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The following three statements were proved by G. A. Dirac: ([2] Theorem
2, 3 and 4.)

(A) If every wvertex of the graph G'is of wvalency =k (= 2), then @
contains a circuit having at least k -+ 1 edges.

(B) Let G™ be a graph of n (= 3) vertices, and let us assume that every
vertex of G™ is of valency = n|2. Then G is Hamiltonian (ie. G™ has a
circuit containing all vertices).

(C) Assume that G™ is twofold connected® and every vertex is of wvalency
= k where n = 2k . Then G™ contains a circuit of at least 2k edges.

Several recent papers generalize (B) and (C). (S. [3], [4], [5], [6].) This
paper contains some further generalizations and a sharpening of (A). In § 2
we show (generalizing (B)) that by a suitable sharpening of the lower bound
n|2 for the valency of the vertices we can infer the existence of a Hamilton
line which passes through certain prescribed paths. In § 3 — generalizing (A)
and (C) — we show that circuits of length > k 41 resp. > 2k exist even if certain
vertices are of valency < k(in [6] we generalized (B) in this direction).
In § 4 we show (Generalizing (B)) that certain conditions imply that there
are < j (7 is a given integer) disjoint circuits and vertices (respectively dis-
joint circuits, edges and vertices), which contain every vertex of our
graph.

Some notations: Vertices will be denoted by small Roman letters. The edge
connecting @ and b will be denoted by ab (or ba). The valency of a(i.e. the number
of edges incident to @) will be denoted by v(a). a €@ resp. ab € G means that the
vertex a resp. the edge ab is in . The empty graph contains neither vertices
nor edges. G™ denotes always a graph with » vertices. G; U G, denotes the
graph which consists of the vertices and edges contained in G, and G, . P =
(@, . . . a,) denotes the path consisting of the distinct vertices a,, . . ., a, and
of the edges aa,, ..., a,_,a,. (a,) denotes the degenerate path which con-
tains only the vertex a,. (a; Pa;), 1 <7 < j < n denotes the section of P

! In this paper we only consider graphs which do not contain loops or double
edges.

2 A graph G"™, n =3 is called twofold connected if it is connected and has no
cut point. A vertex « is called a cut point of the graph G if the omission of x and all the
edges incident to x increases the number of the components of G.
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between a;and a;. C = (a, . . . a, a,),n = 3 denotes the circuit which contains
the distinet vertices a,,...,a, and the edges aa,,...,a, ;a,, a,a,. The
vertex a will also be considered as a circuit and will be denoted by (a). The
length of a path or a circuit will denote the number of its edges.

§ 2.

Henceforth a graph will be called a path-system if its components are
non-degenerate paths. The length of a path-system is the sum of the length
of its paths.

Theorem 1. Let n >3, 1 <1<n—2 and k= [(n +1 4 1)/2]. Let
Sfurther G™ be a graph every vertex of “which has valency not less than k and
let S be any path-system of length | in G . Then G has an H-line which passes
through S (i.e. all the edges of S are edges of our Hamilton line).

Proof. Assume that the theorem is not true and let G™ be a graph
which satisfies the requirements of the theorem and which has a path-system
S of length ! through which there does not pass an H-line of G®™. Let G* be
a graph having the same vertices as G™ and containing all the edges of G™, and
which does not contain an H-line passing through §, but if two unconnected
vertices of G* are connected by an edge then there is an H-line passing through
S . (In other words G* contradicts to our theorem and is maximal with respect
to this property. We obviously obtain G* by connecting unconnected vertices
of G™, since the complete graph spanned by the vertices of G has an H-line
passing through S . G* clearly exists.)

Let @ and b be two unconnected vertices of G*, if we connect them
by an edge we obtain a graph which has an H-line passing through S . This
H-line clearly passes through the edge ab and hence G* has an open H-line
passing through S (an open H-line is a path which passes through all vertices
of the graph) whose endpoints are @ and b . Let

Pi—=iay i dy); &= a, a5, =>b

be such an open H-lineand denote by a;, a;, ..., a;,(2=1 <... < i, <n)
the vertices of G* which are connected with a, by an edge in G*. By our assump-
tionp=k. If a;, 4 a,aQS (2 < a < p) then a;,_,a,¢G* (for if not then
(ara 8111 . . - @pQi 101,32 . - - Q1) ) would be an H-line of G* which contains S)
At most [ of the edges a,a_l a;, can belong to S and therefore (counting a,
too) there are at least p — [ vertices in G* with which «,, is not connected by
an edge. Hence

va)En—1—p—N=n—k4+l—-1<k.

