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§ 1. Introduction 

1. Let w(Q) be a non-negative function of the class L(0,2л) which is no t 
a zero function. I t is convenient to interpret it as the weight function of a 
distribution w(Q)dQ on the unit circle z = е1в. More generally we may consider 
an arbitrary distribution (measure) da(0) on the unit circle; in what follows, 
however, we restrict ourselves, for the sake of simplicity, to the previously 
defined case, i.e., to the case when o.(0) is absolutely continuous. 

I t is well known ([1], chapter 2; [2], chapter I I ) 3 that a uniquely deter-
mined system of polynomials {(pn(z)} can be formed which is orthonormal on 
the unit circle with respect to the given distribution; more precisely, 

(a) (pn(z) = kn zn -f- . . . -f- ln is a polynomial of the precise degree n; 
К > 0 ; 

71 

(b) — I <pn(z)yjd w(6)dQ = ônm, z — e'e; n,m = 0 , 1 , 2 , . . . . 
2л J 

I n the following we shall use the s tandard notation in (a). 
In an analogous manner we may consider a weight function W (x) (not a 

zero function) on the real interval —1 ^ x 5Á 1, and form the uniquely deter-
mined system of orthonormal polynomials {pn(x)} defined by the following 
conditions: 

(a) pn{x) = . . . is a polynomial of the precise degree n; k'n > 0; 
l 

(b) ^ pn(x) pjx) W(x) dx = ônm, n,m = 0 , 1 , 2 , . . . . 

A simple and useful relation exists between these two classes of ortho-
normal polynomials ([2], 11.5). We assume t h a t the weight function w(Q) 
of the unit circle is even, w(—Q) = w(6). We fu r the r assume the following 
relation between the weight functions w(0) and W(x)\ 

(1.1) w(0) = JF(cos 0) |sin 0|, 

'This research was supported by t h e National Science Foundation. 
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or in another form, w(9) dd = W(x) | dx | where x = cos 0. The meaning ot 
the last condition is obvious; it expresses the invariancy of the mass element 
in the transit ion from t h e upper (or lower) semi-circle to the interval. 

Unde r the condition (1.1) the following identities (1.2) hold: 

Pn(x) = 

= (2л)-1!* 

(1 .2 ) 

qn-i(x) = 

1 + ^ h 
-1/2 

( z - > 2 n ( z ) + z > 2 n ( z - i ) ) = 

Y 2n 
-1/2 

2 1/2 
I — ! 

л 
I — 

^2 n) 

I 1 

1/2 
1 + 

u 
1 + X = 

z + z~ 

Here {<pn(z)} and {pn(x)} have the same meaning as above and {qn(x)} desig-
nates t he orthonormal system associated with the weight function (1 — ж2) IT (ж) 
on —1 ^ x ^ 1. These relations can be used for the calculation of the systems 
{pn(x)} and {qn(x)} provided the system {<p„(z)} is known, as well as for the 
solution of the inverse problem. Indeed, cpn(z) can be expressed as a linear 
combination of two appropriate polynomials of the systems {pn(x)} and 
{qn(x)}; we observe also tha t each funct ion (1 — x2) qn__±(x) is a linear combi-
n a t i o n o f pn_x(x), pn(x) a n d pn+1(x) [cf . 2, 2.5]. 

2. The purpose of the present investigation is to extend these relations 
to the case when the weight w(Q) is no t necessarily even. In this more general 
case i t is convenient to introduce a certain bi-orthogonal system of trigono-
metric polynomials which are orthogonal with respect to the given weight 
«i(0). They represent natural generalizations of the simplest bi-orthogonal 
trigonometric system, namely {cos nO, sin «0}, corresponding to the weight 
w(0) — 1. The trigonometric polynomials thus defined depend only on w(6). 
They can easily be expressed in t e rms of {pn(x)} and {<7„(ж)} in the case when 
«>(0) is even. From this point of view they appear as certain generalizations 
of the orthogonal polynomials on a f ini te interval. 

W e shall s tudy the principal properties of these trigonometric polyno-
mials systematically; some of these properties are of algebraic (formal) charac-
ter, some others are of the transcendental (asymptotic) nature. One instance 
of the la t te r kind is t he question of t he asymptotic behavior for large values 
of the degree and the connected expansion problem. This expansion of an 
a rb i t ra ry function in terms of the bi-orthogonal trigonometric polynomials, 
represents a very na tu ra l generalization of the classical Fourier series. 

3. A trigonometric polynomial of degree n with the highest te rm 
a cos nO -f- a' sin nQ is called of t he precise degree n if the constants a and 
a' a re no t both zero. Two trigonometric polynomials А(в) = a cos «0 + 
+ a' sin nd + . • . , В(в) — b cos n) + b' sin «0 -f- . . . of degree n are called 

linearlv independent if the de terminant ! " a 

! ь b' 
A{0) and 5(0) must be of the precise degree n. 

is not zero. As a consequence, 
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Given the weight function w(0), we define the corresponding biorthogonal 
system of trigonometric polynomials {An(6), Bn(0)} by the following conditions: 

(a) Ап(в) and Bn(0) are linearly independent trigonometric polynomials 
of degree n; 

(b) they are orthonormal in the following sense: 

(1.3) 

— Г An(Q) Am(d) w(ß) dd = — Г Bn(ß)Bm{d)w(ß)dQ = 
2л J 2л J 

— Л 
л 

f 2л ) 

С 
пт » 

(0) Вт(в) w(6) dd = 0 , п,т= 0 , 1 , 2 , . . . 

