
FILLING OF A DOMAIN BY DISCS 

by 
A L A D Á R H E P P E S 

As i t is well known the area a a n d perimeter p of a plane domain 1 

satisfy t he so called isoperimetric inequal i ty p2 i t 4 л a, and equali ty holds 
only for a circle. This s ta tement has t w o meanings: on the one hand, of the 
domains of given per imeter the circle ha s the greatest possible area, on the 
other hand, of the domains of given a rea the circle has the least possible 
perimeter. Of the numerous variants of t h e isoperimetric inequality we men-
tion only t h e following resul t of BESICOVITCH [ 1 ] : 

Let G be a convex domain and G(r) the union of the points of those 
circles of rad ius r which can be placed in to G . Then C(r) has of all isoperi-
metric discs lying in G t h e greatest a rea , and G(r) has of all equiareal discs 
lying in G the least per imeter . 

In t he case when G is a convex polygon, C(r) — the outer parallel 
domain of rad ius r of t he inner parallel domain of radius r of G — arises f rom 
G by rounding off each corner by circular arcs which can be put toge ther 
to form one circle of radius r (Fig. 1). Such a domain we shall call a smooth 
polygon. 

Let R be a regular hexagon of u n i t area, a f p ) t h e upper bound of the 
areas of t he discs of per imeter ^ p con ta ined in R and pfa) the lower bound 
of the per imeters of the discs of area i t a contained in Л . I t is clear t h a t for 
small values of p (for small values of a) t h e bound a f p ) (pfa)) is a t t a ined by 
a circle, on t he other hand, in view of t h e theorem of BESICOVITCH, for values 
of p (of a) g rae ter than t h e perimeter (area) of the incircle of R the ex t remal 
domain will be a smooth hexagon. An elementary computat ion shows tha t 
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1 B o t h w o r d s „ d o m a i n " a n d „d i sc" w i l l b e used for a b o u n d e d closed s e t t h e 
i nne r p o i n t s of w h i c h f o r m a s i m p l y connec t ed s e t . 
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where the cons t an t d = === equals the densi ty of the densest packing of equa l 

circles in the plane2 , i.e. the r a t io of the area of a circle and t h a t of the circum-
ü 2 1 

scribed regular hexagon. (For — g — a f p ) and pfa) are inverse functions.) 
4л d 

Fig. l. 

F E J E S T Ó T H extended t h e investigation of the isoperimetric problem, 
concerning w i t h a single domain , to the s t u d y of a certain set of domains 
and raised t h e following two problems: 

Problem A. Find the uppe r bound of t he average area a of те non-
overlapping discs, each of per imeter g p, ly ing in a given domain3 D. 

Problem P. Find the lower bound of t h e average per imeter p of те non-

overlapping discs, each of a rea 2; a a g— lying in a given domain D . 
n J 

As it is qu i te hopeless t o solve these problems in such a general f o r m 
they were invest igated under several restrict ions. The problem of the d e t e r -
mination of t h e asymptotic behaviour of t h e extremal configuration for g r e a t 
values of те, m a y be consider as the fundamen ta l isoperimetric problems for 
two-dimensional cellaggrogates. For convex discs these questions were inves-
tigated by F E J E S T Ó T H [2] (Problem A) and b y F E J E S T Ó T H and the au thor [3] 
(Problem P) . Their results a re summarised in the following theorems4 

Theorem A. The average area a of n convex discs, each of perimeter g p 
lying in a convex hexagon5 H of area n without mutual overlapping, is not greater 
than the greatest possible area of one disc of perimeter g p lying in a regular 
hexagon of unit area, i.e. 

a g a f p ) . 

2 Cf. L . F E J E S T Ó T H : Lagerungen in der Ebene, auf der Kugel und im Raum. Berlin—-
Gütt ingen—Heidelberg, 1953. 

3 We d e n o t e a domain a n d i t s area with t h e same symbol. 
4 In t h e original form of t h e above t heo rems the discs are supposed to be isoperi-

metr ic (Theorem A) and equia rea l (Theorem P) , respectively, b u t the original p r o o f s 
remain valid w i t h o u t any modi f ica t ion for t he se slightly more genera l s t a t emen t s t o o . 

5 H e x a g o n in a wider sense : polygon h a v i n g at most six vertices. 
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Theorem P. The average perimeter p of n convex discs, each of area a 
(a g 1), lying in a convex hexagon5 H of area n without mutual overlapping, 
is not smaller than the least possible perimeter of one disc of area a lying in 
regular hexagon of unit area, i.e. 

V ^ Pe(a) • 

Equal i ty holds in the following cases: (i) H is a regular hexagon containing 
one single disc, namely t he corresponding smooth hexagon, (ii) the discs are 
congruent circles (in both theorems) and (iii) — in Theorem A — when t h e y 
fill H wi thout gaps. However these bounds can be approximated wi th an 
arb i t rary exacti tude for g rea t values of n. Since for g r e a t values of n t h e 
special shape of the given domain is i r relevant these theorems inform us abou t 
the asymptot ic behaviour of t he extremal configurations of the discs in an 
arbi t rary domain. I t is interest ing to observe tha t in spite of the fact t h a t t he 
arrengements to be compared were originally entirely irregular a single 
optimum-requirement implies the congruence of the discs as well as the i r 
regular shape and arrengement . 

Now the question arises whether Theorems A and P remain valid wi thou t 
the restriction of the convexi ty of the discs. 

We shall show tha t in t h e case of Theorem A the answer is a f f i rmat ive . 
This is expressed in 

Theorem A*. The average area a of n discs, each of perimeter g p, lying in 
a convex hexagon H of area n without mutual overlapping, is not greater than the 
greatest possible area of a disc of perimeter g p lying in a regular hexagon of 
unit area, i.e. 

а й аь(р) • 

We also shall prove a var ian t of Theorem A*: 
Theorem A**. Let U be the union of n faces of a tessellation consisting 

of regular hexagons of unit area. The average area a of n discs, each of perimeter6 

g p g j' 8 ]/з = 3,72 . . . , lying in U without mutual overlapping, attains 
its maximum in the case when all the discs are congruent, namely circles or 
smooth hexagons of perimeter p, inscribed in the faces of the tessellation contained 
in U, i.e. 

a g a6(p) . 

The proofs of Theorem A* and Theorem A** are based on the proof of 
Theorem A and on three lemmas listed below. 

We shall say tha t two closed convex domains C\ and C2 intersect simply 
if they satisfy one of the following conditions: 

(i) Cx and C2 have no inner points in common, 
(ii) one of them is completely covered by the o ther , or 

(iii) Cj and C2 overlap and the boundary of their (convex) intersection 
can he split up into two non-overlapping connected arcs, one belonging t o 
t he boundary of Cx and the o ther to t h a t of C2. 

Lemma 1. If two discs, Dx and D2 have no inner points in common then 
the convex hull of Dx and that of I)., intersect simply. 

6 The c o n s t a n t УвУз is t h e pe r ime te r of a hexagona l face of t h e tessel lat ion. 

8 A Matematikai Kuta tú Intézet Közleményei VII I . A/3. 
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Let G\ a n d C2 be the convex hulls of Dx and D2 . I n contrary to our 
s ta tement we suppose tha t Cx and C2 do no t intersect simply. Then they have 
inner points in common b u t n o n e of the discs is completely covered by t h e 
o ther . Thus t h e boundary В of the union Cx U C2 consists of the common 
poin ts of the two boundaries (single points or closed arcs) and of the open 
"proper boundary arcs" of Cx and C2, respectively, consisting of the boundary 
poin ts of Cx outside C2 and t h e boundary points of C2 ou ts ide Cx . Since Cx 
a n d C2 do no t satisfy (iii) t h e r e exist (at least) two pairs of proper boundary 
a rcs belonging to Cx and C2, respectively, and having the p roper ty tha t each 
of this pairs separates the a rcs of the other pair on B. I t is easy to see t h a t 
t o each proper boundary a rc there exist a supporting line, which does n o t 
mee t the o ther disc. On t h e o ther hand each supporting line of the convex 
hull of a connected bounded set contains a t least one of t h e boundary po in t s 
of the original set. Consequently В contains two pairs of points belonging 
al ternately to t h e boundaries of the original discs Dx and D2. Thus both pa i rs 
of their four different poin ts can be connected by a single arc through t h e 
interior of Dx and Z)2, respectively. But th is contradicts t o the fact t h a t Dx 
a n d D2 have no inner poin ts in common. 

