ON THE CIRCUITS OF FINITE GRAPHS

by

LAJOS PÓSA

§ 1.

The following three statements were proved by G. A. DIRAC: ([2] Theorem 2, 3 and 4.)

(A) If every vertex of the graph G^1 is of valency $\geq k \ (\geq 2)$, then G contains a circuit having at least k + 1 edges.

(B) Let $G^{(n)}$ be a graph of $n \ (\geq 3)$ vertices, and let us assume that every vertex of $G^{(n)}$ is of valency $\geq n/2$. Then G is Hamiltonian (i.e. $G^{(n)}$ has a circuit containing all vertices).

(C) Assume that $G^{(n)}$ is twofold connected² and every vertex is of valency $\geq k$ where $n \geq 2k$. Then $G^{(n)}$ contains a circuit of at least 2k edges.

Several recent papers generalize (B) and (C). (S. [3], [4], [5], [6].) This paper contains some further generalizations and a sharpening of (A). In § 2 we show (generalizing (B)) that by a suitable sharpening of the lower bound n/2 for the valency of the vertices we can infer the existence of a Hamilton line which passes through certain prescribed paths. In § 3 — generalizing (A) and (C) — we show that circuits of length $\geq k+1$ resp. $\geq 2k$ exist even if certain vertices are of valency < k (in [6] we generalized (B) in this direction). In § 4 we show (Generalizing (B)) that certain conditions imply that there are $\leq j$ (j is a given integer) disjoint circuits and vertices (respectively disjoint circuits, edges and vertices), which contain every vertex of our graph.

Some notations: Vertices will be denoted by small Roman letters. The edge connecting a and b will be denoted by ab (or ba). The valency of a (i.e. the number of edges incident to a) will be denoted by v(a). $a \in G$ resp. $ab \in G$ means that the vertex a resp. the edge ab is in G. The empty graph contains neither vertices nor edges. $G^{(n)}$ denotes always a graph with n vertices. $G_1 \cup G_2$ denotes the graph which consists of the vertices and edges contained in G_1 and G_2 . $P = (a_1 \ldots a_n)$ denotes the path consisting of the *distinct* vertices a_1, \ldots, a_n and of the edges $a_1a_2, \ldots, a_{n-1}a_n \ldots (a_1)$ denotes the degenerate path which contains only the vertex $a_1 \ldots (a_i P a_j), 1 \leq i \leq j \leq n$ denotes the section of P

¹ In this paper we only consider graphs which do not contain loops or double edges.

² A graph $G^{(n)}$, $n \geq 3$ is called twofold connected if it is connected and has no cut point. A vertex x is called a cut point of the graph G if the omission of x and all the edges incident to x increases the number of the components of G.

between a_i and a_j . $C = (a_1 \dots a_n a_1)$, $n \ge 3$ denotes the circuit which contains the distinct vertices a_1, \dots, a_n and the edges $a_1a_2, \dots, a_{n-1}a_n, a_na_1$. The vertex a will also be considered as a circuit and will be denoted by (a). The length of a path or a circuit will denote the number of its edges.

Henceforth a graph will be called a *path-system* if its components are non-degenerate paths. The length of a path-system is the sum of the length of its paths.

Theorem 1. Let $n \ge 3$, $1 \le l \le n-2$ and k = [(n + l + 1)/2]. Let further $G^{(n)}$ be a graph every vertex of which has valency not less than k and let S be any path-system of length l in G. Then G has an H-line which passes through S (i.e. all the edges of S are edges of our Hamilton line).

Proof. Assume that the theorem is not true and let $G^{(n)}$ be a graph which satisfies the requirements of the theorem and which has a path-system S of length l through which there does not pass an H-line of $G^{(n)}$. Let G^* be a graph having the same vertices as $G^{(n)}$ and containing all the edges of $G^{(n)}$, and which does not contain an H-line passing through S, but if two unconnected vertices of G^* are connected by an edge then there is an H-line passing through S. (In other words G^* contradicts to our theorem and is maximal with respect to this property. We obviously obtain G^* by connecting unconnected vertices of $G^{(n)}$, since the complete graph spanned by the vertices of $G^{(n)}$ has an H-line passing through $S \cdot G^*$ clearly exists.)