— п 
The system {An(Q), Bn(Q)} is of course not unique; the most general 

system of this sort arises by multiplying each vector (matrix) (An(0), Вп(в)) 
with an arbi t rary 2 x 2 orthogonal matr ix On with constant elements depend-
ing on n : 

(Ап(в),Вп(в)).Оп. 

As mentioned above we may replace w(6)d0 by an arbi t rary distribution 
<7 a ( 0 ) . 

4. The trigonometric polynomials under consideration can be obtained 
b y a straight-forward application of the Gram-E. Schmidt process. Another 
way of generating them is a simple relationship which permits us to derive 
the bi-orthogonal system from the polynomials {(pn(z)} defined in 1. The 
resulting formulas are generalizations of the identities (1.2) to which they 
reduce when w(0) is an even function, w(—0) = w(Q). In this case t h e bi-ortho-
gonal trigonometric polynomials can be expressed in terms of the polynomials 
{р„(ж)} and {q„(x)} which are orthogonal on the interval —1 g x g 1. Another 
interesting specialization appears when w(6) is the reciprocal of a positive 
trigonometric polynomial. 

There is a simple recurrence relation satisfied by the bi-orthogonal 
trigonometric polynomials, generalizing the classical difference equation 
satisfied by the polynomials orthogonal on the real interval — 1 g x g 1. 
Also the location of the zeros of the bi-orthogonal trigonometric polynomials 
is studied together with a formula for a mechanical quadrature. 

In the fur ther course the f ini te kernel function of the bi-orthogonal 
system is introduced and its relation to the finite kernel function of t he system 
{'Tn(z)} 1S discussed. 

This terminates the par t dealing with algebraic properties. So far as 
asymptotic theorems for the trigonometric polynomials are concerned, they 
can be easily deduced from the corresponding results on q>n(z); t he same 
holds for the equiconvergence theorem of the „Fourier expansion". 

In a short closing section we deal with a corresponding system of surface 
harmonics which are orthogonal on the unit sphere with respect t o a given 
distr ibut ion on this sphere. 

5. The relationship between the three orthogonal systems def ined above 
can be described as follows: 

The transit ion from A to В is given by the formulas (1.2); t h e weight 
funct ion is even. 
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The transition f r o m A to С is given by Theorems 1 and 2 of Section 3; 
the weight function is arbitrary. 

The transition f r o m С to В is obtained when the weight in С is even; 
the suitably normalized bi-orthogonal trigonometric polynomials are in this 
case pure cosine and pure sine polynomials, respectively, and for cos в = x 
they yield the polynomials of the t ype B. 

6. Section 2 contains certain preliminaries on trigonometric polynomials 
in general and on t h e polynomials orthogonal on the unit circle (cf. A). In 
Section 3 we describe the generation of the bi-orthogonal system and the 
transit ion from A to C. Section 4 deals with a generalization of the recurrence 
formula well known in the case B. I n Section 5 wc discuss the location of the 
zeros of the bi-orthogonal trigonometric polynomials and the associated 
mechanical quadrature. In Section 6 we define the finite kernel function. 
In Section 7 we deal wi th some special cases and in some generality with the 
asymptotic behavior of the bi-orthogonal trigonometric polynomials and of 
the kernel function. I n Section 8 we prove an equiconvergence theorem. 
Finally, in Section 9 we define the space analog of C, namely the linear com-
binations of surface harmonics orthogonal on the unit sphere with respect 
to a given distribution. 

1. An expression of the fo rm 

a 0 + 2(+COS0 + iqsinfl) + 2 (a2 cos 2 0 + 6.2 sin 2 0) + . . . + 2(ctncos«0 + 6nsinw,0 

with real coefficients ak, bk is called a trigonometric polynomial of degree n. 
I t is of the precise degree n if an and bn are not both zero. The well known 
special cases are t h e cosine and sine polynomials. 

Le t A(6) and В (в) be two trigonometric polynomials of degree n. They 
are linearly independent, if and only if each element of the linear manifold 
Я A(0) + g B(0) is of the precise degree n, unless Я and g are both zero. This 
is equivalent to t h e definition in 1.3. 

I n what follows we shall consider certain systems of the form 

A : or thogonal polynomials 
on t h e unit circle 

В : orthogonal polynomials 
on the f i n i t e interval 

С : bi-orthogonal trigono-
metr ic polynomials 

§ 2. Preliminaries 

Ao(0); (An(0), bn(6)} n = 1,2, 3, . . 
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where Ап(в) and В JO) are of degree n and linearly independent for each те. 
Every trigonometric polynomial T(0) of degree n can be written in the form 

T(0) = к0А0(в) + куА^в) + /ЛуВуф) + . . . + кпАп(в) + рпВп(6) 

?.у, fly, . . ., Хп, fin are uniqu 
fin such t h a t 

т - ( к п А п ( в ) + упвп(в)) 

where the constants ?.0, /q, . . ., ).n, fin are uniquely determined. Indeed 
we can find unique kn, yn such t h a t 

will be of degree n — 1 . 
2. A trigonometric polynomial T(0) of the precise degree n has exactly 

2n real or complex zeros Oy, 02, ..C2n provided we count the zeros as usual 
with their multiplicity and we restrict ourselves to the strip —л < Re(0) g л. 