This contradicts our assumptions and hence Theorem 1 is proved.

Now we show that Theorem 1 is best possible. Let n Z 3,1<1l<n—2
k = [(n +1 + 1)/2]. The vertices of G™ are a,, a,, . .. . The edge aa;
(¢ < j) belongs to GM if and only if i < k— 1. Clearlv every vertex of our
G™ has valency > k—1. Let S be the path (aa,...a,.,). It can be
shown by a simple a argumentation left to the reader that G™ does not contain
an H-line which passes through S .
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§ 3.

First we prove the following sharpening of (A) (mentioned already
in § 1):

Theorem 2. Let n > 0 and let us assume that for every 0 < i < k— 1
(k > 2) the number of vertices of valency < i of G®™ is < i . Then G™ contains
a circuit of length =k + 1.

Proof. Consider the longest paths of G™ and let

=il soa ), m =2

be such a longest path, for which the sum of the valencies of the endpoints
v(a;) + v(a,) is maximal. Without loss of generality we can assume »(a,) =
= v(a,) . We show v(a;) = k. Assume that this is not true and put »(a,) =
= p < k. Clearly all the vertices connected with a, are in P (for otherwise
P would not be a longest path.) Let these points be

Qigy + o2 @iy (2=10;, << ... < =m).
By our assumption at least one of the p + 1 vertices

Gy == Uy gy Oy gy’ wvs By y; Gy

has valency > p. From v(a,) < v(a,) = p it follows that this vertex must
differ from a, and a,, hence p > 2. Let v(aj,— 1) >p (1 < a < p). But
then (@i, ... awai, . ..ay,) is a longest path for which

V(@ig—1) + v(@n) > v(ay) + v(a,,)

which contradicts the maximality property of P. This contradiction proves
P = k. But hence the length of the circuit (a,... a;, ;) is at least k + 1
which completes the proof of Theorem 2.

The complete k-gon or the complete k-gon with an edge attached to
it shows that in a certain sense Theorem 2 is also sharp (our graphs have k
vertices of valency <k —1 and no circuits of length > k + 1), but the ques-
tion of its sharpness is not yet completely cleared up.

Now we prove the following sharpening of (C):

Theorem 3. Let n > 2k, k = 2, G™ be a twofold-connected graph. Assume
Sfurther that for i =1, 2, , k— 1 the number of vertices of valency < i is
<i—1. Then G contains a circuit of length = 2k .

Proof. I) Assume that the theorem is not true and let G® be a graph
which satisfies the conditions of the theorem and for which the longest circuit
has length < 2 k. As in the proof of Theorem 1, we construct the graph G*
which does not yet contain a circuit of length > 2 k, but if we connect two
not connected vertices of G* by an edge we obtain at least one circuit of length
> 2k. As in the proof of Theorem 1, G* clearly exists, and satisfies the con-
ditions of Theorem 3, furthermore its longest path has length > 2k —1 .

Consider the longest paths of G* and let

Vo =5 U P ST i B A m=2k

be such a maximal path for which v(a,) + v(a,,) is maximal. (v here denotes
the valency in G*.)
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Since G* does not contain a circuit of length > 2k , a\a,, ¢ G*. Denote by

Bys ro0: Wy (2=8 < ... <4, <m)
and

@y o, (1<fy<... <fg=m—1)

the vertices connected in G* with @, and with a,, resp.

II) We now prove p =2k, ¢ = k. It will suffice to show pi=klag
can be connected in G* only with the vertices of P, for otherwise P would
not be a longest path. Thus p is the valency of a, in G*. Assume p < k. By
our assumption at least one of the p vertices a;_, @;,—1,..., @, has
valency > p in G*. Let a;,_, be such a vertex. Clearly « =1 and thus the
path (a;, ;... axa, ai...a,) has the same length as P and v(a;,_,) +
+v(a,) > v(a,) + v(a,,), which contradicts the maximality property of P,
hence.p = ki g = kb is proved

III) Next we show ¢, < j,. Assume 7, > j, and put

min(e, —fhl=A; 9> 1=7=2p 12024,

By our assumption 4 > 0, and assume that i,—jz= 4. Clearly the inner vertices
of (a; Pa;,) can not be connected with a, or a, by an edge. Therefore the
circuit (belonging to G¥)

Ci=(a4a, ) 1. - - - @, 0ly)
contains all the vertices a;, ..., a; and except a;,_, also all the vertices
@i,_y, - - -, @,y - These p 4 g — 1 vertices are all distinct, for if j, =i, —1
then
(ay ... WlyQy ... apa,)

would be a circuit of lentgh m > 2k of G*. Thus together with U C contains
at least p 4+ ¢ = 2k vertices. This contradiction proves b =y

IV) The following theorem is due to Dirac ([2] Lemma 2, [1] pp.
196—197). _

Let P= (z;...%), s =2 be a path of the twofold-connected graph
G. Then there are two paths P, and P, connecting x, and «, which are disjoint
except for their endpoints z, and z, and the common vertices of P, and P
occur in the same order in both paths (i = 1, 2).