Let a and b be two unconnected vertices of G^* , if we connect them by an edge we obtain a graph which has an H-line passing through S. This H-line clearly passes through the edge ab and hence G^* has an open H-line passing through S (an open H-line is a path which passes through all vertices of the graph) whose endpoints are a and b. Let

$$P = (a_1 \dots a_n), a_1 = a, a_n = b$$

be such an open H-line and denote by $a_{i_1}, a_{i_2}, \ldots, a_{i_p} (2 = i_1 < \ldots < i_p < n)$ the vertices of G^* which are connected with a_1 by an edge in G^* . By our assumption $p \ge k$. If $a_{i_a-1} a_{i_a} \notin S$ $(2 \le a \le p)$ then $a_{i_a-1} a_n \notin G^*$ (for if not then $(a_1 a_{i_a} a_{i_a+1} \ldots a_n a_{i_a-1} a_{i_a-2} \ldots a_1)$ would be an H-line of G^* which contains S). At most l of the edges $a_{i_a-1} a_{i_a}$ can belong to S and therefore (counting a_1 too) there are at least p - l vertices in G^* with which a_n is not connected by an edge. Hence

$$v(a_n) \le n - 1 - (p - l) \le n - k + l - 1 < k$$
.

This contradicts our assumptions and hence Theorem 1 is proved.

Now we show that Theorem 1 is best possible. Let $n \geq 3$, $1 \leq l \leq n-2$, k = [(n + l + 1)/2]. The vertices of $G^{(n)}$ are a_1, a_2, \ldots, a_n . The edge $a_i a_j$ (i < j) belongs to $G^{(n)}$ if and only if $i \leq k-1$. Clearly every vertex of our $G^{(n)}$ has valency $\geq k-1$. Let S be the path $(a_1 a_2 \ldots a_{l+1})$. It can be shown by a simple argumentation left to the reader that $G^{(n)}$ does not contain an H-line which passes through S.

356

§ 3.

First we prove the following sharpening of (A) (mentioned already in § 1):

Theorem 2. Let n > 0 and let us assume that for every $0 \le i \le k - 1$ $(k \ge 2)$ the number of vertices of valency $\le i$ of $G^{(n)}$ is $\le i$. Then $G^{(n)}$ contains a circuit of length $\ge k + 1$.

Proof. Consider the longest paths of $G^{(n)}$ and let

$$P = (a_1 \dots a_m), \qquad m \ge 2$$

be such a longest path, for which the sum of the valencies of the endpoints $v(a_1) + v(a_m)$ is maximal. Without loss of generality we can assume $v(a_1) \geq l \geq v(a_m)$. We show $v(a_1) \geq k$. Assume that this is not true and put $v(a_1) = p < k$. Clearly all the vertices connected with a_1 are in P (for otherwise P would not be a longest path.) Let these points be

 $a_{i_1}, \ldots, a_{i_n} \ (2 = i_1 < i_2 < \ldots < i_n \leq m)$.

By our assumption at least one of the p + 1 vertices

$$a_1 = a_{i_1-1}, a_{i_2-1}, \ldots, a_{i_p-1}, a_m$$

has valency > p. From $v(a_m) \leq v(a_1) = p$ it follows that this vertex must differ from a_1 and a_m , hence $p \geq 2$. Let $v(a_{i_{\alpha-1}}) > p$ $(1 < \alpha \leq p)$. But then $(a_{i_{\alpha-1}} \ldots a_1 a_{i_{\alpha}} \ldots a_m)$ is a longest path for which

$$v(a_{i_{a-1}}) + v(a_m) > v(a_1) + v(a_m)$$

which contradicts the maximality property of P. This contradiction proves $p \ge k$. But hence the length of the circuit $(a_1 \ldots a_{i_p} a_1)$ is at least k + 1 which completes the proof of Theorem 2.

The complete k-gon or the complete k-gon with an edge attached to it shows that in a certain sense Theorem 2 is also sharp (our graphs have k vertices of valency $\leq k-1$ and no circuits of length $\geq k+1$), but the question of its sharpness is not yet completely cleared up.

Now we prove the following sharpening of (C):

Theorem 3. Let $n \geq 2$ k, $k \geq 2$, $G^{(n)}$ be a twofold-connected graph. Assume further that for i = 1, 2, ..., k - 1 the number of vertices of valency $\leq i$ is $\leq i - 1$. Then $G^{(n)}$ contains a circuit of length ≥ 2 k.

Proof. I) Assume that the theorem is not true and let $G^{(n)}$ be a graph which satisfies the conditions of the theorem and for which the longest circuit has length < 2 k. As in the proof of Theorem 1, we construct the graph G^* which does not yet contain a circuit of length $\geq 2 k$, but if we connect two not connected vertices of G^* by an edge we obtain at least one circuit of length $\geq 2 k$. As in the proof of Theorem 1, G^* clearly exists, and satisfies the conditions of Theorem 3, furthermore its longest path has length $\geq 2 k - 1$.

Consider the longest paths of G^* and let

$$P = (a_1 a_2 \dots a_{m-1} a_m), \qquad m \ge 2 k$$

be such a maximal path for which $v(a_1) + v(a_m)$ is maximal. (v here denotes the valency in G^* .)

PÓSA

Since G^* does not contain a circuit of length $\geq 2k$, $a_1a_m \notin G^*$. Denote by

$$a_{i_1}, \ldots, a_{i_p} \quad (2 = i_1 < \ldots < i_p < m)$$

and

$$a_{j_1}, \ldots, a_{j_q} \quad (1 < j_1 < \ldots < j_q = m - 1)$$

the vertices connected in G^* with a_1 and with a_m , resp.

II) We now prove $p \ge k$, $q \ge k$. It will suffice to show $p \ge k$. a_1 can be connected in G^* only with the vertices of P, for otherwise P would not be a longest path. Thus p is the valency of a_1 in G^* . Assume p < k. By our assumption at least one of the p vertices $a_{i_1-1}, a_{i_2-1}, \ldots, a_{i_p-1}$ has valency > p in G^* . Let $a_{i_{\alpha-1}}$ be such a vertex. Clearly $\alpha \neq 1$ and thus the path $(a_{i_{\alpha-1}} \ldots a_2a_1a_{i_{\alpha}} \ldots a_m)$ has the same length as P and $v(a_{i_{\alpha-1}}) + v(a_m) > v(a_1) + v(a_m)$, which contradicts the maximality property of P, hence $p \geq k$, $q \geq k$ is proved.

III) Next we show $i_p \leq j_1$. Assume $i_p > j_1$ and put

$$\min\left(i_{\gamma}-j_{\delta}\right)=\Delta; \quad i_{\gamma}>j_{\delta}, \quad 1\leq \gamma\leq p, \quad 1\leq \delta\leq q.$$

By our assumption $\Delta > 0$, and assume that $i_a - j_\beta = \Delta$. Clearly the inner vertices of $(a_{j_\beta} P a_{i_\alpha})$ can not be connected with a_1 or a_m by an edge. Therefore the circuit (belonging to G^*)

$$C = (a_1 a_2 \dots a_{j_a} a_m a_{m-1} \dots a_{i_a} a_1)$$

contains all the vertices a_{i_1}, \ldots, a_{i_q} and except a_{i_q-1} also all the vertices $a_{i_1-1}, \ldots, a_{i_p-1}$. These p+q-1 vertices are all distinct, for if $j_{\mathfrak{d}} = i_{\mathfrak{d}} - 1$ then

$$(a_1 \ldots a_{j\delta} a_m a_{m-1} \ldots a_{i\gamma} a_1)$$

would be a circuit of lentgh $m \ge 2k$ of G^* . Thus together with $a_m C$ contains at least $p + q \ge 2k$ vertices. This contradiction proves $i_p \le j_1$.

IV) The following theorem is due to DIBAC ([2] Lemma 2, [1] pp.

196—197). Let $\tilde{P} = (x_1 \dots x_s)$, $s \ge 2$ be a path of the twofold-connected graph \tilde{P} and \tilde{r} which are disjoint \widetilde{G} . Then there are two paths \widetilde{P}_1 and \widetilde{P}_2 connecting x_1 and x_s which are disjoint except for their endpoints x_1 and x_s and the common vertices of \widetilde{P}_i and \widetilde{P} occur in the same order in both paths (i = 1, 2).

Let us now apply this theorem to the path P of our graph G^* and let us choose among the pairs of paths satisfying the theorem a pair P_1 and P_2 such that their union contains a maximal number of vertices of P. Put $P_1 \cup P_2 = C$. We shall now show that C contains all the vertices a_{i_1}, \ldots, a_{i_p} and a_{j_1}, \ldots, a_{j_q} . It will suffice to show this for a_{i_1}, \ldots, a_{i_p} . Assume $a_{i_a} \notin C$ $(1 \leq a \leq p)$. Let g be the greatest of the indices $1, 2, \ldots, i_a - 1$ for which $a_g \in C$ and h the smallest of the indices $i_a + 1, i_a + 2, \ldots, m$ for which $a_h \in C$. a_g and a_h can not belong to the same P_i (i = 1 or 2). For if let us say both belong to P_1 then the graph

$$P'_1 = (a_1 P_1 a_g) \cup (a_g P a_h) \cup (a_h P_1 a_m)$$

is a path and the pair P'_1 , P_2 also satisfies the requirements of DIRAC's theorem, contains all the vertices of C which are contained in P, and furthermore contains a_{i_a} too. This contradicts the maximality property of the pair P_1 , P_2 . We can thus assume

$$a_g \in P_1$$
 and $a_h \in P_2$.

