ON SOME DISTRIBUTIONS CONNECTED WITH THE ARCSINE LAW

by
E. CSAKI and I. VINCZE

Introduction

1. In the following we shall consider both cases of the finite arcsine law,
namely the original form due to CHUNG and FELLER [2] and the general
case of SPARRE ANDERSEN [1] as well. In connection with these theorems we
shall determine some distributions and shall give for the discrete case combi-
natorial proofs based on one-to-one correspondences. In formulating our results
we shall make use of the model of CHUNG and FELLER:

Two gamblers 4 and B play a coin tossing game in which player A
wins or loses a unit according to whether the result of the coin tossing is
,;head” or ,,tail”. Denoting his winnings in the ¢-th trial by &, we have P(§;, =

= +1)= P(§; =—1) = — and the total amount of his winnings after
i 2 g

¢ trials by s;, = & 4+ & 4+ ... 4+ &, (s, = 0); we shall say that A4 leads over
B at the i-th trial, if either s, > 0 or s, = 0 but s;,_, = + 1. Among 2n trials
A may lead in 0, 2, 4, ..., 2n trials and we shall denote by 2y,, the number
of leading steps. As CHUNG and FELLER [2] have shown, y,, follows the finite
arcsine law; i.e. if &, &, ..., &, are totally independent, then

1 (2g9\(2n—2
(1) P(Vzn':.(]): ‘m( g[ gJ, g=0,1,2,...n.
2= g n—g

The limiting distribution, obtained by P. L&vy in [6] is

(2) lim P(y,, < na) = L J _;Jwv:_ = zarc sin e .
n->es z) Yzl —2) =
0
In §1 we shall determine the distribution of the number of trials at which
the winnings of player 4 makes at least 2k. As given in Theorem 1.1, the
following very simple modified form of the finite arcsine law is obtained:

1 {29\ (2n —2¢
(Zk): = —
3) Poi =g = %9 22 )
forg=1,2,...,n and
1 . 2n
4 P& — 0) = - l
) =l > [ -

281



282 CSAKI—VINCZE

In order to obtain a simple combinatorial proof for this relation, we shall
give a new proof for the finite arcsine law. (It is to be remarked, that (3) and
(4) can be derived from the finite arcsine law with the aid of generating func-
tions too.) In this § we shall give a numerical example and consider the limit-
ing distribution.

In §2 we shall determine the joint distribution of two random variables:
the number of leading steps and the number of winning series of player A.
A winning series is a sequence {s,, 8,44, - - -, 8, } for which §; > 0, j = »,v+1,
<o py but s, =s,., =—1. (We make the agreement, that s_, = —s,.)

In §3 we shall consider the case s,, = 0 for which CHUNG and FELLER
in their cited paper found the well known result

: 1
P(72n29j32n20)2n+1, g=0,1,...n,

i.e. in this case y,, has a uniform distribution.

In § 4 we shall turn to the general case. Let (&, &, ..., &,) be a sequence
of independent, identically distributed random wvariables with continuous
and symmetric distributions. Let us denote the partial sums by S, =0,
8;=§& +&+... +&,4=1,2,...,n and by I'{"" the number of 8/ s
(t=0,1, ..., n) exceeding the value of the partial sum at the k-th ladder
index (see [5] p. 82). We obtain the following simple result, corresponding
to (3) and (4):

; 1 (2¢g)\(2n—2g—Fk
) PP =g = g
27 q n—g
for ¢ =1, 2, .»eym and
k ;
1 (20—
4’ P(I'® =0) = , P
() ( ) ]22_[ S

Both (3) and (37) give the respective arcsine law for k = 0.

Our formulas in §1—3 are derived for the special random variables
& = -£1; according to known invariance principles our limiting distributions
are however valid for more general random variables as well.

§ 1. The number of trials with an accumulated gain exceeding 2k

1. In the following we shall make use of the geometrical description
of the game. Let us consider in a coordinate-system the polygonal line whose
vertices have abscissae ¢ and ordinates s; (i =0,1, 2, ..., n). This figure
will be called a path.

