ON A "BIG DEVIATIONS" PROBLEM

by József PERGEL

A result of Yu V. LINNIK [1] states that if ξ_1, \ldots, ξ_n are independent random variables with the same distribution function F(x) of the form

(1)
$$F(x) = \frac{A_a}{|x|^a} + \dots + \frac{A_{\delta a+5}}{|x|^{4a+5}} + O\left(\frac{1}{|x|^{4a+5+\varepsilon}}\right); \text{ for } x \to -\infty$$

$$1 - F(x) = \frac{A_a}{x^a} + \dots + \frac{A_{\delta a+5}}{x^{4a+5}} + O\left(\frac{1}{x^{4a+5+\varepsilon}}\right); \text{ for } x \to \infty$$

$$(a \text{ integer, } a > 3, 0 < \varepsilon < 1)$$

and the density function exists, then, denoting by $F_n(x)$ the distribution function of the variable

(2)
$$\frac{\sum_{i=1}^{n} \xi_i - n\mathbf{E}(\xi_1)}{\sqrt[n]{n} \mathbf{D}(\xi_1)}$$

we have

(3)
$$\frac{F_n(x)}{\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{u^2}{2}} du + r(x, \sqrt{n})} \to 1 \quad (x \le -1);$$

$$\frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-\frac{u^2}{2}} du + r(x, \sqrt{n}) \to 1 \quad (x \ge 1) \text{ for } n \to \infty$$

uniformly in x where $r(x, \sqrt{n})$ is a rational function of both variables. Furthermore, if $x > n^{\frac{3}{2} + \frac{1}{a} + \varepsilon}$, then

$$(4) 1 - F_n(x) \sim n(1 - F(x \sqrt[n]{n})).$$

Yu. V. Linnik raised also the problem of finding an analogue of this theorem, for the case when F(x) is of the form:

(5)
$$F(x) = \int_{a}^{a+5} \frac{dG(v)}{x^{v}} + O\left(\frac{1}{x^{4a+5+\varepsilon}}\right), \text{ for } x \to \infty$$

$$F(x) = \int_{a}^{a+5} \frac{dG(v)}{|x|^{v}} + O\left(\frac{1}{|x|^{4a+5+\varepsilon}}\right), \text{ for } x \to -\infty,$$

where $G(\nu)$ is a functions of bounded variation. In the present note this problem is solved. We assume that $\int_{-a}^{a+\varepsilon} d \mid G(\nu) \mid > 0$ for every $\varepsilon > 0$.

We state and prove the following theorem.

Theorem. Let ξ_1, \ldots, ξ_n be independent random variables with a common distribution function F(x) of the form (5) and let us suppose that the density function exists. Then (3) and (4) are valid, but $r(x, \sqrt[n]{n})$ is replaced by a function of the form

(6)
$$R(x,n) = \int_{m}^{M} \frac{1}{n^{\nu} x^{\nu-1}} q(x,\nu) dK(\nu)$$

where q(x, v) is a rational function of x bounded as $x \to \infty$, and a continuous

function of v as K(v) is a function of bounded variation.

Proof. For sake of simplicity, let us suppose, that the variables ξ_i are symmetrical, i.e. $\mathbf{P}(\xi_i > x) = \mathbf{P}(\xi_i < -x)$ for x > 0 and that $\mathbf{D}^2(\xi_i) = 1$. It is easy to see, as in [1] that though the supposition of symmetricity simplifies the calculations, it does not play a significant role.

Let $\varphi(t)$ be the characteristic function of ξ_i . Then

(7)
$$\varphi(t) = \int_{-\infty}^{\infty} e^{itx} dF(x) = h_1(t) + 2 \operatorname{Re} \int_{1}^{\infty} e^{itx} dF(x)$$

where $h_1(t)$ is an analytical function. As to the second term of (7) we have

(8)
$$\int_{1}^{\infty} e^{itx} dF(x) = \int_{1}^{\infty} e^{itx} d\int_{a}^{4a+5} \frac{dG(v)}{x^{v}} + h_{2}(t),$$

here $h_2(t)$ is 4a + 5 times differentiable. Now

(9)
$$\int_{1}^{\infty} e^{itx} d \int_{a}^{4a+5} \frac{dG(v)}{x^{v}} = \int_{a}^{4a+5} \left(\int_{1}^{\infty} e^{itx} d \left(\frac{1}{x^{v}} \right) \right) dG(v)$$

and

(10)
$$\int_{1}^{\infty} e^{itx} d\left(\frac{1}{x^{\nu}}\right) = -\nu \int_{1}^{\infty} \frac{e^{itx}}{x^{\nu+1}} dx = h_{1\nu}(t) + h_{2}(t) \int_{1}^{\infty} \frac{e^{itx}}{x^{\{\nu\}}} dx$$

where $h_{j\nu}(t)$ (j=1,2) is a polynomial and $\{\nu\}$ is the fractional part of ν .

(11)
$$\int_{1}^{\infty} \frac{e^{itx}}{x^{\{v\}}} dx = h_{3v}(t) + t^{\{v\}-1} \int_{0}^{\infty} \frac{e^{iy}}{y^{\{v\}}} dy$$

as $h_{2\nu}(t) = c(\nu)t^{[\nu]}$ we have

(12)
$$\int_{-\infty}^{\infty} \frac{e^{itx}}{x^{\nu+1}} dx = h_{4\nu}(t) + c(\nu) t^{\nu}.$$

Finally we obtain the following formula for the characteristic function $\varphi(t)$.

(13)
$$\varphi(t) = \int_{b}^{B} t^{\nu} dG_{2}(\nu) + O(t^{4a+5}), \qquad (t > 0, t \to 0).$$

As it is easy to show, there exist b_1 , B_1 and $G_3(v)$ such, that

(14)
$$\left(\int_{b}^{B} t^{\nu} dG_{2}(\nu) \right)^{n} = \int_{b_{1}}^{B_{1}} t^{\nu} dG_{3}(\nu) .$$

According to our assumptions $\mathbf{M}(\xi_1) = 0$, $\mathbf{D}(\xi_1) = 1$, that is

(15)
$$\varphi(t) = 1 - \frac{t^2}{2} + O(t^3) \qquad (t > 0, t \to 0)$$

and thus it follows from (12) and (13), that there exists $\varepsilon_0>0$ such, that for $0\le t\le \varepsilon_0$

(16)
$$\log \varphi(t) = -\frac{t^2}{2} + \int_3^{B_3} t^{\nu} dG_4(\nu) + O(t^{4a+5}).$$

For $n \ge 2$ we have for the density $f_n(x)$ of (2)

(17)
$$f_n(x) = \frac{\sqrt[n]{n}}{2\pi} \int_{-\infty}^{\infty} (\varphi(t))^n e^{-\sqrt[n]{n}itx} dt = \frac{\sqrt[n]{n}}{\pi} \operatorname{Re} \int_{0}^{\infty} (\varphi(t))^n e^{-\sqrt[n]{n}itx} dt$$

as ξ_1 and hence $f_n(x)$ too, are symmetrical. In the same way, as in [1] it can be shown, that

(18)
$$f_n(x) = \frac{\sqrt[n]{n}}{\pi} \operatorname{Re} \int_0^{\frac{\log n}{\sqrt[n]{n}}} (\varphi(t))^n e^{-\sqrt[n]{n} itx} dt + O(e^{-\varepsilon_1(\log n)^2}).$$

From (16) we have

(19)
$$(\varphi(t))^{n} = e^{n\log\varphi(t)} = e^{-n\frac{t^{2}}{2}} \sum_{k=0}^{\infty} \frac{\left(n\int_{3}^{B_{3}} t^{\nu} dH_{k}^{*}(\nu)\right)^{k}}{k!} =$$

$$= e^{-n\frac{t^{2}}{2}} + e^{-n\frac{t^{2}}{2}} \sum_{0 < k \leq N} n^{k} \int_{3k}^{D_{k}} t^{\nu} dH_{k}(\nu) + O(t^{4a+5})$$

where $H_k^*(v)$ and $H_k(v)$ are functions of bounded variation. Substituting the expression in (19) for $(\varphi(t))^n$ into (18) we get

(20)
$$f_n(x) = \frac{\sqrt{n}}{\pi} \int_0^{\log n} e^{-n\frac{t^2}{2}} \sum_{0 < k \le N} n^k \int_{3k}^{D_k} t^{\nu} dH_k(\nu) e^{-ixt} dt + \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} + O(n^{-2a-2});$$

changing the order of integration in (20) we obtian

$$(21) \quad f_n(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} + \sum_{0 < k \le N} n^k \int_{3k}^{D_k} \left(\int_{0}^{\log n} e^{-\frac{t^2}{2}} t^{\nu} e^{-ixt} dt \right) dH_k(\nu) + O(n^{-2a-2}).$$

By substituting $t = \frac{\tau}{\sqrt{n}}$

$$(22) \ f_n(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} + \sum_{0 < k \le N} \int_{3k}^{D_k} \left(\int_{0}^{\log n} e^{-\frac{\tau^2}{2}} \left(\frac{\tau}{\sqrt{n}} \right)^{\nu} e^{-ix\tau} d\tau \right) dH_k(\nu) + O(n^{-2a-2}).$$

As

(23)
$$\int_{\log n}^{\infty} e^{-\frac{\tau^2}{2}} \tau^{\nu} d\tau = O\left(e^{-\frac{1}{4}(\log n)^2}\right),$$

we have

$$(24) \ f_n(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} + \sum_{0 < k \le N} \int_{3k}^{D_k} \left(\int_0^\infty e^{-\frac{\tau^2}{2}} \left(\frac{\tau}{\sqrt{n}} \right)^{\nu} e^{-ix\tau} d\tau \right) dH_k(v) + O(n^{-2a-2}) \ .$$

The following asymptotic expansion holds for the integral

(25)
$$\int_{0}^{\infty} e^{-\frac{\tau^{2}}{2}} \tau^{\nu} e^{-ix\tau} d\tau = \frac{c_{0}}{x^{\nu-1}} + \dots + \frac{c_{L}}{x^{L+\nu}} + O\left(\frac{c_{L}}{x^{L+\nu+1}}\right)$$
(see [2] p. 61).

Finally we find for $f_n(x)$

(26)
$$f_n(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} + \sum_{0 < k \le N} n^k \int_{3k}^{D_k} \left(\frac{1}{\sqrt{n}}\right) \left(\frac{c_0(\nu)}{x^{\nu-1}} + \dots + \frac{c_L(\nu)}{x^{L+\nu}}\right) dH_k(\nu) + O(n^{-2\alpha-2}) + O\left(\frac{1}{n} x^{-L}\right)$$

where L is as large as we want. It can be shown by the same method as in [1], that for $x < n^{\frac{3}{2} + \frac{1}{a} + \varepsilon}$

(27)
$$1 - F_n(x) \sim n(1 - F(x\sqrt{n}))$$

holds.

It follows from (26) and (27), as in [1], integrating (26) from $x \ (1 < x \le n^2)$ to n^2

(28)
$$1 - F_n(x) = 1 - \varphi(x) + R(x, n) + O(n^{-2a}) + O\left(\frac{1}{n}x^{-L+1}\right)$$

where R(x, n) is according to our statement of the form

(29)
$$R(x, n) = \int_{m}^{M} \frac{1}{n^{\nu} x^{\nu - 1}} q(x, \nu) dk(\nu).$$

It follows from (28) and (27) that for $n^{\frac{7}{4}} < x < n^2$

(30)
$$R(x,n) \sim 1 - F_n(x) \sim n \int_a^{a+\varepsilon} (x \sqrt{n})^{-\nu} dG(\nu) .$$

For (29) the relation (30) must hold for $x > n^2$ too. As for $x < n^2$ the error terms in (28) may be neglected in comparison with $1 - F_n(x)$ and for $x > n^{\frac{7}{4}} - \Phi(x)$ is infinitely small in comparison with $1 - F_n(x)$, the theorem is proved.

(Received February 1, 1963)

REFERENCES

[2] Erdélyi, A.: Asymptotic expansions. Dover Publications, Inc.

LINNIK, Yu. V.: "On the probability of large deviations for the sums of independent variables". Proc. 4 th. Berkeley Symp. Mat. Stat. and Prob. Vol II. pp. 289—306. Univ. California Press, Berkeley, Calif. 1961.

об одной проблеме "больших уклонений"

J. PERGEL

Резюме

Пусть ξ_1 , ..., ξ_n случайные величины с функцией распределения вида (5), то имеет место (3) равномерно на всей оси, где вместо функцией $r(x, \sqrt{n})$ пишется R(x, n) вида (6), а q(x, v) — рациональная функция от x, K(v) — функция ограниченной вариации.