Let a and ß be arbi trary constants; then 

. 0 — a . 0—ß 
sin • sin  

2 2 

represents a trigonometric polynomial of the f i rs t degree. The trigonometric 
polynomial T(Q) considered above can be writ ten in the following form: 

n о f) n fl 
T(0) = с JJ sin ÁP^l gin Ф , сф q . 

r = i 2 2 

This representation is of course not unique. 
Let T(0) vanish for given values 0 = cq, a2, . .., a2m, m g n; we form 

the trigonometric polynomial 

(7(0) = j j sin - ^ = 1 sin -

of degree тег; then T(0) is „divisible" by U(0), i.e., a trigonometric polvnomial 
F(0) of degree те — тег can be found such tha t T(0) = (7(0) F(0). 

3. Let 
g(z) = c0 + CyZ + . . . + cnz" 

he a rational polynomial of degree те in z with arbi t rary complex coefficients. 
We sav tha t 

g*(z) = z"g(zH = Zn + cn_xz + .. . + 

is reciprocal to g(z). If {z„} are the zeros of g(z), those of g*(z) will be {zf1}. 
(The modification necessary for zv = 0 or is obvious.) A polynomial g(z) 
is called self-reciprocal, or briefly reciprocal if g(z) = g*(z), i.e., cv = cn_v. 
Let T(0) be a trigonometric polynomial of degree те; then T(0) = z~n G(z) 
where G(z) = G*(z) is a reciprocal polynomial of degree 2n, so t h a t T(0) = 

: Z~" G(z) = z" G(z-!); z = eie. 
4 . Theorem of L . F E J É R and F . R I E S Z . Any trigonometric polynomial 

T(0) which is non-negative for all real 0, can be written in the form \ g(z) |2, z = el№, 
where g(z) is a polynomial of the same degree as T(0). This representation of T(0) 
will be unique if we subject g(z) to one of the following two conditions: 

(a) g(z) ф 0 in I z | < 1 ; g(i)) is real and positive; 
(b) g(z) ф 0 in I z I > 1; the leading coeff icient of g(z) is real and positive• 
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Conversely, if g(z) is any rational polynomial, the expression |gr(z)|2, 
z = e,e, represents a trigonometric polynomial which is non-negative for all 
real 6. 

5. Finally, we note a few basic properties of the orthogonal polynomials 
{q>n(z)} defined in 1.1 (cf. [1], chapter 2; [2], chapter 11). 

(a) The polynomial rpn(z) is determined (except for a constant factor) 
by the following property: 

J <pn(z) q(z) w(ß) dO = 0 г = ew, 
— 71 

where q(z) is an arbitrary polynomial of degree n — 1. 
(b) The polynomial 

n 
(21) 2 ?Ja)<Pvf)=8n(a,z) 

v = 0 

is called the kernel polynomial of degree n. It has the reproducing 
property: 

л 

— I 
231 J 

z) q(z) w(ö) db = q(a) , z = e">, 

where q(z) is any polynomial of degree n. This kernel can he rep-
resented as follows: 

( 2 . 2 ) sn(a, z) <P*+i(a) y*+i(2) — Уп+lW <Pn+lf)  
1 — az 

(c) From (2.2) we conclude easily the identities where lcn and ln are 
defined as in 1.1: 

( 2 3 ) I ^пг(Рп(г) = kn+l 4>n+l(z) — tn+l qfn+lf) ' 

К <Pn+1(2) =kn+lZ V n f ) + ln +1 <P*nf) 

(d) We have 

2 . 4 ) = 
v=0 

(e) All zeros of q>n(z) are in the open unit circle ] 2 | < 1. 
(f) Let w(Q) = ljh(0) where h(0) is a positive trigonometric polynomial 

of the precise degree h. Representing h(9) in the form | g(z) |2, 
z = ew, where <7(2) is the (uniquely determined) polynomial of degree 
h with all its zeros in | z | < 1 and such that its leading coefficient 
is real and positive, we have 

(2.5) cpn(z) = z"-hg(z), n^h-
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§ 3. Construction of the bi-orthogonal system 

1. Let w(6) be a given weight function characterizing a distribution on 
the unit circle. We define a linear function space by the following scalar 
product and norm: 

л 

(f,g)=— \f(e)g(0)w(ß)d0, 
2л; J 

— л 

II/II2 = ( / . / ) • 

Here w, f , and g are such t h a t the integrals occurring exist in the Lebesgue 
sense and w is no t a zero function. 

With this metric we orthogonalize the elementary functions 

1, cos 0, sin 6, cos 26, sin 20, . . . , cos nO, sin ?гв, . . . , 

arranged in a linear order, according to the Gram—E. Schmidt process. This 
leads at once to certain trigonometric polynomials An(0), Вп(в) having the 
property described in 1.3. The matrix of the leading coefficients in A„(6), 
В JO) has the form 

'a 0 I 

b b] 
where a and b' are different f rom zero. The most general system of this kind 
arises by the formula 

A JO) cos ô — В JO) sin à, ± {Ап(в) sin д + В „(в) cos ô), 

where á = á„ are a rb i t ra ry real constants. In what follows we shall describe 
another way of generating the same hi-orthogonal systems, based on the 
polynomials { (p j z ) } . 

In the special case when w(0) is even, the functions defined by the 
Gram—E. Schmidt process are obviously cosine and sine polynomials, respec-
tively. 

2. We prove the following 

Theorem 1. Let {(pjz)} be the orthonormal system of polynomials associated 
with the weight function w(0), y JO) = ln. Let the angle y2n be chosen such that 
exp(—2i y2n) • l2n is real. The trigonometric polynomials fJO) and g JO) defined by 

(3.2) exp(-iy2n)-z-"y2jz)=fj0) + igj0), z = е'°, те = 0,1, 2, . . . , 

satisfy the orthogonality (but not the normalization) conditions (1.3). 
Thus multiplying fJO) and gn(Q) by appropriate constants, we obtain 

another generation of the hi-orthogonal system. We have 

(3 3) = e x p г / 2 п ) ' z ~ " + e x p (-iy2") ' z" ' 
2 ign(6) = exp (— iy2n) • z~" <p2n(z) - exp (iy2n) • z~n y^z'1), z = eie. 