Obviously 7 trials may occur in 27 different ways each with the common
probability 2.

Let 2y2H denote the number of indices i (i = 1, 2, ..., 2n) for which
eitherys; > 2k or s; = 2k but s,_; = 2k + 1, where k is a non-negative integer.
There holds the following
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Theorem 1.1.

1 (2g9)(2n—2g ]
3 P(y@h =g)= — =1,2,...m—%,
3) ol b A N
! X 2n
4 P& = 0) — — J :
@ s D [n £
Let us now denote by A§¥), the set of paths (sg, s, ..., $y,) for which
SZ(gk)z Sn = 2k and by B@¥, the set of paths (sg, 8, ..., 8,) for which
s =

Tt is trivial that

1 (29 2n — 2¢g
P(syiioy= 83 = 2k) = —
(Z(n g) 2 ) 92n g)(n—g—i—k

and therefore by establishing a 1—1 correspondence between the sets
AZR —p and BEY, formula (3) will be proved.

To begin with, we shall give the® 1—1 correspondence for k = 0
i.e. for the classical arcsine law.

Let (s, 8y, ..., 8,) be an element of BR,, . For the cases g = 0 and

g = n we refer to lemma 2 in [3], for 1 < g < n we shall distinguish 4 cases:

a) &=+ 1, &;;>0
b)Y &= i 8 >0
¢l §§="T1s 8 <0
d &=-—1, Syn—1 < 0.

First we consider the case a).

Let us denote by 2a; = j;, 2(ay + ap) =y, - .-, 2( + ... + &) =,
the points where in the sequence (s, s, ..., 8,) a change of sign takes place,
ie. (8 Sjgn --+»85,,) ©=0,1,...,t are either winning or losing series;
let be 2a,,;, = 2n— j,. The winning series are of length 2a,, 2a,, ... for
which @, 4 05 4 ... =¢. The last series has the property (s;, =0, s,
=00, S 2 0) .

With respect to lemma 2 in [3] this last series corresponds to a path,
(83(g—arssy - - - Ssg) for which 85, 4,y = 83, = 0. Now we define (3o, o,
v o oy Sytpeapy) B8 GItHOr (8, . .. 058, YOF (85 .. ., —8; ) according to whether
’ ’ ’

S2(g—_az+l)+1 = _1 or + 1 Further Iet (Sz(g—ﬂl+1—...—ﬂl:—zi+x)’ b "" Sz(g—ﬂl+1—...—ﬂl—:i—x))
be either (s;,_,,, . <8 aiy) OF (8 - - 8, ) according 10 Sycg_ap, —...—apsiyt1=
= —1 or 1. Similar construction is made for (sj,, ..., 8,), 1.e. we join the

losing series one after the other, reflecting every second to obtain intersection
between two consecutive ones. The first (s,,,. . .) will be defined by $185g41= t1.
The resulting path (sg, sj, ..., 85, ..., 83,) is of type Ao i
In the other cases, similar constructions can be performed. The winning
series in (sg, 8y, - . ., Sy,) Will be transformed into (sg, s, ..., ség) while the
l(})silng series into (s3,, S3g41, e s,;g) in such a way that in case b) and d)
81 82041 = —1 and in case c) $; 8504, = +1.
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In the reversed procedure, i.e. if we start from a path (sg, s1, ..., 8,) of
A5, the number of series occurring in section (s, 81, .., 83g) and in section
(SZg’ ..., 8,) are separately considered. If this number is greater in (so, os'y Bag)
than in (szg, ..., 8,) we obtain case a) or b), according to whether sisj,,, = +1
or —1. If more intersections take place in the last section, we are led to case
c) or d), according to whether sis;,,; = +1 or —1. If the number of series
equals in both sections, we obtain case b) or ¢), according to whether ss5,., =
= —1 or 1.

This argument shows that the correspondence between the sets Af),,
and Bf),, is one-to-one.

Turning to the case k > 1 we remark that a one-to-one correspondence
holds between A, and BY g as well.

If 2r denotes the first index for which s, = 2k then — similarly to the

foregoing — the section (s,,, Sy,41, - - -» 82,,) can be corresponded to a section
(Srs S3r415 « - -» 83p) for which s = 8, o = 85, = 2k. Thus the path
(8580 S 8 (8 e oy 8oy, belongs to A$9,,. This correspondence

can be reversed, which proves formula (3).
In order to prove formula (4) we have to substitute in (3) the value
g = 0 and instead of k the_variable index j. In this case

1
P( max s;,=2j)=P( max §;,=2j—1) = — L ]
0<i<2n 0=i<2n 22 \n 4§
for 4= 1,2, . .., and
1 (2n
P( max s;,=0) = — :
0<i<2n D2,
Summation over j leads to our formula (4).
The limiting distribution is given by
Theorem 1.2. In case k ~ y)/2n
2y“
1 T 1—x
(5) lm P20 < an)= V J e~ 2 df + — J —_—dx, 0<a<l.
n-—se 4 Vx 1 -—.T)

The proof can easily be derived by means of well known asymptotic
formulae.

2. Letusnow consider the shape of the distributions obtained in Theorems
1.1 and 1.2. These distributions are of course, not symmetric, namely the
most likely value of y2 is 0 and the values close to n — k have small proba-

2y
bilities, if k0. The density function 23 ——_1—_~e 1=x of the limiting
n Vo —x)

distribution isinfinite at * = 0 and it is 0 at @ = 1, if y =~ 0. It could be expected
that the probabilities are monotonically decreasing from x = 0, but this is
not always the case.

Let us consider the limiting density function,

1 BECYAR

— _1_ 1—x
Fe) = 1 Va:(l —x) ‘
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and its derivative
2y2
4 _———1 A S A i il 2% 4+ (4y2 —3)x + 1
= x —3)z :
Jy(@) 2a9(1 x)5/2[ (4y ) ]

We can see that there is a critical value of y, namely y, = E , for

which f’(x) = 0 holds for a single value of z, namely x = Ju

V2
If y> y, then f(x) <0 for 0 <z <1; for 0 <y <y, fi(x) =0
has two roots, z,(y) and ,(y), for which % < x,(y) <i <2(y) <1; in

2

this case

<0, if O<z<zy)
=0, if z=@

y(@)) >0, if o, (y) <@ <2,y(y)
=0, if =@

<0, if =zy<z<l.

Taking into account, that lim f)(x) = 0, we obtain the shape of the
x—1

density function.
The value f,(,(y)) of the local maximum tends to infinity as y — 0.

The same property holds also for finite n; fory < V§2_ : J2n there is
=)
2

are monotonically decreasing. We give the probabilities for » = 15 with
k=1 and k= 2.

a wave in the sequence of probabilities, for y > /27, however they

g k=1 k=2
0 0,4153 0,6384
1 0,0697 0,0567
2 0,0540 0,0432
3 0,0465 0,0365
4 0,0421 0,0324
5 0,0394 0,0296
6 0,0377 0,0274
7 0,0366 0,0256
8 0,0360 0,0240
9 0,0259 0,0224
10 0,0361 0,0206
11 0,0368 0,0184
12 0,0378 0,0151
13 0,0387 0,0097
14 0,0374 —

3 A Matematikai Kutaté Intézet Kozleményei VIIL. A/3.
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§ 2. Joint distribution of the number of leading steps
and the number of winning series

According to the definition of a winning series given in our introduction,
we formulate the following

Theorem 2.1. Let us denote by Ay, the mumber of winning series, then

2 g(n—yg)

P(l2n =1, Yan = g) =

2n — 2¢g 2n —2¢g
(2n — l I—1)(
fen—g+0[*" 2%+ a—vara, 2272 .

ifl=12,...,n g=4L1+4+1, ...;,0—1;
in the case of g = 0, also | = 0 and

2n

P(AZH =0, Yari = 0) = oon .

In the proof of Theorem 2.1 we refer to the considerations used in § 1
for the proof of the arcsine law.

In case a),i.e. s, = +1, s,,_;> 0 there are | —1 complete winning
series and one incomplete winning series, their total length being 2¢; accord-
ing to Theorem 1 of [3] p. 283 the number of the possibilities equals

29—1]_li9_( 29]
g8 g g1

To each of these winning series there belong complete losing series of
total length 2n — 2¢, the number of the latter being — according to Theorem
1.2 of [4] p. 101 —

2

i—1

2n — 2¢
n—g y

n—g—1+4+1

[ 2n — 2¢
n—g—l+l]

possible paths. By the same argument we obtain in case b)

Hence case a) results in

U—UUt@[M
g(n—g) =i

Wl +9) ’2gJ 2n—29]

gin — g) b—ln—g—f
in case c)

l(n—g—}—l)( 2¢g (2n—2g)

gn—g) lg—1Ulln—g—1’
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(2n—2g]
n—g—1 '

The sum of the values in a)—d) leads to our formula in Theorem 2.1.
For the limiting case we have the following

in case d)
l(n—g—l)( 2g
gn—g) \g—1

Theorem 2.2.

2u?

lim P(A 2 Zn) = — o= dud
im P(4, <y l2n,y,, < 2n) Jj[@l—v)]"ﬂe wdv,

n—>oco

for 420, 1 =2>0.
This is a consequence of simple and known asymptotic relations. Integ-
ration with respect to ¥ and z resp. leads to the known relations

Y
lim P(4,, < y)2n) = V?’;z Je—sw du,
n—seo 7 4

z

1 du
]'m P n < ) = — J e s
nl—»o (an < n2) n ) Yu —u)

§3. Some remarks concerning the case s,, = 0.

In this § we consider the case, when the game becomes balanced after
2n steps, i.e. we assume throughout the condition s,, = 0. We shall consider
distribution laws of type dealt with in our § 1, i.e. concerning the random
variables 2y and 2{). The first relation gives the number of steps in which
the cumulative gain of A exceeds k and A{) denotes the number of series of
this kind. Authors determined in their paper [4] the following distribution

P(“Zn > k, ?"2’2 =45 1(2’;1) =1),
where #,, denotes the maximum of the cumulative gain of 4 in the course

of 2n games.
For limiting distribution we obtained

R B

V2n V—n n

S (u-+2av)?
B J f Ot

lim P

N—»>ce

<z]=

b
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The extension of the distribution

1
P(72n=g|82n:O):n+la g=0,1,...n
is obtained by substituting y = oo. For the density function
(2k) e
lim P( ] J ¢ =D dpd
N> V 2n n [v(1 —v)]¥2
holds.
It can be seen that — similarly to the arcsine law — the density is

infinite for z = 0, it is however zero for z = 1 in consequence of the conditions
8= 0 and, @ >0.

The uniform distribution belonging to the case @ = 0 can be obtained
using the substitution

2a2

. 2
1—w»

We obtain for our above expression

J —"dccdz,
Vyz (.’1:—2a2

2a?

1—z

which is the analogon of the expression (5) in case s,, = 0. Substituting
a = 0 we obtain

n—»oo

limP(z<@<z+dzJ J—_ eFdvdz=dz.
n x

§ 4. The case of continuous and symmetric variables

Let &, &, ..., & be totally independent random variables with a
common continuous symmetric distribution function. Let further be 8, = 0,
S;=& 4+ ... +& ¢=1,2,...,n. An index 7 is called a ladder index
if 8y < S,,y— 0,1, ...,7—1. It may occur that 7 =0 is the only ladder
lndex, the proba,blhtv of which is in consequence of the arcsine law (the

case g = 0)
1 [2n
2n(n )’
If there are several ladder indices ¢, <i, < ... <4, then S; <8, <.

