trigonometric polynomials associated
with the weight function w(6). Here w(6) satisfies the Lipschitz-Dini condition
(7.2) with 2 > 1.

We denote by

. n sin(2n+1)0_Ta
8.2 n=— 0 ~——db
(8.2) B e
— gin -———
2

the n'™ partial sum of the ordinary Fourier series of f(0). Both s, and s;, are taken
at 0 = o. Then

(8.3) lim (s, — sj;) = 0.

N—>oo

2. We make first some preliminary observations.
(a) As remarked in Section 7, A4,(0) and B,(0) are uniformly bounded
as n— co. By Riemann’s Lemma

T

lim ff(@) w(0) 4,(0)d0 =lim  { f(0) w(0) B,(0)df = 0.

NnN—>c —n Nn—>oc —7n

The assertions

(8.4) lim (s,,_; — &) = lim [sn_l _ Fna =0

N—>oo N—>oco on

are equivalent with (8.3) since s;, = O(log n) (Lebesgue constants)
so that in view of (7.9), 24 > 1, we have

’{;2”_1_1]3;:0(1), as n —» o<,
ko,

We shall use (6.4). The contribution of the second term of (6.4) to
$,_1 tends to zero.

(b) We assume that |0 — o | < &/n where ¢ > 0 is independent of n.
The expression (7.8) as a function of 0 is uniformly bounded;
hence, by S. Bernstein’s theorem, its derivative is O(n), so that
the corresponding parts of the integrals (8.1) and (8.2) are equal
to €-0(1/n)-O(n) = &-0O(1).
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(c) Let |0 — a | = ¢/n. Taking (8.4) into account, the first term in the
last expression of (7.8) will yield:

(8.5) —217ij(0) Im {exp [i(n + 1/2) (0 — )] (sin g ; a)—l X
D(z) 0—a

—1]}d0,a=ei“, z=é",

exp [— (0 — a)/2] cos
X | Dia) pL[—( )/2]
where we integrate over |0 — a | > ¢/n. Now by (7.4)
D(z) =4
ot L S TR R
e [ftog o —
and

0 —a|~1-|log |0 — a||~*
is integrable. The same holds for

sin

= ]_1 [exp [— (0 — a)/2] cos g

22

— o)1 o :

sinO—a Bﬁ—zlexp [— (0 — a)/2] cosa a——lJ
2 D(a) 2

is integrable. Adding now to (8.5) the same integral extended over

[0—a| < g/n, the added part will be

0(1) - s |0 —a|~1:|log (6 — a) |~*d6 = O[(logn)'~*] = o(1) as n—> oo,
|0—a|<en
since 2 > 1. Using Riemann’s Lemma, the total expression (8.5) (ex-
tended over the whole period —z < 0 < x) tends to zero as » — <o.
(d) Finally we deal with the contribution of the remainder term in

(this function is continuous), so that

(8.6) J0)-

(7.8). Since
& Ve |=1
sin ‘ df = O(logn),
2
[0—alze/n '
we obtain O(log n). O[(log n)~*] = o(1), taking again A > 1 into
account.

Thus the theorem on equiconvergence is established.

§ 9. Problems on the sphere

There is an analog of the bi-orthogonal trigonometric polynomials in
higher dimensional euclidean spaces. They are linear combinations of surface
harmonics orthogonal on the unit sphere with respect to a given weight
function. The construction described in 3.1 can be applied. However, the
problems about nodal lines, asymptotic behavior and equiconvergence seem
to be rather difficult. There is, of course, no analog of the polynomials {¢p,(z)}
of a complex variable z. For the sake of simplicity we restrict ourselves to
the three-dimensional case.

2%
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1. Let 6 and ¢ be the usual coordinates on the unit sphere, 0 the distance
from the pole, 0 < 6 < 7, — < ¢ < a. Let w(9, ¢) be a positive and con-
tinuous weight function on the unit sphere. We denote the surface harmonics
of degree n, namely the functions

(9.1) P,(cosB); (sin0)"PY (cos b) exp (ivg), =< =<

briefly (in any fixed order) by

(9.2) YLD w10, N=2n+1.
We apply now the Gram—E. Schmidt process to the functions

{08 FO, 1k dn+l; m=01.... 81 YOFY, s T

where 1 < h < 2n + 1. The ordering of the systems {Y{™}, m < n, is imma-
terial, but the ordering of the harmonics of degree n is essential. The scalar
product is defined as follows:

1 s
(9.4) (.0 = “ £(0,9) g(6, @) w(O,¢) dO dyp .
Ot

We obtain certain surface harmonics of degree < m; the terms of degree n
can be described as a linear transformation of ¥Y{, Y™, ... Y. . the
matrix of which has main diagonal elements == 0 and all elements above
the main diagonal are = 0.

The most general orthogonal system of this kind arises by applying
to the system of functions of degree n, thus defined, an arbitrary orthogonal
transformation of order 2n -+ 1 with constant coefficients.

2. The ,,zonal” case, i.e., the case when w(9, ¢) is independent of ¢,
w(0, p) = w(6), allows certain simplifications. We have then an orthogonal
system of the following kind:

(9.5) pn(cos 0); (sin 6)” p,, (cos 6) exp (ivep), L=y<mn:

Here p,(x) and p,,(z) are polynomials of degree n and n — », respectively,
satisfying the following orthogonality conditions [cf. 1.1]:

1

J D,.(2) p(2) W(x)de=4,.., n,m=0,1,2,...;

(9.6) -

1
% J D) Pe®) * (1 — 22y W) dx =0,y nym=w»,v+1,7+2,....
=

(Received April 1, 1963)
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0 BUOPTOIOHAJIbHbIX CUCTEMAX TPUTOHOMETPUHUECKHX
MHOIO4JIEHOB

G. SZEGO
Pe3lome

[lyctb w(0) HeoTpuuaTe/bHas, L-uHTerpupyemasi, He HJIEHTUYHO HUCYe-
3aiouasi BecoBast QyHKUMsI ¢ NiepuojioMm 2 . Torja cyuecTByer cucrteMa TPUrOHO-
MeTPUYECKUX MHOrousneHoB (f,(6), g,(0)), opToHOpMUpOBaHHBIX ¢ Becom w(f) B
cmpiciie (1.3). dyHKuus w(0) onpesiessieT ITY MHOT0UJIeHbl ¢ TOYHOCTBIO 10 OPTOT0-
HaJIbHBIX TpeobpasoBaHuii BeKTOpoB (f,(6), g,(0)). B Tom yacTHOM cayyae, Korjaa
w(0) sAByisieTcst yéTHOM pyHKuMeit, yHkuuu f,(0) u g,(6) MOXKHO JIErKo BHIPA3UTh
yepe3 HEKOTOPble MHOIOYJIEHBI IepeMeHHOM X = co0S 6, sIBIAIOLIUMECST OpPTOro-
HaJIbHBIMK Ha oTpe3ske — 1 < x < |, B OTHOLUEHUM MOJAXOASIIMX BeCOB HA ITOM
oTpe3ke. B 9TOM cMbICJIe HAILUM TPUTOHOMETPUYECKKMEe MHOTOYJIEHBI NPEJICTABIISIIOT
coboit 0000LeHNne 0OBIKHOBEHHBIX OPTOIOHAJIbHBIX TPUI'OHOMETPHUYECKHX MHOTO-
YJIEHOB KOHEYHOro oTpeska. CylecTByeT TaKyKe TeCHasi CBS3b MeXX]y MHOI4Je-
Hamu f,(0) U g,(6) ¥ MHOroYJeHaMU BeJIMUYUHBI €, SBJISIOIMMUCS OPTOHOPMH-
POBaHHBIMM OTHOCHTEJILHO IOJXOJIsIIEH BeCOBOM (yHKLMU Ha eIMHUYHON OKP Y-
Hoct. B craThe uceneayrorest pashble cBoiicTBa ¢yHkuuu f,(0) u g,(0), Hanpu-
Mep pPeKypCHBHBIE COOTHOLIEHMSI MeCTa HyJied, KepH-QYHKLHMs, MeXaHHYecKast
KBajpaTypa, u T. 1. Kpome TOro, uccienyercsi 1isi 00JbIIMX MHJEKCOB 11 aCUMII-
TOTHYECKOe ToBejeHne Gynkuui f,(0) 1 g,(0) u ycraHaBauBaeTcst 0jHa Teopema
paBHocxoumocTd. [lpu momomy nocyeHed TeopeMbl MOryT ObITH JIeTKO 0606-
IEHBl HEKOTOPbIE KJlacCMYeCKHue CBOWCTBA 0OBLIKHOBEHHBIX psjoB Pyp’e.

AHasioruyecKue CUCTeMbl OPTOHOPMMPOBAHHBIX (YHKLMH, INpecTaBJIsiio-
KX co60H COOTBETCTBYIOLIME 0000IIEHNST KIACCHUECKUX ChepuyecKux (yHK-
uuit Jlamgaca, MoryTt ObiThb MCCJIelOBaHBl Ha Lape.
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