We note tha t y2n is determined mod(^/2) provided l2n =f= 0. If l2n = 0, y2n 
is arbi trary. The dif ferent choices of y2n (y2n + те/2 and y2n + те) cause only 
unessential changes of the vector (fn(Q), g JO)). 
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The proof is immediate. Indeed, any trigonometric polynomial of degree 
n — 1 is a linear combination of the functions 2" = eM , —n + 1 v 
< 7 i — - 1 . N o w 

(z) z V ( 0 ) d e = 

л 

= — i <P1,ÀZ) Z"~ 
2л J 

' W ( 6 ) £/0 = 0 , 

Here /„(6) and дп(в) are orthogonal to any trigonometric polynomial of degree 
n — 1. Further we form 

л 

~ (' (exp ( - iy2n) z-»<p2n(z))2w(6) de = \\fn\\2 - H^ll2 + 2i(fn, gn), z = ea. 
2л J 

—л 

In view of the orthogonality this integral is 
л 

= exp ( - 2iy2n). — Г <p2n(z) Z-Z" <p2n{z) w(0) dO = 
2л J 

— Л 

л 

= exp ( - 2 iy2n) • — ( <p2n(z) l2n Z~2n w(6) de = 
2л J 

— Л 

= е х р ( - 2 г у 2 „ ) - ^ = ± - 1 ' 2 " 1 

ко к. 2п 

so t h a t (fn,gn) = 0 and Щ\2 - \\дп\\2 = ±\12пЦк2п. Also, ||/„|j2 + \\дп\\* = 1, 
so t h a t 

II , 
m -±íi±JS н а д 1 

1 i p ÜM. 
к 
"-On 

Let us choose y2n such tha t the upper signs hold. The trigonometric polynomials 

Ап(в) = 21 /2 ( l + М Г / 2 / п ( 0 ) = 

г 
(exp (— iy2 n) • z~" </?2n(z)+exp (iy2n) • zn ^„(z" 1)) , 

f l _ Ь г П _ 1 / г 

(3.4) 

= 2 - 1 / 2 I + Ь 
Л2n 

Bn{0) = 2V* 

-1/2 

i2n 
9n(0) 

= 2 - 1 / 2 ! _ M P 2 -
k. v2n 

i(exp ( - i y2n) • z~" <p2n{z) - exp (i y2n) • z" cp^z'1) ), 

z = ew, 
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form then a bi-orthogonal and normalized set. We note t h a t 

г^аехр {-iy2n) • z~n <p2n{z) = 
(3.5) 

= 1 
1/2 

Ап(в) + г [ 1 - Ы 
1/2 

B n ( 0 ) 

2n ) 

If exp(—2г y2n) • l2n = — | l2n |, the normalizing factors in (3.4) and 
(3.5) have to be modified replacing | l2n | b y — | l2n |. 

3. In the f i rs t identi ty (2.3) we replace n by 2n — 1 and we obtain t h e 
following formulas in which the same symbols are used as in 2. 

Theorem 2. For each n 

e x p ( — < У а л ) - 2 1 - я f i n - i ( z ) 

= 1 1*2 
К 

1/2 
1*2 

-1/2 

1/2 
1 + ^ 

Ш + i 

m = 

i f l + ! ? 2 n l 
1/2 

1 _ M | 
к л 2 n к 

—1/2 

g„(0) , 

j y 
k2n 

= e x p ( - г у 2 „ ) • 2 1 - " ?>2n- i ( 2 ) + e x p ( h n ) • V2n-i(z~ 

1 + 
1*2 

L2rr 

1/2 \lo -1/2 
V n P ) = 

= e x p ( - iy2n) • z1-" q>2n-i(z) — e x P ( W i n ) • г""1
 V z n - i i * ] ) 

2 1 / 2 e x p ( - iy2n) • z1-" %„_!(«) = 

( i _ i y 
1/2 

A„(0) + i 1 + 1 У Г 
к 2 n 

вп(в), z = e'". 

and 

Indeed, z = e'9, 
k 2 n — l z X "fin—i(z) — 

= Кn <P2n(z) — hn Z" 4>2nh1) = 

= К П e x p ( » y 2 n ) • ( / n ( 0 ) + — к n e x p ( - г у 2 п ) ' ( / n ( 0 ) - « 7 n ( 0 ) ) 

e x p ( 2 г у 2 п ) • I 2 n _ к 2 п jZ2„| 

к2п—1 (k2n | * 2 n | 2 ) 1 / 2 

k2n + exp (— 2 iy2 
n) ' *2n k2n + |*2n| 

к 2n—1 

Here we used (2.4). Again we assumed t h a t e x p ( — 2 i y 2 n ) - l 2 n = \ l2n |. I f 
exp(—2i y2n) • l2n = — [ l2n |, the normalizing factors in Theorem 2 m u s t 
be modified as in 2. 
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§ 4. Recurrence relations 

1. In t h e second ident i ty (2.3) we replace n by 2n and obtain 

k z n z ~ " 4>2n+1(2) = h n + i z - z ' " < P z n ( z ) + h n + i ^ n ^ 1 ) , 

so that in view of Theorems 1 and 2: 

(iy2n+2) • {Pnfn +1(0) + 4n9n+1(0)) = 

= 2n + l z exp (iy2n) • (fn(0) + ign(d)) + 

+ hn+i e x p (— iy2n) • ( / „ ( 0 ) — ign(0)) = 

= h n + i 2 e x p (iy2n) • (f„(6) + ign{d)) + 

+ exp [i(2y2n+1 — y2n)~] • {/„(в) — ign(0)), 
where 

( 4 . 1 ) P n = q - 1 = i l - \ h n + 2 \ l h n + 2 _ Y ' 2 

1 ~b /2/1+2! lk2n+2 . 
and 

exp (— 2 iy2n+1) • l2n+1 = \l2n+l\ , 

Hence we conclude the relations 

— AO 

(4.2) 

hnPnfn+l(d) = (k2n+l c o s ( 0 + Ôn) + \hn+l\ cos 'Yn)fn(0) + 

+ ( — hn+1 s i n ( 0 + Ôn) + | I 2 n + 1 | s i n »'„) gn(ß) ; 

ктЯпЯп+i(fl) = (^2n+x sin (0 + 6n) + |?2n+1 | s in 0'п)/п(в) + 

+ (k2n+i cos (0 + ôn) — \l2n+r cos ô'n) gn(d), 
where 

(4.3) Ön = y2n — y2n+2, d'n = 2y2n+1 — y2n — y2n+2 . 

I t is easy t o transcribe these relations into some others between the normalized 
functions An(d), Bn(0). He re we have chosen exp(—2i y2n+2) • hn+2 an<i 
exp(—2i y2n+1) • l2n+1 to be positive 0) and exp(—2i y2n) • l2n real. I n the 
case when t h e first of these three quanti t ies is negative, pn and qn mus t he 
interchanged; when the second quantity is negative, \ l2n+x \ must be replaced 
b y —\hn+i\-_ 

The relations (4.2) can be written in the matrix form 

( 4 - 4 ) ( / n + i ( 0 ) , 0 „ + i ( 0 ) ) = ( / „ ( 0 ) , ? „ ( 0 ) ) ( 
«„(0) ь„(0) 

c„(0) < ( в ) ] 

where the elements of t he 2 x 2 matrix are trigonometric polynomials of the 
first order. 

A typica l instance is the trivial case w(0) — 1; t he recurrences assume 
the form 

(4.5) c o s ( n + 1 ) 0 = c o s 0 c o s п в — s i n 0 s i n / 1 0 , 

s i n (n + 1 ) 0 = s i n 0 C O S / 1 0 + c o s 0 s i n nO . 
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2. The special case when w(b) is even, w(—0) = w(6), is of part icular 
interest; the recurrences (4.2) become then the classical recurrence relations 
for orthogonal polynomials of a finite real interval. Indeed, in this case all 
coefficients of the polynomials cpn(z) are real, thus ln is real. We choose y2n = 0 
for all n, so tha t fn(6) will be a cosine and gn(9) a sine polynomial. Also we 
choose y2n+1 = 0 or л/2 according as l2n+1 is positive or negative. We have 
then the relations 

(4 6) ( ^ Р л / п + Л 0 ) = c o s 0 + hn+i) fnP) — hn+i s in 0 • gn(9), 
í hnlnVn+iP) = hn+1 sin 9 .fn(9) + (Jc2n+1 cos 0 — l2n+l) gn(9), 

P n = 9 n 1 = 

1/2 

U "b hn+?l^2n+2 

From the f i rs t equation we derive 

— k2n+1 sin 0 • gn(6) = k2npjn+1(0) — (k2n+1 cos 0 + lln+1)fn(9), 

— Kn + 2 sin 0 • SWi(0) = hn+2Pn + lfn+2(°) — 0 + l2n+3) fn+1{9) . 

Combining this with the second equation (4.6) and taking the identity 

sin2 0 + (k2n+1 cos 0 — 72„+1) 2n+1— 2n+1 = k2n+1 — 2n+1 

2n+l 2n+ï 

into account, we obtain a recurrence of the classical t y p e 

/n+ 2(0) = (r„cos0 + Sn)fn+1(9) + tjn{9) 

for /„(0). Similarly, we can derive a recurrence for <7n(0). 

§ 5. Zeros. Mechanical quadrature 

1. We use the previous notation and prove 

Theorem 3. Let a and b be real constants, not both zero. The trigonometric 
polynomial afn(6) + bgn(9) has real and distinct zeros. The zeros of fn(Q) and 
gn{0) are interlacing each other. 

More generally, the zeros of 

afnP) + Ъдп(в), - bfn(9) + agn(9) 

interlace. The assertion is an immediate consequence of t h e argument prin-
ciple applied to the rational function 

(a — ib) exp (— iy2n) • z~" ç>2n(z) = w, 

which has a pole of order n a t the origin and 2n zeros in | z \ < 1. (The modi-
fication is obvious if z — 0 is a zero of y2n(z).) Hence the index number of 
the curve described by tu as [ z | = 1, is 2n — n = n. Consequently every 
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half ray issued from the origin w = 0, will be intersected by this curve a t least 
n times in such a manner t h a t the argument of w at t he point of intersection 
is increasing. Choosing for these rays the real and imaginary semi-axes, we 
obtain at least 2n, hence exact ly 2n zeros for both trigonometric polynomials 
n question. The interlacing property will be obvious also. 