Let us now apply this theorem to the path P of our graph G* and let
us choose among the pairs of paths satisfying the theorem a pair P, and P,
such that their union contains a maximal number of vertices of P. Put

P,UP, = C . We shall now show that C' contains all the vertlces i A T
and aj, . . ., a;, . It will suffice to show this for a;, ..., a;, . Assume a,aQC
(1 £ a < p). Let g be the greatest of the indices 1, 2, ...,7, —1 for which
a, € € C and h the smallest of the indices 7 1,42, ..., m for which a, €C.

a, ? and a, can not belong to the same P, (z —Tor 2) For if let us say both
belong to P, then the graph

Pl = (a’lplag) U (agPah) U (a'hpl(lm)

is a path and the pair P}, P, also satisfies the requirements of DIrac¢’s theorem:
contains all the vertices of C' which are contained in P, and furthermore
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contains a;, too. This contradicts the maximality property of the pair P, P,.
We can thus assume

a;€ P, and a,€P,.
But then the graphs

P, = (a,Pa,) U (a,Pya,) and P,=(a,aiai,y1...a) U (a,Pa,)

are paths belonging to G* which satisfy the requirements of DIRAC’s theorem.
P; U P, contains all the vertices of P contained in C and also a;,, which again
contradicts the maximality property of the pair P, P,. This contradiction
proves our assertion.

By III) the vertices a;, ..., a;; a;,...,a, are all distinct except
possibly a;, = a;,. Therefore from p > k, ¢ > k and a, € C, a,, € C we obtain
that C' contains at least 2k -+ 1 vertices. This contradicts our assumption
that the greatest circuit of G* has length < 2 k. This completes the proof
of Theorem 3.

We can show that Theorem 3 is not sharp but we have not succeeded
in finding the best possible theorem here.

§ 4.

A graph will be called a system of circuits if its components are circuits;
isolated vertices will be regarded as circuits. If the system of circuits 7' con-
tains every vertex of G, we say that T covers G .

Theorem 4. Let n > 5,1 < j < n—4,k = [(n—j + 2)/2]. Assume that
Jor i =1,..., k—1 the number of vertices of G™ of valency < i is at most
i— 1. Then G is covered by a system T containing at most j circuits.

Remark. If j = 1 then Theorem 4 is identical with the sharpening of
(B) proved in [6].

The proof of Theorem 4 depends on the following

Lemma. Let n = 2k, k = 3. Assume that for every i = 1,...,k—1
the number of vertices of G™ of valency < i is at most i — 1 . Then either G™
containts a circuit of length = 2k , or it contains two circuits having disjoint
vertices, the sum of whose lengths is =2k +1 .

Proof. Assume that G™ contradicts the theorem. Then by Theorem 3
G™ can not be twofold connected and hence must contain two endlobes.?

Let Gy and G, be two endlobes. By our assumptions every vertex of G
has valency > 2, thus G, (i = 1, 2) has at least three vertices. We define the
vertices a; (i = 1, 2) as follows:

If G; contains a cutpoint of G then let a; be this cutpoint. If G, does
not contain a cutpoint of G then q, is an arbitrary vertex of @; . The valency
of every vertex of G, (with the possible exception of a,) in the graph G, is the
same as its valency in G®. Therefore for i = 0,1, ..., k— 1 the number
of vertices in @, of valency < 7 is at most . By Theorem 2 G, contains a
circuit C; of length > & + 1 . Let G% be the graph obtained from G, by omitting

3The lobes of a graph which is not connected are the lobes of its components.
The endlobes are the lobes which contain at most one cutpoint of the graph (s. [6] p. 88).
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the vertex a, and all the edges incident to it. Clearly G is non-empty and the
valency of every vertex in G¥ is by at most one smaller than the valency of
the same vertex in G™. Hence by Theorem 2 G5 contains a circuit C, of length
= k. C, and C, are disjoint and the sum of their lengthsis > 2k +4 1, which
proves the lemma.