Lemma 2. Suppose that any two of the convex discs Cx, . . . , Cm intersect 
simply and, that none of them is completely covered by the others. Then the discs 
can be contracted into non-overlapping discs Cx, . . . ,Cm (С, С С,, г = 1, . . . , m), 
the union of which equals the union of Сx, . . . ,Cm . 

The proof rests on t h e following lemma of B A M B A H and R O G E R S (see 
[4] Lemma 1) which we q u o t e without proof : 

Lemma 3. Let S and T be two convex discs which intersects simply. Suppose 
that a segment divides S into two sets ,S ,(L) and Then and T intersect 
simply ; exept possibly when the segment divides T into sets T(1) and T(-\ one 
of which is contained in S(2). In this latter case ,S'(1) and T(l) intersect simply. 

Lemma 2 is trivial if n o pair of the discs have inner points in common. 
Therefore we suppose tha t t h e r e exist two discs, say С, a n d Cj, which overlap. 
Since the discs intersect s imply we can f i n d (according t o (iii)) two poin ts 
Px and P2 on t he intersection of the boundaries of C, and Cj, which split t he 
boundary of the union C , U C ; into two non-overlapping connected arcs 5 , 
and Bj belonging to the b o u n d a r y of C, and Cp, respectively. Thus the segment 
BXP2 divides C,UC;- into t h e non-overlapping discs Cj1/ and CjR (Cj1/ с С, 
and C'P с Cj). Replacing n o w C, by Cj1/ and Cj by С*1) i t may happen t h a t 
some of t h e new discs do n o t intersect simply (Fig. 2). Fo r instance, le t Ck 
be a disc which does not in tersect Cj1/ s imply. Then, re fe r r ing to L e m m a 3, 
PXP2 divides Ck into two p a r t s , one of which is contained in Cj1/ and the o ther , 
Cjb, intersects Cj1/ (and Cj1/) simply. I n this case we replace Ck by СjP. 
Proceeding in this way s tep b y step, we can construct a new system of convex 
discs, intersect ing simply o n e another. I n each step of t h i s process the union 
of the discs remains unchanged , hut the number of t he overlapping pa i rs of 

jfl 
discs decreases. Thus in a t most s teps we obtain t h e desired system 

Cx, . . . , Cm . (Since, by assumption, none of the original discs were completely 
covered by t he others, all t h e discs Cx, . . . ,Cm really occur.) 

Af ter these prepara t ions we can easily prove Theorem A*. Let Dx, . . . , 
I)n be n non-overlapping discs, each of per imeter ^ p, contained in the convex 



FILLING OF A DOMAIN B Y DISCS 3 6 7 

hexagon H. Ins tead of Dv . . . , Dn, consider the i r convex hulls Cv . . . ,Cn. 
I n consequence of L e m m a 1, Cv . . . ,Cn in tersect simply. If some of t h e m 
are covered by the others we cancel them one a f t e r another. Finally we obtain 
a subset of the C / s consisting o f m A discs, none of which is covered by t h e 
others and having t h e same union as originally. Then, using Lemma 2, we 
can construct, a system of m non-overlapping convex discs, each of perimeter 

Fig. 2. 

g p, lying in H and having a union Um, which contains each of the original 
discs. Applying Theorem A to these convex discs, we have 

и 
2 Di u n 

^ -—^ a f p ) . n n 

2 л 
perimeter p or, more generally, i{ p g -—. Thus we restrict ourselves to the 

Theorem A** is t r ivial in the case, when all the discs are circles of 
2 л 

Vl2 
2 л 

case p > - — . We shall show tha t t h e problem m a y be reduced to the case 
Yl2 

of cellaggregates consisting of convex ceils. The res t of the proof is similar 
to the proof of Theorem A. 

Le t T j be a tessellation consisting of regular hexagons of un i t area and 
U t he union of n cells of TJ. Without loss of genera l i ty we may suppose t ha t 
U is connected. Let U' denote the union of U a n d the cells of TD adjacent 
to U (Fig. 3). Being given n discs Dv D2, ..., Dn, each of perimeter g p, 
lying in U without mu tua l overlapping, we have t o show t h a t t he average 
area of these discs is n o t greater t h a n a f p ) . For th is purpose we place into 
each ceil of U' not contained in U a smooth hexagon of perimeter p and area 
a f p ) . We denote these new discs with Cn+V ..., Cn+k. We have only to show 
t h a t the average area of the discs Dv . .., Dn, Cn+V ..., Cn+k is not greater 
t han a f p ) . 