2. Theorem 4. Let us denote by 0,, 02, . . ., 02n the zeros of the trigonometric 
polynomial afn(6) -f Ъдп(в) defined in Theorem 3. There exist certain positive 
constants Я2, . .., ?.2n such that for any trigonometric polynomial Т(в) of 
degree 2n — 1 the following identity holds: 

2 n 

(5.1) - Г T(0) го(в) db = У XVT{BV). 
^ J ét 

— 7Г 

The proof follows the classical pa t te rn . We write u(Q) = afn(Q) -\-Ъдп{в) 
and form the expression 

• О 
2 и (0J sm — 

Here и'(0„) ф 0. Let у be any value different from v; the re exists a trigono-
metric polynomial v{6) of degree n — 1 such that 

u(6) = sin °—sin ® . v(0), 
2 2 

so that 

u(6) 
Л П 

\2и'(в„) sin ~ " 
(v(d)r-. 

Hence h(6) is a trigonometric polynomial of degree 2n — 1, and obviously 
h(9v) = T{QV). Consequently, T{Q) — h{6) = u(9)v1(6) where ^(0) is of degree 
n — 1, so t h a t 

(T(0) - h(ß))w(ß) dd = 0. 

Writing 

i_ • um _ e e м 

the assertion follows immediately. 
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§ 6. Kernel function 

1. We define the finite reproducing kernel function of t h e bi-orthogonal 
system by 

(6.1) A0(a) A0(6) + 2(Av(a) Av(9) + Bv(a) Bv(6)) = Kn(a, в) 
V = 1 

where a and в are real variables. Obviously, each t e rm Av(a) Av(6) + 
+ Bv(a) Bv(9) will be invariant if we multiply the vector (Av(9), Bv(9)) by an 
arbi t rary orthogonal matrix with real constant elements. Thus, Kn(a, 0) 
depends only on the weight function w(9) (and, of course, on а, в, n). 

The kernel function possesses the reproducing property 

л 

(6.2) — !' Kn(a,9)-t(9)w(9)d9 = t(a), 
2л J 

— Л 

where t(9) is an arbitrary trigonometric polynomial of degree n. 

2. Theorem 5. Let sn(a, z) be the kernel function associated with the system 
{q>n(z)} ; let a = ela, z = ei0. We have the identity 

(6.3) Kn(a, 0) = (az)" s2n(a, z). 

Thus, t he right-hand side is real. This follows also f r o m the identi ty 
s2n(a, z) = (äz)2" s2n(z~\ d"1) [cf. 2, (11.3.4)] for | a | = | 2 | = 1. 

For the proof of (6.3) we verify tha t t h e right-hand expression has t he 
reproducing property. We choose t(9) = zv = еы> where v is an integer, 
—и v ^ n. We have, using the reproducing property of s2n(a, z): 

л л 

— ( (az)" s2n(a, z) • t(6) w(d) dd = — f a " s2n(a, z) • z"~v w(9) dd = 
2л: J 2л: J 

— л —л 

= a" • â"-v = a" = t(a). 

3. Combining Theorem 5 with (2.2) and with the last formula in Theorem 
2, we obtain a closed form for the kernel funct ion (6.1). Indeed, 

Kn_ (a, 0) = (az)"'1 tân-if) - <P2n-i(o) Vm-if) 
1 — az 

_ ( « 2 ) п - 1 / 2 У 2 п - 1 ( а ) у 2 п - 1 ( г ) - ( а г ) " - 1 / 2 у г п - M ) П п - i f ) = 
(az)1!2 - (dz)1'2 

I m {(az)"*1!2 y2r,-i(a) 4>2n-if)} 
I m {(az)1!2} 
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Writing 2rn = 1 — I l2n \jk2n, 2sn = 1 + 1 l.,n \\k2n, we find 

Im { ( ä z ) " - 1 ' 2 ^ - ! ^ ) <P2n-xH) = 

= Im {(®)i/«(ri 'MB(a) + « № ( « ) ) ( rpA n (0 ) - <в*'«Я„(в))} = 

= (rnSny/2cos^72(A(0)Sn(a) - Ап(а)Вп(в)) + 

+ sin ^ + snBn(a)Bn(0)), 
А so tha t 

Кп_у(а, 0) = I . f e l ctg — ( Л И В Д - Л ( в ) В Д ) ~ 
(6.4) 2 2 

- (rnAn(a)An(0) + S n R n (a )ß n (0 ) ) . 

Here we used t h e formula 

which is a consequence of (2.4) 

(6-5) 2 r n - 2 s n 
2n ^2 П 

§ 7. Special cases ; asymptotic behavior 

1. Le t us consider t he special case defined in Section 2.5 (f): w(9) = 
= 1/Л(0) where h(9) = | g(z) |2, z = e'e, is a trigonometric polynomial of the 
precise degree h; g(z) is a polynomial of degree h, all zeros of which are in 
[ z I < 1 , and g(z) has a positive leading coefficient. 

We assume tha t 2те — 1 i t h. In view of (2.5) we have l2n — 0 so t h a t 
y2n = у is arbitrary. We have by the last formula in Theorem 2: 

(7.1) 21/2 e~iyzn~hg(z) = Ап(в) + iBJß), z = ею. 

Here у is arbitrary real. Formula (3.5) yields the same result, and in addition 
also the case 2те = h; we have then l2n =lh = gr(0) and y is defined as in 
Theorem 1. 

2. Now let w(0) be a positive weight function defined on the un i t circle 
and satisfying the Lipschitz-Dini condition 

—i—д (7.2) \W(Q + ô ) — w { 0 ) \ < L|log<5| 

where L and Я are positive constants. This case was considered in [2], chapters 
10, 12 and 13; we re fer here to those results which are relevant for our 
purposes. 