But then the graphs

$$P_3 = (a_1 P a_g) \cup (a_g P_1 a_m)$$
 and $P_4 = (a_1 a_{i_a} a_{i_a+1} \dots a_h) \cup (a_h P_2 a_m)$

are paths belonging to G^* which satisfy the requirements of DIRAC's theorem. $P_3 \cup P_4$ contains all the vertices of P contained in C and also a_{i_a} , which again contradicts the maximality property of the pair P_1 , P_2 . This contradiction proves our assertion.

By III) the vertices $a_{i_1}, \ldots, a_{i_p}; a_{j_1}, \ldots, a_{j_q}$ are all distinct except possibly $a_{i_p} = a_{j_1}$. Therefore from $p \geq k$, $q \geq k$ and $a_1 \in C$, $a_m \in C$ we obtain that C contains at least 2k + 1 vertices. This contradicts our assumption that the greatest circuit of G^* has length < 2k. This completes the proof of Theorem 3.

We can show that Theorem 3 is not sharp but we have not succeeded in finding the best possible theorem here.

§ 4.

A graph will be called a system of circuits if its components are circuits; isolated vertices will be regarded as circuits. If the system of circuits T contains every vertex of G, we say that T covers G.

Theorem 4. Let $n \ge 5$, $1 \le j \le n-4$, k = [(n-j+2)/2]. Assume that for i = 1, ..., k-1 the number of vertices of $G^{(n)}$ of valency $\le i$ is at most i-1. Then $G^{(n)}$ is covered by a system T containing at most j circuits.

Remark. If j = 1 then Theorem 4 is identical with the sharpening of (B) proved in [6].

The proof of Theorem 4 depends on the following

Lemma. Let $n \ge 2k$, $k \ge 3$. Assume that for every $i = 1, \ldots, k-1$ the number of vertices of $G^{(n)}$ of valency $\le i$ is at most i-1. Then either $G^{(n)}$ containts a circuit of length $\ge 2k$, or it contains two circuits having disjoint vertices, the sum of whose lengths is $\ge 2k + 1$.

Proof. Assume that $G^{(n)}$ contradicts the theorem. Then by Theorem 3 $G^{(n)}$ can not be twofold connected and hence must contain two endlobes.³

Let G_1 and G_2 be two endlobes. By our assumptions every vertex of G has valency ≥ 2 , thus G_i (i = 1, 2) has at least three vertices. We define the vertices a_i (i = 1, 2) as follows:

If G_i contains a cutpoint of $G^{(n)}$ then let a_i be this cutpoint. If G_i does not contain a cutpoint of $G^{(n)}$ then a_i is an arbitrary vertex of G_i . The valency of every vertex of G_1 (with the possible exception of a_1) in the graph G_1 is the same as its valency in $G^{(n)}$. Therefore for $i = 0, 1, \ldots, k-1$ the number of vertices in G_1 of valency $\leq i$ is at most i. By Theorem 2 G_1 contains a circuit C_1 of length $\geq k + 1$. Let G_2^* be the graph obtained from G_2 by omitting

359

³ The lobes of a graph which is not connected are the lobes of its components. The *endlobes* are the lobes which contain at most one cutpoint of the graph (s. [5] p. 88).

 $\geq k$. C_1 and C_2 are disjoint and the sum of their lengths is $\geq 2k + 1$, which

PÓSA

proves the lemma. The proof of Theorem 4 follows easily from the lemma. Assume that $G^{(n)}$ satisfies the requirements of our theorem. If j = 1 the theorem follows from the theorem stated in our remark. Assume thus that $j \ge 2$. Then $n \ge 2k$, $k \ge 3$, thus by our lemma $G^{(n)}$ contains either a circuit C of length $\ge 2k$ or two disjoint circuits C_1 and C_2 the sum of whose lengths is $\ge 2k + 1$. Let \tilde{T} be either C or $C_1 \cup C_2$. Then \tilde{T} together with the vertices of $G^{(n)}$ not belonging to \tilde{T} give a system of $\le j$ circuits which covers $G^{(n)}$, hence Theorem 4 is proved.

Finally we prove a covering theorem which differs from Theorem 4 inasmuch as we allow in the covering besides circuits and isolated vertices also "isolated edges". A set a_1, \ldots, a_m $(m \ge 1)$ of vertices of G is said to be *independent* if no two of them are connected by an edge. The maximal number of independent vertices is denoted by $\varphi(G)$.

Theorem 5. Let G be a non-empty graph. Then it always contains a covering system of disjoint circuits, edges and vertices having at most $\varphi(G)$ members.

Proof. We use induction with respect to $\varphi(G)$. If $\varphi(G) = 1$, G is complete and can be covered by one circuit or an edge or a vertex. Assume that the theorem holds if $\varphi(G) \leq j - 1$ (j > 1) and let $\varphi(G) = j$.

Assume that G has n vertices. Let

$$P = (a_1 \dots a_p) \tag{p \ge 1}$$

be a longest path of G. If p = 1, G consists of n = j isolated vertices, hence our theorem is trivial. Assume thus p > 1. As stated previously, a_1 can be connected (by an edge) only with the vertices of P. Denote by

$$a_{i_1}, \ldots, a_{i_q} \quad (2 = i_1 < \ldots < i_q, q \ge 1)$$

the vertices connected with a_1 . Omit from G the vertices $a_1, a_2, \ldots, a_{i_q}$ and the edges incident to them, and denote the remaining graph by G'. If G' is empty then q > 1 and the circuit $(a_1 \ldots a_{i_q}a_1)$ covers G. If G' is non-empty then a_1 is not connected with any vertex of G', hence $\varphi(G') < \varphi(G)$. By our induction hypothesis G' can be covered by a covering system having at most $\varphi(G')$ components and together with $(a_1 \ldots a_{i_q} a_1)$ (or if q = 1 with the "edge" (a_1a_2)) we obtain a covering system having at most $1 + \varphi(G') \leq \varphi(G)$ components, which completes our proof.

A graph whose components are triangles show that Theorem 5 is best possible.

(Received June 9, 1963)

360

REFERENCES

- [1] BERGE, C.: Théorie des graphes et ses applications. Paris, 1958.
- [2] DIRAC, G. A.: "Some theorems on abstract graphs". Proc. London Math. Soc. (3), 2 (1952) 69-81.
- [3] ERDÖS, P.—GALLAI, T.: "On maximal paths and circuits of graphs". Acta Math. Sci. Hung. 10 (1959) 337—356.
- [4] ORE, O.: "Note on Hamilton circuits". Amer. Math. Monthly 67 (1960) 55.
- [5] ORE, O.: Theory of graphs. (Amer. Math. Soc. Colloquium Publ. 38, 1962)
- [6] Pósa, L.: "A theorem concerning Hamilton lines". MTA Mat. Kut. Int. Közl. 7 (1962) 225—226.

ОБ ОКРУЖНОСТЯХ КОНЕЧНЫХ ГРАФОВ

L. PÓSA

Резюме

Автор доказывает для графов, не содержащих петель и многократных рёбер теоремы, из которых он приводит следующие:

Теорема 1. Пусть будет $n \ge 3, 1 \le l \le n-2, k = [(n + l + 1)/2] a G - граф с п вершинами, такой что в нём любая вершина имеет степень <math>\ge k$. Далее, пусть S - система путей в графе G, не содержающих попарно общие вершины и содержащая l рёбер графа G. Тогда существует в G Гамильтонова линия, содержащая все рёбра от S.

Теорема 3. Пусть $n \ge 2k$, $k \ge 2$, $u \in G$ двухсвязный граф, содержающий n вершин, такой, что число вершин степени $\le i$ в нём не более i - 1для любого значения i = 1, 2, ..., k - 1. Тогда G содержит по крайней мере одну окружность, состоящую из 2k рёбер.

Теорема 4. Пусть $n \ge 5, 1 \le j \le n - 4, k = [(n - j + 2)/2]$ и G граф, содержающий n вершин, в котором число вершин степени $\le i$ не более i - 1для любого значения i = 1, 2, ..., k - 1. Тогда существует в G система окружсностей попарю не содержащих общих вершин, которая состоит из составляющих не более j и которая содержит все вершины графа G (здесь рассматривается одна единственная вершина также как окружность).