ON A “BIG DEVIATIONS” PROBLEM

by
JOzser PERGEL

A result of Yu V. LiNNix [1] states that if &, ..., &, are independent
random variables with the same distribution function F(x) of the form
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and the density function exists, then, denoting by F,(x) the distribution
function of the variable
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uniformly in @ where r(x, |/n) is a rational function of both variables. Further-
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more, if x> n? Ta +e, then
(4) 1 — Fp(x) ~n(1 — F(z|n)).
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Yu. V. LINNIK raised also the problem of finding an analogue of this theorem,
for the case when F(x) is of the form:
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where G(») is a functions of bounded variation. In the present note this prob-
a-+ée
lem is solved. We assume that _Yd | G(») | > 0 for every £ > 0.
We state and prove the following theorem.

Theorem. Let &, .. ., &, be mdependent random variables with a common
distribution function F(x) of the form (5) and let us suppose that the density

Sfunction exists. Then (3) and (4) are valzd , ot r(x; Vn) is replaced by a function

of the form
M
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where q(x, v) is a rational function of x bounded as x— o=, and a continuous
SJunction of v as K(v) is a function of bounded variation.

Proof. For sake of simplicity, let us suppose, that the variables &; are
symmetrical, i.e. P(§;> z) = P(§; <—=x) for > 0 and that D%*¢;) = 1.
It is easy to see, as in [1] that though the supposition of symmetricity simpli-
fies the calculations, it does not play a siginificant role.

Let @(t) be the characteristic function of ;. Then
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where h(¢) is an analytical function. As to the second term of (7) we have
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here hy(f) is 4a + 5 times differentiable. Now
4a+5 4a+5 , = 2
(9) j xtxdj dG(v J' (Jeitx d {};])dG(W)
1 a g
and
(10) [ oitx d %J TR J g e = By (1) + Poft) j o




ON A ,,BIG DEVIATIONS” PROBLEM 305

where h;(t) (j = 1,2) is a polynomial and {r} is the fractional part of ».
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as hy(t) = c(»)t"l we have
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Finally we obtain the following formula for the characteristic function ¢(¢).
B

(13) p(t) = | dG,(v) + O(t1+), (t>0,t—0).
b

As it is easy to show, there exist b;, B, and G,(») such, that

(14) (fﬂdG )P = grdG OF

According to our assumptions M(§) = 0, D(&) = 1, that is
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and thus it follows from (12) and (13), that there exists &, > 0 such, that for
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For n = 2 we have for the density f,(x) of (2)
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as & and hence f,(x) too, are symmetrical. In the same way, as in [1] it can
be shown, that
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From (16) we have
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where Hi(v) and H,(») are functions of bounded variation. Substituting the
expression in (19) for (p(¢))" into (18) we get
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changing the order of integration in (20) we obtian
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By substituting ¢ =
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The following asymptotic expansion holds for the integral
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(see [2] p. 61).
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Finally we find for f,(x)

co(v
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h@ = Tt J [ = )+
V2n o<ng Jn v_l
(26)
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n
where L is as large as we want. PR
It can be shown by the same method as in [1], that for  <n? @
(27) 1 — F,(a) ~n(l — F(z)n))
holds.

It follows from (26) and (27), asin [1], integrating (26) from z (1 <z < n?)
to m?

(28) 11— F,@)—=1—g@) + R n) + O(n-2) + 0 (1 s

n

where R(x, n) is according to our statement of the form

M
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It follows from (28) and (27) that for n2 < ax < n?

(30) R@n)~1— Fy@)~n'| (@)n)~d60).

a

For (29) the relation (30) must hold for x > n? too. As for & < n? the error
7

terms in (28) may be neglected in comparison with 1 — F, () and for > n*
1 — @(z) is infinitely small in comparison with 1 — F, (x), the theorem
is proved.

(Received February 1, 1963)
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OB OIHON MPOBJIEME ,,B0JIbIINX YKJIOHEHUA”
J. PERGEL

Pe3iome

Iycrs &, ..., &, cayyaiinple BeMYnHBL ¢ QyHKUMel pacnpejesieHus Buja
(5), To umeeT MecTo (3) paBHOMepHO Ha Bceil ocn, rjie BMecTo gynxumeit 7(x, J/n)
nuwercst R(x, n) Buaa (6), a ¢(x, v) — pauuonanbHasi GyHkuus ot x, K(v) —
(GyHKUMS OrpaHWYeHHON Bapualuy.
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