The proof of Theorem 4 follows easily from the lemma. Assume that
G™ satisfies the requirements of our theorem. If j =1 the theorem follows
from the theorem stated in our remark. Assume thus that j > 2 . Then n > 2k,
k = 3, thus by our lemma G™ contains either a circuit C of length > 2k
or two disjoint circuits (', and C, the sum of whose lengths is = 2k 1.

Let T be either O or €, U C,. Then T together with the vertices of G not

belonging to 7' give a system of < j circuits which covers G, hence Theorem
4 is proved.

Finally we prove a covering theorem which differs from Theorem 4
inasmuch as we allow in the covering besides circuits and isolated vertices
also “isolated edges”. A set a,, ..., a, (m > 1) of vertices of @ is said to be
independent if no two of them are connected by an edge. The maximal number
of independent vertices is denoted by ¢(Q) .

Theorem 5. Let G be a non-empty graph. Then it always contains a covering
system of disjoint circuits, edges and vertices having alt most ¢(G) members.

Proof. We use induction with respect to ¢(G). If ¢(G) = 1, G is complete
and can be covered by one circuit or an edge or a vertex. Assume that the
theorem holds if ¢p(G) < j—1 (j > 1) and let ¢(G) = j.

Assume that G' has n vertices. Let

P=(a,...a) (p=>1)

be a longest path of G . If p = 1, G consists of n = j isolated vertices, hence
our theorem is trivial. Assume thus p > 1. As stated previously, a, can be
connected (by an edge) only with the vertices of P. Denote by

O s tnen igt (2 = Gyl 5l <ipq = 1)
the vertices connected with @, . Omit from G the vertices a,, a,, . . ., a;, and
the edges incident to them, and denote the remaining graph by G’. If ¢’ is
empty then ¢ > 1 and the circuit (a, ... a;a,) covers G. If G’ is non-empty
then a, is not connected with any vertex of G’, hence ¢(G’) < ¢(G). By
our induction hypothesis G’ can be covered by a covering system having
at most @(G’) components and together with (a, . . . a;, ;) (or if ¢ = 1 with
the “edge’ (a,a,)) we obtain a covering system having at most 14 ¢(G’) <¢(G)
components, which completes our proof.

A graph whose components are triangles show that Theorem 5 is best
possible.

(Received June 9, 1963)
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05 OKPY)XHOCTAX KOHEUHBIX I'PA®OB
L. POSA

Pe3siome

ABTOp J0KasbIBaeT s rpados, He COjlepyKalUUX IeTeslb U MHOTOKPATHBIX
pébep TeopeMbl, U3 KOTOPHIX OH NPHBOJMT CJIe/yIolMe:

Teopema 1. [Tycmo Oyoem n = 3, 1 £l <n—2, k= [(n+ 1+ 1)/2] a
G — epad ¢ n sepuHam, maxKoil 4mo 6 HEM A00as 6epUILIHA UMeen cimeneHs = k.
[Hanee, nycmo S — cucmema nymetl 8 epage G, He cooepucarowyjux nonapHo obiyue
sepuunst u cooepucawyan l péoep 2paga G. Tozoa cywgecmeyem ¢ G I'amurbmonosa
AuHUuA, cooepucayasn éce péopa om S.

Teopema 3. [Tycmb n =2k, k = 2, u G o08yxceasnviil 2pagp, cooeprucaro-
uil » éepuiuH, MAaKol, 4mo 4ucaA0 Gepuwiux cmeneHu =< i 6 Hém He OGosee 1 — 1
0aa awboeo 3navenua @ = 1,2,..., k — 1. Toeoa G cooepycum no kpatineii mepe
00HY OKpYJXCHOCMb, cocrmosyyto u3 2k péoep.

Teopema 4. [Tycmon 25,1 < j<n— 4, k=[(n — j+ 2)/2] u G 2pag,
codepxcarowjuil n 6epuILH, 6 KOMOPOM YUCA0 6epuIuH cmenenu < 1t He Goaee 1 — 1
o1 awb6o20 3navenua v =1, 2,..., k — 1. Toeoa cywecmeyem & G cucmema
OKpyXCHOCMEll nonapro He codepycawjux o0Wux eepuiuH, KOmMopas cocmoum u3
cocmasasoyux He Gonee j u Komopas cooepucum éce eepuitinst 2paa G (3nechb
paccmaTpuBaeTcs OJIHA eMHCTBEHHAs BepIUMHA TaK)Ke KaK OKPYKHOCTB).



	8. kötet / 3.sz.�����������������������
	PÓSA, L.: Ont he circuits of finite graphs�������������������������������������������������

	Oldalszámok������������������
	355����������
	356����������
	357����������
	358����������
	359����������
	360����������
	361����������


