
ON THE CIRCUITS OF FINITE GRAPHS 

by 

L A J O S P O S A 

§ 1. 
The following th ree statements were proved by G. A. DIRAC: ([2] Theorem 

2, 3 and 4.) 
(A) If every vertex of the graph G 1 is of valency Д le 2), then G 

contains a circuit having at least к -j- 1 edges. 
(B) Let G<"> be a graph of n ( ^ 3 ) vertices, and let us assume that every 

vertex of G(n> is of valency Д те/2 . Then G is Hamiltonian (i.e. G(") has a 
circuit containing all vertices). 

(C) Assume that G(") is twofold connected'2 and every vertex is of valency 
к where n >.2k . Then G("> contains a circuit of at least 2k edges. 

Several recent papers generalize (B) and (C). (S. [3], [4], [5], [6].) This 
paper contains some f u r t h e r generalizations and a sharpening of (A). I n § 2 
we show (generalizing (B)) tha t by a suitable sharpening of the lower bound 
те/2 for t he valency of t he vertices we can infer the existence of a Hami l ton 
line which passes th rough certain prescribed paths. In § 3 — generalizing (A) 
and(C) — we show t h a t circuits of length к + 1 resp. 2k exist even if certain 
vertices are of valency < k (in [6] we generalized (B) in this direction). 
In § 4 we show (Generalizing (B)) t h a t certain conditions imply t h a t there 
are g j (j is a given integer) disjoint circuits and vertices (respectively dis-
joint circuits, edges and vertices), which contain every vertex of our 
graph. 

Some notations: Vertices will be denoted by small Roman letters. The edge 
connecting a and b will be denoted by ab (or 6a). The valency of a (i.e. the n u m b e r 
of edges incident to a) will be denoted by v(a). atG resp. ab £ G means t h a t the 
vertex a resp. the edge a6 is in G . The empty graph contains neither vertices 
nor edges. denotes always a graph with те vertices. Gx (J G2 denotes the 
graph which consists of t he vertices and edges contained in Gx and G2 . P = 
(ax . . . an) denotes the p a t h consisting of the distinct vertices ax, . . . , an and 
of the edges axa2, . . . , an_xan . (aß denotes the degenerate path which con-
tains only the vertex ax . (а,- P aß, 1 g i g j g n denotes the section of P 

1 I n t h i s p a p e r we o n l y consider g r a p h s which do n o t c o n t a i n loops or d o u b l e 
edges. 

2 A g r a p h Cr ', n > 3 is cal led t w o f o l d connec ted if i t is connec ted a n d h a s n o 
cut p o i n t . A ve r t ex x is c a l l e d a cut po in t of t h e g r a p h G if t h e omiss ion of x a n d a l l t h e 
edges inc iden t t o x i nc reases t h e n u m b e r of t h e c o m p o n e n t s of G. 

3 5 5 



3 5 6 PÓSA 

between a, and a,j. С = (a1. . . an a f ) , те ̂  3 denotes the circuit which contains 
t h e distinct ver t ices % , . . . , a„ and the edges axa2, . . . , an_xan, anax . The 
v e r t e x a will also be considered as a circuit and will be denoted by (a). The 
l eng th of a p a t h or a circuit will denote t h e number of i ts edges. 

§ 2. 

Henceforth a graph will be called a path-system if i ts components are 
non-degenerate pa th s . The l eng th of a path-sys tem is the sum of the length 
of i ts paths. 

Theorem 1. Let n ^ 3, 1 ^ Z ^ те — 2 and к = [(n +1 + l)/2]. Let 
further G(N) be a graph every vertex of which has valency not less than к and 
let S be any path-system of length I in G . Then G has an H-line which passes 
through S (i.e. all the edges of S are edges of our Hamilton line). 

Proof. Assume that t he theorem is no t t rue and let G<n> be a graph 
which satisfies t h e requirements of the theorem and which has a path-system 
S of length I t h r o u g h which t h e r e does not pass an H-iine of G(N). Let G* be 
a graph having t h e same vertices as G(N) and containing all the edges of G(N), and 
which does n o t contain an H- l ine passing th rough S, but if two unconnected 
vertices of G* a r e connected b y an edge then the re is an H-line passing through 
S . (In other w o r d s G* contradicts to our theorem and is maximal with respect 
t o this proper ty . W e obviously obtain G* by connecting unconnected vertices 
of G(N), since t h e complete g r a p h spanned by t he vertices of G(N) has an H-line 
passing through S . G* clearly exists.) 

Let a a n d b be two unconnected vert ices of G*, if we connect them 
b y an edge we obtain a g raph which has an H-line passing through S . This 
H-line clearly passes through t h e edge ab and hence G* has an open H-line 
passing through S (an open H-l ine is a pa th which passes through all vertices 
of the graph) whose endpoints are a and b . Le t 

JP = (AX . . . a„), OQ = a, an = b 

b e such an open H-line and deno te by a, , aip . . . , aip (2 = q < . . . < ip < те) 
t h e vertices of G* which are connected with ax by an edge in G*. By our assump-
t ion p ^ к . I f a,-a_i S (2 g a g p) t h e n a,a_i an (£ G* (for if not then 
(aia,aa,a+i . . . a„a,-a_ia,a_2 . . • ax) would be an H-iine of G* which contains S). 
A t most I of t h e edges а,-а_i а , а can belong to S and therefore (counting ал  
too) there are a t least p— I vert ices in G* wi th which an is no t connected by 
an edge. Hence 

v(an) gn— 1 — ( p - l ) g n — k + l — I <k . 

This contradicts our assumptions and hence Theorem 1 is proved. 
Now we show that Theorem 1 is best possible. Let n 3, 1 g l g те— 2, 

к = [(те + ( + 1)/2]. The ver t ices of G(N) a re av a2,. . . , an . The edge 
(г < j) belongs t o G^n> if and only if i g к — 1 . Clearly every ver tex of our 
G(N) has va l ency ^ к— 1 . L e t S he t h e p a t h (аха2 . . . al+1) . I t can be 
shown by a s imple argumentat ion left to the reader that Gfri) does not contain 
an H-line which passes th rough S . 
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§ 3. 

F i r s t we prove t h e following sharpening of (A) (mentioned a l ready 
in § 1): 

Theorem 2. Let n > 0 and let us assume that for every 0 g i g к — 1 
(к ^ 2) the number of vertices of valency g i of G(n) is g i . Then G<n> contains 
a circuit of length к + 1 . 

Proof. Consider t h e longest p a t h s of G(") and let 

P = (cq . . . am), m ^ 2 

be such a longest pa th , for which t h e sum of the valencies of t he endpo in t s 
v(aß + v(am) is maximal . Wi thout loss of general i ty we can assume v(aß 

v(am) . W e show v(aß к . Assume t h a t this is no t t r u e and p u t v{aß = 
= p < к . Clearly all t h e vertices connec ted with ал a re in P (for otherwise 
P would n o t be a longest path.) L e t these points be 

ah> • • •, ai„ (2 = Д < Д < . . . < ip g m) . 

By our assumpt ion a t least one of t h e p + 1 vert ices 

has va lency > p . F r o m v{am) g v(aß = p i t follows t h a t this ve r t ex m u s t 
differ f r o m ax and am, hence p ^ 2 . Le t u(a;a-i) >p (1 < a g p) . Bu t 
then ( a , a - i . . . ахаХа . . . am) is a longest p a t h for which 

v("ia-1) + «(«rn) > Maß + V(am) 

which con t rad ic t s the maximal i ty p r o p e r t y of P. This contradic t ion proves 
p ^ к . B u t hence the l eng th of t h e circui t (ax . . . atp aß is a t least к + 1 
which comple tes the proof of Theorem 2. 

T h e complete k-gon or the comple te fc-gon wi th an edge a t t a ched t o 
it shows t h a t in a cer ta in sense Theorem 2 is also sharp (our g raphs h a v e к 
vertices of valency gk— 1 and no circui ts of length ^ к + 1 ) , b u t t he ques-
tion of i t s sharpness is n o t yet complete ly cleared up. 

Now we prove t h e following sharpening of (C): 
Theorem 3. Let n 2 к, к ^ 2, be a twofold-connected graph. Assume 

further that for i — 1, 2, . . . , к— 1 the number of vertices of valency g i is 
g i — 1 . Then G(ri) contains a circuit of length ^ 2 к . 

Proof. I) Assume t h a t t he theorem is no t t r ue and le t G(") be a g r a p h 
which sa t i s f ies the condit ions of the t h e o r e m and for which t h e longest circui t 
has l eng th < 2 к . As in t h e proof of Theorem 1, we cons t ruc t the g r a p h G* 
which does n o t yet conta in a circuit of l ength ^ 2 к , b u t if we connect two 
not connec ted vertices of G* by an edge we obta in a t least one circuit of l eng th 
> 2 к. As in t h e proof of Theorem 1, G* clearly exists, a n d satisfies t h e con-
ditions of Theorem 3, f u r t h e r m o r e its longest p a t h has l eng th ^ 2 к — 1 . 

Consider the longest pa th s of G* a n d let 

P = (eqcq . . . am_xam), m^2k 

be such a max imal p a t h for which v(aß + v(am) is maximal , (v here deno tes 
the va lency in G*.) 
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Since G* does not contain a circuit of length ^ . 2 к , axam ф G*. Denote by 

• • •. «/p (2 = Q < . . . < i p < m ) 
and 

aji ah (1 <h< . . . <jq = m - l ) 
t h e vertices connected in G* with a, and with am, resp. 

II) We now prove p ^ к , q ^ fc . I t will suffice to show p ^ к . ax 
can be connected in G* only with the vertices of P, for otherwise P would 
no t he a longest path . Thus p is the valency of ax in G*. Assume p < к . By 
our assumption a t least one of the p vertices щ i, а,- _ i , . . . , a i p „ 1 has 
valency > p in G*. Let а , а _ 1 be such a ver tex . Clearly a =f= 1 and thus t h e 
p a t h («/„_! . . . a2ax а,а . . . am) has the same length as P and v(aia_x) -f-
+ v(am) > v(ax) -f- v(am), which contradicts the maximali ty proper ty of P, 

hence p ^ к , q ^ к is p roved . 
III) N e x t we show ip gL jx . Assume ip > jx and p u t 

m i n (iy — jà) = Л ; iy> h, 1 ТУ TP, 1 Tà ^ q . 

By our assumption Л > 0, and assume tha t ia—j. = A. Clearly the inner vertices 
of (ajßPaia) can not be connected with ax or am by an edge. Therefore t he 
circuit (belonging to G*) 

С = (axa2 ... aJßamam_x .. . aiaax) 

contains all t h e vertices ajq and except а,(а_х also all the vertices 
. . . , aip_x . These p + q — 1 vertices are all distinct, for if jA = iy— 1 

then 
(«i • • • ajfrrflm-1 • • • aiyal) 

would be a circuit of lentgh m + 24 of G*. Thus together with a m С contains 
a t least p + q ^ 2 к vertices. This contradiction proves ip + jx. 

IV) The following theorem is due to D I B A C ([2] Lemma 2, [ 1 ] pp . 
196—197)._ 

Let P = (xx... xs) , s к 2 be a p a t h of the twofold-connected g raph 
G. Then the re are two p a t h s Px and P2 connecting xx and xs which are disjoint 
except for the i r endpoints xx and xs and t he common vertices of / , and P 
occur in the same order in both paths (г = 1, 2). 

Let us now apply th is theorem to the pa th P of our graph G* and let 
us choose among the pairs of paths satisfying the theorem a pair Px and P2 
such tha t t he i r union contains a maximal number of vertices of P . P u t 
PX\JP2 = С . W e shall now show that С contains all the vertices a,-,, . . . , a,ip 
and ajp . . . , a,jq . I t will suff ice to show this for <+, . . . , а,р . Assume а,а (jj С 
(1 ^ a ^ p). Le t g be t h e greatest of the indices 1, 2, . . . , < „ — 1 for which 
agiC and h t h e smallest of the indices г а + 1 , га + 2, . . . , те for which ah £ C. 
ag and ah can no t belong t o the same Pt (i — 1 or 2) . For if let us say b o t h 
belong to Px then the g r a p h 