There exists an ana ly t ic function D(z) regular for | z \ < 1 and continuous 
for I z I ^ 1, such tha t w(Q) = | D(eif>) |2. By the addit ional conditions D(z)ß 0 
in I z I < 1 and D(0) > 0, this function is uniquely determined. 
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For each n there exists a polynomial k(z) of degree n — 1, h(z) ф 0 for 
I z I ^ 1, such t h a t 

(7.3) |Z)(z) - (/(z))-1] <Q(\ogn)-* 

uniformly in I z I ^ 1 [cf. 2, (10.3.12)]. From this we conclude [cf. 2, (13.7.4)] 
t h a t 

(7.4) ID(e'^+e)) — D(eie)\ < L' | log (5|-д. 

Finally we have [2, Theorem 12.1.3] 

(7.5) <pn(z) = zn{D(z)}-i + £n(z), |e„(«)| < C(\ogn)-\ z = e ie. 

Here Q and С depend only on L, A, and on t h e minimum and maximum of 
w(9). We have, z = eie, 

71 71 

l„ = — [<pn(z)de = — [z"{D^)}^dQ + 0[(\ogn)-"} = 
2л J 2л J 

(7.6) 

= — Г 2" [{ű(z)}-1 - h(zj] dß + О [(log те)-д] = 0[(log n ) - ' ] . 
2л J 

—л 

Thus we f ind f rom (3.5) t h a t for m-> oo, z = ew, 

(7.7) A„(0) + iBn(e) = 2x/2exp ( - iy2n) • z"{D(z)}~i + O[( logn)- 3 ] . 1 

We conclude t h a t Ап(в) and Вп(в) are uniformly bounded as n—у Another 
important consequence is tha t for a = e,a, z = ew, we have 

1 M i {An(a) В„(6) - А„(в) ВД) = 
2 к2п 

(7.8) = 1 ïf=Ulm{(An(a)-iBn(a))(An(e) + iBn(e))} = 
2 к 2 п 

= Im {exp [<n(fl - «)] [D(«)]-i [ Щ ) } ' 1 ) + О [(log те)-*], 
kin 

а = е,а, z = e'e, 

since к2п_у\к2п is bounded. We note also t h a t in view of (2.4) and (7.6) 

(7.9) M = 1 + 0(\l2n\2) = 1 + О [ ( log п)~ф . 
kin 

This formula will be used later. 

4 I t would be possible to make more precise statements about the constants 
occurring in the various remainder terms. For the sake of brevity we omit these detai ls . 

2 A Matematikai K u t a t ó Intézet Közleményei VI I I . A/3. 
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§ 8. Equiconvergence 

1. Based on the previous preparat ions we prove now the following: 

Theorem 6. Let /(0) be an arbitrary bounded and measurable function. 
We denote by 

л 

( 8 . 1 ) « „ = — j / ( 0 ) Kn(a, 0 ) w(6) dd 
2л J 

the nih partial sum of the expansion of f(Q) in the generalized Fourier series 
proceeding in terms of the bi-orthogonal trigonometric polynomials associated 
with the weight function w(0). Here w(0) satisfies the Lipschitz-Dini condition 
(7.2) with Я > 1. 

We denote by 
0 — a 

* sin (2 те -f 1) 
( 8 . 2 ) s'n = — ( 7 ( 0 ) — — dd 

2л J . О — a 
sin  2 

the nth partial sum of the ordinary Fourier series of f(0). Both sn and s'n are taken 
at 0 = a. Then 

(8.3) lim (sn -s'n) = 0 . 

2. We make first some preliminary observations. 
(a) As remarked in Section 7, An(9) and Bn(6) are uniformly bounded 

as те—By Riemann's L e m m a 
л л 

lim j /(0) w(9) An(0) dd = lim J / (0 ) w(6) Bn(0) dd = 0 . 
— л 71—><« —л 

T h e assertions 

(8.4) lim {sn_x - s'n) = lim - = 0 

n I k2n I 

are equivalent wi th (8.3) since s'n = O(log те) (Lebesgue constants) 
so t h a t in view of (7.9), 2Я > 1, we have 

к 
'v2n 

s'n = 0 ( 1 ) , as те 

We shall use (6.4). The contribution of the second term of (6.4) to 
tends to zero. 

(h) YVe assume t h a t | в — a \ < е/те where e > 0 is independent of те. 
T h e expression (7.8) as a funct ion of 0 is uniformly bounded; 
hence, by S. Bernstein's theorem, its derivative is 0(n), so that 
t h e corresponding parts of t h e integrals (8.1) and (8.2) are equal 
t o e • 0(1/те) • О(те) = е- 0(1). 
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(c) Let | 0 — a | ^ е/тг. Taking (8.4) into account, the first t e r m in the 
last expression of (7.8) will yield: 

(8.5) - ( 7 ( 0 ) I M  
2л J 

D(z) 

exp [i(n + 1/2) (0 — a)] . 0 — a ] - 1 

s m 1 x 

X exp [— г'(0 — a) 12] cos — 1 
D(a) 2 

dd ,a = eia, z = e" 

where we integrate over | 0 — a \ sjn. Now hy (7.4) 

and 

m _ i = O [ | l o g | 0 _ a | | - ' ] 
D(a) 

10 — a|—1 • J log j0 — a 

is integrable. The same holds for 

0 — a 

i - H 

sin exp [ — г(0 — a)12] cos -
0 — a 

(8.6) 

(this function is continuous), so tha t 

m 
. 0 — CCI —l 

s i n  
2 

- f - f e x p [—1(6-a) 2] c o s — 1 
D(a) 2 

is integrable. Adding now to (8.5) the same integral extended over 
( 0 — a I < sin, the added pa r t will be 

0(1)- (' |0 — a | - 1 - | l o g ( 0 — a ) | - A d 0 = O[(log«)1- ; i] = o(l) as о, 
| в - а | < в / п 

since A > 1. Using Riemann's Lemma, the to ta l expression (8.5) (ex-
tended over t he whole period — л ^ 0 ^ л) t ends to zero as 

(d) Finally we deal with the contribution of t he remainder t e rm in 
(7.8). Since 

f I . 0 — а I sm dd = O(logn), 

| e - o | £ « / n 

we obtain O(log n). O[(log n ) ~ ' ] = o(l), taking again A > 1 into 
account. 

Thus the theorem on equiconvergence is established. 

§ 9. Problems on the sphere 

There is an analog of the bi-orthogonal trigonometric polynomials in 
higher dimensional euclidean spaces. They are linear combinations of surface 
harmonics orthogonal on the unit sphere with respect to a given weight 
function. The construction described in 3.1 can be applied. However, the 
problems about nodal lines, asymptotic behavior and equiconvergence seem 
to be ra ther difficult. There is, of course, no analog of the polynomials {fn(z)} 
of a complex variable z. For the sake of simplicity we restrict ourselves to 
the three-dimensional case. 

2* 
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1. Let в and ср be the usual coordinates on the unit sphere, 0 the distance 
f r o m the pole, 0 g 0 g л, —л g ср < л. Let w(9, tp) be a positive and con-
t inuous weight func t ion on the un i t sphere. We denote the surface harmonics 
of degree n, n a m e l y the functions 

(9.1) Fn(cos 0) ; (sin 0)"F« (cos 0) exp (iv<p), 1 ^ v g n , 

brief ly (in any f i x e d order) by 

(9.2) 7<">, Г<">, . . . , 7ft>, W = 2 r a + 1 . 

We apply now the Gram—E. Schmidt process to the functions 

( 9 . 3 ) 7 i f » , \ g k g 2m + 1 ; m = 0 , 1 , . . . , n - 1 ; 7 ) " ) , Yi?\ . . . , 7 (
f t

n ) , 

where 1 g h g 2n + 1. The ordering of the systems {7jf)}, m < n, is imma-
terial , but the ordering of the harmonics of degree n is essential. The scalar 
product is def ined as follows: 

71 71 

(9.4) [ f ' g ) = bt J [ М ? ) ^ - ? 0 ) » ' 0 ' ? ' ) ^ ^ -
0 —71 

W e obtain cer ta in surface harmonics of degree g it, the te rms of degree n 
can be described as a linear t ransformation of 7 f \ 7£ n \ . . . , У.(")+1, the 
matr ix of which has main diagonal elements =j= 0 and all elements above 
t h e main diagonal are = 0. 

The most general orthogonal system of this kind arises by applying 
t o the system of functions of degree n, thus defined, an arbi t rary orthogonal 
transformation of order 2n -)- 1 with constant coefficients. 

2. The „zona l " case, i.e., the case when ic(9, <p) is independent of <p, 
w(9, <p) = w(Q), allows certain simplifications. We have then an orthogonal 
system of the following kind: 

(9.5) Pn(cos 0) J ( s i n в)"I)nv(cos 0 ) e x P (i-vip), 1 g v g n • 

Here pn(x) and pnv(x) are polynomials of degree n and n — v, respectively, 
satisfying the following orthogonality conditions [cf. 1.1]: 

(9.6) 

l 

j pn(x)pm(x) W(x)dx = ônm, n, m = 0, 1 , 2 , . 

1 

H Pnv[x)Pmv(x) • (1 - x2)'W(x) dx = ônm, n, m = v, v + 1, v + 2, 

(Received April 1, 1963) 
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О БИОРТОГОНАЛЬНЫХ СИСТЕМАХ ТРИГОНОМЕТРИЧЕСКИХ 
МНОГОЧЛЕНОВ 

G . S Z E G Ő 

Резюме 

Пусть w(Q) неотрицательная, L-интегрируемая, не идентично исче-
зающая весовая функция с периодом 2 л. Тогда существует система тригоно-
метрических многочленов (/„(б), g„(6)), ортонормированных с весом w(6) в 
смысле (1.3). Функция w(Q) определяет эти многочлены с точностью до ортого-
нальных преобразований векторов (/„(б), g„(6)). В том частном случае, когда 
ю(в) является чётной функцией, функции /п(б) и g„(6) можно легко выразить 
через некоторые многочлены переменной х = cos б, являющиеся ортого-
нальными на отрезке - 1 ^ x S 1, в отношении подходящих весов на этом 
отрезке. В этом смысле наши тригонометрические многочлены представляют 
собой обобщение обыкновенных ортогональных тригонометрических много-
членов конечного отрезка. Существует также тесная связь между многчле-
нами /п(б) и gn(6) и многочленами величины ею, являющимися ортонорми-
рованными относительно подходящей весовой функции на единичной окруж-
ности. В статье исследуются разные свойства функции /„(б) и gn(0), напри-
мер рекурсивные соотношения места нулей, керн-функция, механическая 
квадратура, и т. д. Кроме того, исследуется для больших индексов п асимп-
тотическое поведение функций /„(б) и gn(ö) и устанавливается одна теорема 
равносходимости. При помощи последней теоремы могут быть легко обоб-
щены некоторые классические свойства обыкновенных рядов Фур'е. 

Аналогические системы ортонормированных функций, представляю-
щих собой соответствующие обобщения классических сферических функ-
ций Лапласа, могут быть исследованы на шаре. 
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