... <8;. Using the above assumptions and notations, there holds the
following
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Theorem 3.1. Denoting by I'{? the number of terms in (Sy, S8y, ..., S,)
which exceed S;, the following relations hold :

1 (2¢\(2n —2g—Fk
3/ P(I"'% =
il | B ?”49)( n—g J
for g=1,;2, ...,n and
g Prm—m—-k L Fn—j
@) (g = —;()22"_].‘ : ]

Remark: /', has formally the same distribution as y&9.
Let us denote by (p(k) the probability that r is the k-th ladder index in

(Sgs 81, - -+, S,). Then using the arcsine law
n—g
P(F(")=q)= ® 1 2g9) (2n — 27 — 2¢)
n g r 92n—r aaa b
Femr g B ==
holds-for g == 1,2; .: 5

According to [5] p.’.86—87 for symmetric variables

wz_( mzl—ﬂl—VT:bk
holds. As

(i) =
£ 2\ § J1—=2
P(I'¥) = g) is the coefficient of z"~¢ in the generating function

2—%(29
g

1

Vl—z

(1 =)1 =2k

As the known relation

>

a=0

k+2a

a

-l
TSR et R

holds, the result is our formula (3').
Substituting ¢ = 0 and § instead of k in (3”) summation over j from 0
to k gives (47).
(Received January 11, 1963)
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0 HEKOTOPBIX PACIIPEJNEJIEHUAX CBSA3AHHBIX C APKCUHYC
3AKOHOM

E. CSAKI u I. VINCZE

Pesiome
1. Iyers {&} (=1, 2,..., 2 n) nocea0BaTeJIbHOCTb HE3ABUCHMBIX CJIy-
YailHbIX BeJMUMH, g KoTopeix P(§, = + 1) =P, =—1) = —;— I[lyctb
panee 8, =0,8, =&+ ... +&@GE=1,2,...,2n). 2 y2Y oGo3navaer uucio

UHJIEKCOB %, JUISl KOTOPBIX Wi 8; > 2k, unu s; =2k u 8;_, = 2k + 1. Torna
UMEET MECTO COOTHOLIEHHE:

; 1 (2g)(2n — 2g
3 PO =g) =— =L
i el 22"(9J[n—g+k] 1

k

1 A
4 PO =0)=— > :
& L ) e ==k (n =t 7J

JloKasaTesJbCTBO 9TUX (HOPMYJI INPOU3BOJUTCS DJIEMEHTAPHBIM KOMOMHA-
TOPHBIM METOJIOM.
2. 2 — 1 obo3HayaeT YucI0 UHEKCOB 7 (0 < ¢ < 2 n), A1 KOTOPBIX §; = 0

U 8;_18;4; = — 1. ViMeeT MecTo ciejyrouee paBeHCTBO:
(ng
1 lg—1
Py =190 =¢) =——"—"— X
(A2n Vin = 9) e
2n — 2¢ 2n —2g
xlien—g+1 LT3 L ) :
{( g+)(n—g+lJ ; i g)n—g—l+1.}
U= 159 wenpWiid ==l £ Ly .o gmie—=i]
u
1 (2%
P()‘Zn:O!Vg)rz:O):%[n .
3. Nycers {&} (¢ =1, 2,..., n») nocie0BaTebHOCTb 0JMHAKOIO pacrnpe-

JIeJIEHHBIX He3aBUCHUMBIX CJIyYaiiHbIX BeJIMUMH C HeNpephiBHON (QyHKLMe# pac-
npefesnenus F(x), obnapawomeii coficreom F(x) = 1 — F(— x) u nyctb S (=0,
=8+ ... +t§(E=12,...,0).
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Mujexc ¢ HasbiBaeTcsi CTymeHblo, ecimm S, < S, ;<8 ..., 8,1 <8;
[ycth ¥ < 4y < ... < ¢ < ... 0003HAYAKT BCce CTyINEHU B MOCJIE/0BaTE)Ib-
HOCTH (S, Sy, ..., 8p). I’ 0603HayaeT YMCI0 MHIEKCOB § JUIst KOTOPBIX S;> 8,
Torja umeer MecTo

I} 2n — 29 — k
(3) P(I'® — g) — Sl el S, 9 i
22n—k g n—g
- 1 2n
4 P(r)=10)= —
() (g =0) 222,,;1‘(”_7.
i=

B cayvae k£ = 0 dopmyJsl (3) u (3") nepeHocsitcst Ha GopMyJIbl CreLUab-
HOr0 M 00IIEro apKCMHYC 3aKOHOB.
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