P'x = (,axPxag) U (agPah) U (ahPxam) 

is a path and t h e pair P'x, P2 also satisfies t he requirements of D I R A C ' S theorem, 
contains all t h e vertices of С which are contained in P , and fur thermore 
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contains aia too. This cont radic ts t h e maximal i ty p rope r ty of t h e pair I\. P2. 
W e can thus a s sume 

ag € Py and ahz P2. 
But t h e n the g r a p h s 

P3 = (ttyPag) U (agPyam) a n d l \ = ( a 1 a / a a í a + I . . . ah) U ( ' W m ) 

are p a t h s belonging t o G* which sat isfy the requ i rements of D I R A C ' S theorem. 
P3 U I\ contains all t h e vertices of P contained in С and also a , a , which again 
cont rad ic ts the maximal i ty p r o p e r t y of the pa i r Pv P2 . This contradict ion 
proves our assert ion. 

By I I I ) t h e vert ices aiv . . . , aip; a ; i , . . . , ajt are all d is t inc t except 
possibly aip = o ; i . Therefore f r o m p к , q к a n d ax £ C, am (j С we ob ta in 
t h a t С contains a t least 2k -f- 1 vertices. This contradicts o u r assumption 
t h a t t h e greatest circuit of G* h a s length < 2 к . This comple tes the proof 
of Theorem 3. 

We can show t h a t Theorem 3 is not sha rp b u t we have n o t succeeded 
in f ind ing the bes t possible t h e o r e m here. 

§ 4. 

A graph will be called a system of circuits if i t s components are circuits; 
isolated vertices will be regarded as circuits. I f t h e system of circuits T con-
ta ins every ver tex of G , we say t h a t T covers G . 

Theorem 4. Let — 4 , / = [(n — / + 2)/2], Assume that 
for i = 1, . . . ,k — I the number of vertices of G^n> of valency gl i is at most 
i — 1 . Then G<n> is covered by a system T containing at most j circuits. 

Remark. If j = 1 then Theorem 4 is ident ical with t h e sharpening of 
(B) p roved in [6]. 

T h e proof of Theorem 4 d e p e n d s on t he following 
Lemma. Let n ^ 2k , к 3 . Assume that for every i = 1 , . . . , / — 1 

the number of vertices of G(n> of valency < i is at most i — 1 . Then either G(n) 

containts a circuit of length + 2k , or it contains two circuits having disjoint 
vertices, the sum of whose lengths is 2 к 1 . 

Proof. Assume t h a t Gin) con t rad ic t s the t heo rem. Then b y Theorem 3 
can no t be twofold connected and hence m u s t contain t w o endlobes.3 

L e t Gy and G2 be two endlobes. By our assumpt ions every ver tex of G 
has valency ^ 2, t h u s G, (i = I, 2) has at least t h r e e vertices. W e define t h e 
vert ices о,- (г = 1, 2) as follows: 

If G, contains a cu tpoin t of G(rí) then let a, be this cu tpo in t . If G, does 
no t conta in a cu tpoin t of G(n) t h e n a, is an a rb i t r a ry ver tex of O, . T h e valency 
of every ver tex of Gx (with the possible exception of aß in the g r a p h Gy is t h e 
same as i ts valency in G<"). There fo re for i = 0, 1, . . . , к — 1 t h e number 
of ver t ices in G, of va lency < i is a t most i . B y Theorem 2 Gy contains a 
circuit С у of length + к + 1 . Le t G* be the graph ob ta ined f rom G2 b y omitt ing 

3 The lobes of a g raph which is n o t connected a r e t h e lobes of i t s components. 
The endlobes are the lobes which conta in a t most one cu tpo in t of the g r a p h (s. [5] p. 88). 
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the vertex a2 and all the edges incident t o it. Clearly G* is non-empty and the 
valency of every vertex in G* is by at most one smaller than the valency of 
the same ver tex in G(n). Hence by Theorem 2 G* contains a circuit C2 of length 
^ 1c. Cx and C2 are disjoint and the sum of their lengths is Si 2 1c + 1 , which 
proves t he lemma. 

