FREE ALGEBRAS OVER FIRST ORDER AXIOM SYSTEMS

by
G. GRATZER

1. Introduction

The concepts of free semigroups, groups, rings and so on are well known
and have several applications. The construction of free semigroups ete. is,
roughly speaking, the following (see [1] and [2]): we take the polynomials over
the generating system given, and we identify some polynomials in order to
make the algebra of polynomials satisfy the given axiom system X' defining the
class of algebras considered. The axioms in X' are open sentences, i.e. in a
normal prenex form they contain no existential quantifier. If it does (e.g. in
case of groups) then we introduce further operations (e.g. the operation x—*
in groups) so that X' can be transformed into one containing only open sentences.

. Of course, the existential quantifiers cannot always be eliminated by
introducing new operations. It is my aim to show that even in this case free
algebras can be defined. However, in such a situation one should begin by
considering the notion of subalgebra and homomorphism, since, as can be
shown by examples, the classical notions do not work well. The modified notions,
called X-subalgebra and 2-homomorphism coincide with the classical notions
if X' contains open sentences only.

§ 2 contains the notation and the basic notions. The concepts of X-
homomorphism, X-subalgebra and free X-algebra are given in § 3. The results
on free X-algebras are given in § 4, while the existence theorem is contained
in § 5. The notion of free K-algebra can be defined over an arbitrary class K
of algebras; how this concept is connected with free X-algebras is shown
in § 6.

In the Appendix a necessary and sufficient condition is given for the exis-
tence of free algebras in the classical case, when X contains open sentences only.

The proofs of the results are not given. These will be published in sub-
sequent publications.

2. Notions and notations

A universal algebra (briefly: algebra) Ais a sequence (4, fo, Ju oSy dy<a
where A is a set and f, is an n,-ary operation on 4 i.e. f, € 44";in this notation
a, y denote ordinal numbers "0 =< n, < o. The sequence {(n,),_,is the type of
QI a is the order of .

y<a
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Gothic capital letters A, B, ..., § denote algebras while the
corresponding latin capital letters A4, B, ..., F denote the set upon which
they are defined.

Allalgebras considered are of the same type which iskept fixed throughout
the paper. We can associate with this type a first order logic with equality
sign as follows: it contains operation symbols P, for every y < a and P, is
the symbol of an n,-ary operation; the individual variables are v, z, v, 2, . . .;
it contains further the usual logical connectives A, V, —, —, (z), (Jx)
(“or”’, “and”, “not”, “imply”, ‘“for every a’’, ‘‘there exists an 2’’), and the
equality sign =.

Formulae are defined as usual. First we define terms: any individual

variable @ is & terms if Loiess T"v are terms then so is Py(Tl, - T,,y).
Next we define formulae: if 7', and 7, are terms then
T,=T,

is a formula (this is called a prime formula). If @, and @, are formulae then
so are @, VD,, D, \ND,, mD,, D, > D,, (z)(P,), () (D,).
Every formula @ can be written in a prenex normal form:

(2.1) (@) - - - (@n2,) (¥)

where ¥is a formula containing no quantifier and the @, are quantifiers. If in
(2.1) ¥ contains no variable other than x,, . . ., , then @ is a closed formula.
If @ is closed and no @, is an existential quantifier then @ is an open formula.

An aziom system X'is a set of closed formulae. A X-algebra %A is a model
of X ie. every @ ¢ X is satisfied on .

(4, f,)y<qis a subalgebra of (B, g,>._,if 4 is a subset of B, 4 is closed
under g, and f, is the restriction of g, to 4, for every y < a.

The mapping ¢ : 4 — B (a — ag) is called a homomorphism if

ay, - an) 9 =g a9y, - - -, Qny P) (y <a).

All these notions are well-known; for more detailed (and more precise)
treatement the reader should consult [3], [5], [6], [7] and [8].

3. The notion of inverse

Let an axiom system X be fixed and we suppose every @ € X'is in prenex
normal form, e.g.

(3.1) (=) Ay) (Y(2,9)),
or
(3.2) () (Fy) (2) Fu) (P(2, ¥, 2, %)) -

In (3.1) and (3.2) the formulae ¥(x, y) and ¥(z, y, 2, u), respectively,
contain no quantifier.

Let @ ¢ X, @ be of the form (3.1), and let A be a X-algebra, a, b € 4.
We say that b is an inverse (@-inverse) of a if ¥(a, b) holds. Let @ be of the
form (3.2). Then b is an inverse of a if

(2) (Fu) (¥(a, b, 2, u))
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holds true. And d is an inverse of a and c if there exists an inverse b of @ such
that ¥(a, b, ¢, d) holds.

The general definition of inverse is now obvious; if b is a ®@-inverse of
@y, . . ., a, then @ contains an existential quantifier preceded by » universal
quantifiers and by some, say k, existential quantifiers; the precise definition
can be given by induction on £k as in the example above. The details are left
to the reader.

To say that bisa @-inverse of a,, . . ., @, may sometimes be ambiguous.
E.g. if @ is of the form: (x) (Jy) (32) (¥(x, y, 2)), then b is a P-inverse of a
either if (3z) (¥(a, b,2)) or if there exists a ¢ with (3z) (¥(a, ¢, 2)) and ¥(a, c, b).
Therefore, if we have two existential quantifiers between which there is no
universal quantifier than we have to distinguish between the inverses with
respect to the first and second existential quantifier.

Since in the discussion we consider as examples axioms of type (3.1)
and (3.2) this problem will not arise.

Let A and B be algebras and B be a Z-algebra. We say that A
is a X-subalgebra of ¥ if 9 is a subalgebra of 9B, further ifa,, ... a,¢€ 4,
beB, ®e¢X and bis a D-inverse of a;, .. .,a,in B then b e 4. It is easy
to see that the following results hold:

3.3. A X-subalgebra of a X-algebra is again a X-algebra.

3.4. Let % be a X-algebra, H C A. Then there exists a smallest X-
subalgebra 9B of 9 such that H C B.

This ¥ is said to be X-generated by H, and H called a X-generating
system of 9B.

If X' is the usual axiom system for groups, i.e. the type is (2,0) the
operations being denoted by - and 1 and the axioms are

(@) (4) (2) (- (y-2) = (x-9)-2),
(2)(z-l=2Al-w=2%),

(@) (y) @y =1Ay-x=1)
then a X-subalgebra is a subgroup. (Note that a subalgebra is a subsemigroup
containing 1.)
If X' contains open formulae only, then every subalgebra is a X-sub-
algebra.
: Now let 2 and B be Z-algebras ¢ : 4 — B. Then ¢ is said to be a
2-homomorphismifit isa homomorphism, furtherit carries inverse into inverse,

ie. ifa,, ..., a, be Aand b is a P-inverse of Ay, oo a, (D € 2) then bp is a
@-inverse of a,p, ..., a,p and, conversely, if b is a @ -inverse of bi, . ..y b,
(b,b,....,b,€ B),a,,...a, €Asuch that a,¢p =b,,...,a,p = b, then there
exists a @-inverse a of al, ..., a, such that ap = b.

In case of groups any homomorphism is a X-homomorphism. The same
holds if X' contains open formulae only.

Let a class of algebras of type (2) be defined by the following axioms
(the binary operation is denoted by U):

(z) (xUz = 2),

(z) (y) (*Uy =yUx),

(@) (y) (2) (€ Uy) Uz =2 U (yUz)),

(@) (y) (Fz) (u) (x =2Uz Ay =2UyA((z = uUz Ay =uUy) >z =2Uu)).

13*
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Then the class of X-algebras coincides with the class of lattices, a X-
subalgebra is a sublattice, a X-homomorphism is a lattice-homomorphism.
A subalgebra is a subset closed under union, which is a lattice, and the usual
notion of homomorphism too does not function well, e.g. the homomorphic
image of a distributive lattice (as a X-algebra) can be non-distributive. Of
course, this cannot happen if we consider 2-homomorphisms.

3.5. Let A, B be X-algebras, ¢ a Z-homomorphism of YU into B. Then
the image of Y under ¢ is a X-subalgebra of 9.

3.6. The product of X-homomorphisms, if exists, is again a X-homo-
morphism.

Now we define the notion of free X-algebra with § X-generators, where j
is any cardinal number.

The algebra §(B) = (F(B),forf1s - - -+ Syr - - Dy<a 18 said toO be the free
2-algebra with g X-generators if

(@) F(P) is a X-algebra;

(b)F(B) contains a sequence of elements (x>, _, Z-generating F(f);

(c) let A be a X-algebra, <a,),.s a sequence of elements of A, then
the mapping ¢ : x, —a, (y < f) can be extended to a X-homomorphism ¢ of
F(p) into .

It is easy to see that the ¢ in (¢) need not be unique.

4. Free X-algebras

First we formulate the unicity theorem:

4.1. If F(P) exists for some f then it is unique up to isomorphism.

We can prove somewhat more, namely

4.2. Let §(B) and F'(B) be free Z-algebras with the X-generating
systems (@,>,_gand (x>, g Let ¢ be the mapping z,—z, (y < ) and
@ any extension of ¢ into X~-homomorphism. Then ¢ is an isomorphism between
B(p) and F'(f).

The following theorems are analogues of well-known theorems for the
classical case. However, it seems to me that the triviality of the classical
results does not imply the existence of an easy proof in this situation.

4.3. Suppose that the free X-algebra  §(p) exists. Then (o) exists
for every 6 < f.

4.4. Suppose F(n) exists for every n < w. Then $F(w) exists too.

4.5. If F(ow) exists then so does F(p) for every p.

5. The existence theorem

We define multi-polynomials as follows:
(@) P(zy, ..., x,) = {x;} is a multi-polynomial;
(b) if f is an operation then P(z,, ..., z,) = {f(zy, . . ., ,)} is a multi-
polynomial;
(¢) let Jy be preceeded by n universal quantifiers in the axiom @; then
P(z,, ..., x,), the set of all ®-inverses of z,, ..., x, is a multi-polynomial;
(d) if Pyl oo By 55 5 Pl « 5B Pl s« %) are multi-poly-
nomials then so is P(P,, . .., P;), where



FREE ALGEBRAS OVER FIRST ORDER AXIOM SYSTEMS 197

x € P(Py(2y, «.o, )y «+os Ppl@y,..., 2,)) if and only if there exist
Y- Y such that xz€ P(y,...,y,) and y; € P(x, ..., x,) for every
1<i< k.

(¢) the multi-polynomials are those and only those which are given by
(a)—(a).

Consider the condition:

(5.1) Every multi-polynomial in % variable is bounded, i.e. there exists
an integer m, such that a multi-polynomial P(z,, .. ., x;) cannot contain more
than n elements.

Then we can prove

5.2, If (k) exists then (5.1) holds.

The next condition is necessary, too, for the existence of (k):

(5.3) Let % and B be X-algebras, A is X-generated by (z,>;x and
{Yi<k are elements of B. Then there exists a X-algebra € ZX-generated by
{z;yi-r such that the mappings ¢, : z; > x; and ¢, : z; — y; can be extended
to 2-homomorphisms.

5.4. The conditions (5.1) and (5.3) are necessary and sufficient for the
existence of (k).

We formulated 5.4 for k < w. It is true for w as well. (5.1) then says
that every multi-polynomial is bounded.

A special case of 5.4 is the following:

5.5. Suppose X' contains open sentences only. Then $(f) exists if and
only if whenever 9 and 9B are ZX-algebras, U is generated by =z, ...,
@y, ...(y < pB)and y,, ..., ¥y, ... (y < p) are elements of B then there exists
a Z-algebra © generated by the elements z,, ...z, ... (y <p) such that
@12, > x,(y<p) and @,:2,—y, (y <p) can be extended to homo-
morphisms.

E.g. if X contains only equations then such a € is the subalgebra of the
direct product Ax B, generated by the <(z,,y,> (y < a).

One can obviously infer a characterization of equational classes from 5.5.

6. Free K-algebras

Let K be a class of algebras. An algebra §(p) is a free K-algebra with
p generators if

(@) F(P) € K;

(b) F(B) contains a sequence (x,),s generating FF(f);

(c) let AeK and <{a,),-s be a sequence of elements of A4, then
@ :x,— a, (y < f) can be extended to a homomorphism @ of F(f) into 9.

The problem is the following: what is the connection between free K-
algebras and free Y-algebras.

To settle this problem we define two properties.

We say that the axiom system X" has the Inverse Preserving Property
(IPP) if whenever U is a Z-algebra, B a Z-subalgebra of %, a,. .., a,,
beB, ®el bisa P-inverse of a;, ..., a, in B then the same holds in ¥
as well. (The converse of this statement holds always.)

The free 2-algebra () is called free in the stronger sense if, in the
definition, the X-homomorphism @ is always uniquely determined. If we
write “F0(f) exists” it means that the free X-algebra $(S) exists and it is
free in the stronger sense.
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6.1. If F°(P) exists and 6 < f then FO(6) exists too.

6.2. If F°(n) exists for every n < w then so does F(w).

6.3. If F%(w) exists then so does F(S) for every f.

Now we turn to the main problem:

6.4. Let K be the class of X-algebras (4, f.>,-.; we suppose X' has IPP
and the free X-algebra F°(w) exists. Then we can define new operations
JaorSfasr - oSy - (@ £y < p) on the Z-algebras such that the arising class

K of algebras and the mapping

{4, [ Dyca > A, fydyep

have the following properties:

(@) <A, f,Dy<a is a L-subalgebra of (B, g.>,. if and only if {(4,f >, s
is a subalgebra of (B, ¢.>,-s;

(b) let  map 4 into B; ¢ is a Z-homomorphism of (4, f ). into
(B, g,)y<a if and only if it is a homomorphism of (4, f, >, . into (B, g,>,<s;

(c) the free K-algebras exist.

Theorem 6.4 is the best possible in the following sense:

6.5. Suppose that the conclusion of 6.4 hold for the axiom system X.
Then 2" has IPP and $§°w) exists.

The simplest illustration of 6.4 is given by an axiom system X' in which
all existential quantifiers are of bound one, i.e. the inverses are unique. Then
the new operations f,, f,.,, . . . are simply the Skolem-functions.

7. Appendix

Now we suppose that every axiom in X is an open formula, i.e. of the
form

(7.1) () <+ + () (F By » s @)) s
Instead of (7.1.) we will write simply
(7.2) Y, ..., z,),

which contains no quantifier.
The conjunctive normal form of ¥ be

VWAL AP,

and we replace ¥in X by ¥, . . ., ¥,. Thus we may suppose that every ¥ ¢ X
is of the form
(7.3) W Nissa N

where every ¥, is a prime formula or a negation of a prime formula.

If every ¥ ¢ X is of the form (7.3) then we say that X' is in the normal
form.

Let X' be in the normal form. X' is reduced if every ¥ € X' is reduced in

the following sense: either & = 1 or the sequence (1, 2, .. ., k> has no proper
subsequence (i, ..., 7,> (n < k) such that ¥ is equivalent to ¥”:
(7.4) SN o N

More precisely to say, X is not equivalent to (Z\{¥}) U {¥’}.



FREE ALGEBRAS OVER FIRST ORDER AXIOM SYSTEMS 199

If ¥is not reduced then there may be many sequences <7, .. ., 1,y for
which X' is equivalent to (Z™\{¥}) U {¥’}. A reduction is the following:
we replace ¥ by a ¥’ for which » = 1 or n is the least possible.

A reduction of X' is the following: we reduce every ¥ ¢ X.

7.5. Let 27 be any reduction of X. Then X' is equivalent to 2”.

7.6. Any axiom system X' equivalent to an axiom system X” which is in
reduced normal form.

7.6 is due to PEREMANS [4].

Now suppose X' is in reduced normal form,¥ € X is of the form (7.3),
where ¥, .. ., ¥ y,are negations of prime formulae, ¥ 4., ..., ¥, areprime
formulae (it is allowed that s(¥) = 0 or s(¥) = k).

A P-specialization of Z(®y; . = o By) 18 PPy s o TV Tiys - Ty are
terms and each ¥,(T, ... T,), 1=<i=< s(¥) is identically false (i.e.
YT, ... T, holds always in every X-algebra).

An axiom ¥ € X said to have property P if either s(¥) = k or whenever
YT, ... T, is a P-specialization then there exists an s(¥) < ¢ < ksuch
that ¥ (T, . .., T,,) is identically true.

7.7. If ¥is of the form (7.3) and k = 1 then ¥ has property P.

7.8. If ¥is of the form (7.3) and s(¥) = k—1 then ¥ has property P.

7.9. Suppose ¥ in (7.3)isreduced, k> 1 and s(¥)=0. Then ¥ does not
have property P.

An axiom system X" has property P if every axiom ¥ € 2 has it.

The main result of this section is the following:

7.10. The free algebra F(w) over the class of all X-algebras exists if
and only if 2 has property P.

7.7 and 7.10 together yield a result of BIRkHOFF [1] and [2] while the
combination of 7.8 and 7.9 with 7.10 give the two main results of PEREMANS [4].

One can easily sharpen 7.10 by giving a necessary and sufficient condi-
tion for the existence of {(n), n < w.

(Received May 17, 1963.)
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CBOBOJOHBIE AJITEBPbBI HAl CUCTEMAMU AKCHOM IIEPBOI0
IMOPA KA
G. GRATZER
Pestome

Pestomupyst pe3yJbTaTbhl HECKOJILKHMX €ro cTaTheil, KoTopble BCKope OyayT
0ny0JIMKOBaHBI, aBTOP c000IaeT 0 HUX He NPUBOJS I0KA3ATEJILCTB.
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