The proof of Theorem 4 follows easily from t h e lemma. Assume that 
G(n) satisfies the requirements of our theorem. If j = 1 the theorem follows 
from the theorem stated in our remark. Assume thus t h a t ; ^ 2 . Then n Si 2k, 
к ^ 3 , t hus by our lemma G(n) contains either a circuit С of length Si 2k 
or two disjoint circuits Cx and C2 t he sum of whose lengths is 2k -j-1 . 
Let f he either С or Cx IJ C2 . Then T together with t he vertices of G(n> not 
belonging to T give a system of A j circuits which covers hence Theorem 
4 is proved. 

Finally we prove a covering theorem which differs from Theorem 4 
inasmuch as we allow in the covering besides circuits and isolated vertices 
also "isolated edges". A set ax, . . . , am (m Si 1) of vertices of G is said to be 
independent if no two of them are connected by an edge. The maximal number 
of independent vertices is denoted by y(G) . 

Theorem 5. Let G be a non-empty graph. Then it always contains a covering 
system of disjoint circuits, edges and vertices having at most y{G) members. 

Proof. We use induction with respect to <p(G). If <p(G) = 1, G is complete 
and can be covered by one circuit or an edge or a vertex. Assume tha t the 
theorem holds if cp(G) 5Á 7 — 1 (j > 1) and let y(G) = j . 

Assume that G has n vertices. Le t 

be a longest path of G . If p = 1, G consists of n = j isolated vertices, hence 
our theorem is trivial. Assume thus p > 1 . As s ta ted previously, a, can be 
connected (by an edge) only with t h e vertices of P . Denote by 

the vertices connected with ax. Omit f rom G the vertices ax, a2, . . . , aand 
the edges incident to them, and denote the remaining graph by G'. If G' is 
empty t h e n q > 1 and t h e circuit (ax . . . a,tax) covers G. If G' is non-empty 
then ax is not connected with any ver tex of G', hence <p{G') < <p(G) . By 
our induction hypothesis G' can be covered by a covering system having 
at most y(G') components and together with (ax . . . a,-, ax) (or if q = 1 with 
the "edge" (axaf\) we obtain a covering system having at most 1 + y(G') <(p(G) 
components, which completes our proof. 

A graph whose components are triangles show that Theorem 5 is best 
possible. 

P=(ax . . . ap) ( P è 1) 

a„ ..,aiq (2 = ix< ... < iq, q ^ l ) 

(Received J u n e 9, 1963) 
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ОБ ОКРУЖНОСТЯХ КОНЕЧНЫХ ГРАФОВ 
L. PÓSA 

Резюме 

Автор доказывает для графов, не содержащих петель и многократных 
рёбер теоремы, из которых он приводит следующие: 

Теорема 1. Пусть будет и ^ З , 1 ^ I g п — 2, к = [(n + I + 1)/2] а 
G — граф с п вершинами, такой что в нём любая вершина имеет степень + к. 
Далее, пусть S — система путей в графе G, не содержающих попарно общие 
вершины и содержащая I рёбер графа G. Тогда существует в G Гамилыпонова 
линия, содержащая все рёбра от S. 

Теорема 3. Пусть п ^ 2 к, к ^ 2, и G двухсвязный граф, содержаю-
щий п вершин, такой, что число вершин степени g. i в нём не более i — 1 
для любого значения i = 1 , 2 , . . . , k — 1. Тогда G содержит по крайней мере 
одну окружность, состоящую из 2 k рёбер. 

Теорема 4. Пусть n ^ 5, 1 g j g n — 4, k = [(n — j + 2)/2] и G граф, 
содержающий n вершин, в котором число вершин степени g i не более i — 1 
для любого значения i= 1, 2 , . . . , k — 1. Тогда существует в G система 
окружностей попарю не содержащих общих вершин, которая состоит из 
составляющих не более j и которая содержит все вершины графа G (здесь 
рассматривается одна единственная вершина также как окружность). 
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