8* 



3 6 8 H E P P E S 

Denote the convex hulls of t he discs Dv .. ., Dn with Cv . . ., Cn. I t is 
not d i f f icul t to show t h a t each disc G, (i g n) lies in ULet cx be t h e circum-
circle of a cell o f ' C n o t contained in U ' and c2 the concentric circle of double 
radius (Fig. 4). Since D, lies outside of c2 and its per imeter is not g rea t e r than 

tha t of a cell of ~0 [p g }' 81/з), the convex hull C, of I)l can no t contain a 

chord of c2 longer than 1 , and therefore C, can n o t intersect t h e cell lying 
in Cy (i = 1, . . . , n). 2 

In view of Lemma 1 any pair of Cy 0 n + k intersect s imply. Then, 
referring to Lemma 2 and using similar considerations as in t h e proof of 
Theorem A*, we can construct a new system of m g n + к non-overlapping 
convex discs С[, . . ., C'm, each of pe r imete r g p, contained in U' a n d covering 
together t h e original discs Gy, . . ., Cn+k. 

Fi rs t of all we join to the domain U ' the neigbouring cells of T j obtaining 
the domain U". J u s t as above, we place into each new adjoined hexagon a 
smooth hexagon of per imeter p (and consequently of area a f p ) ) - W e denote 
these new discs with C'm+y, ..., C'm+i. 

L e t us now "blow u p " the discs C{, ...,C'm+l, preserving their con-
vexi ty and the p roper ty of nei ther overlapping nor streching o u t of U " , 
obtaining m + ( convex polygons Py, ...,Pm+l having vly ..., v m + ; sides, 
respectively. Although, in general, these polygons do not fill ou t U" without 
gaps, t h e y may be considered f rom a combinatorial point of view as to form 
a „polygonal decomposit ion" of U ' n . We proceed to prove t h a t t h e average 

number of sides v = — • • • + vm+i Qf polygons does n o t exceed 6. 
m + l 

For this purpose we shall compare the irregular decomposition with t h e 
regular hexagonal decomposition of U " . In t h e hexagonal decomposit ion 
let e denote the number of the edges, eb t he number of the edges on t h e bound-
ary of U", v the number of the ver t ices and v2 t he number of t h e vertices in 
which only two edges meet. Le t e', e'b, v' and v'.,_ denote the corresponding 

' C f . L . F E J E S T Ó T H [ 2 ] . 
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d a t a of the irregular polygonal decomposition. Counting the edges and vertices 
in bo th decompositions we obta in 

6 (та + к + I) = 2 e — eb, v(m + I) = 2e' — e'b, 

3 v — v2 = 2 e and 3 v' — v2 , 2 e'. 

As a consequence of the construction of U " t h e polygons, lying along the 
boundary of U", of the irregular decomposition coincide wi th the cells of 
t he regular decomposition. I t follows from th i s tha t eb = e'b and v2 — v2. 
Using Euler 's formula 

(та + к I) -f- v = e - j- 1 and 

we obta in from t h e above relat ions tha t 

(m + I) + v' = e' + 1 

eb + 6 = 2 v2 and eb + 6 ^ 2 v2 + (6 — v) (таг + I) 

which involves t he desired inequal i ty 6 ^ v. 
Now we make use of a known inequality. L e t С be a disc of perimeter 

g p contained in a convex polygon of given area P and given number of side 
v. T h a n С g F(P, r), where the funct ion F(P, v) is defined b y 

F(P, v) = 

for p < 
p2 

V лР 

. л 
vtg 71 
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pz  

4 71 
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for 

4 vtg 
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4 v tg — 

v 

t g ü 
71 4л2 V 

V 

4 7* 
Vtg - < P . 

In t he middle interval F(P, v) equals the area of a smooth polygon of peri-
meter p lying in a regular r-gon of area P. Since F(P, v) is a non-decreasing 
funct ion both of P and v, and as a function of t w o variables, i t is concave,8 

we have, in view of Jensen's inequal i ty 
N 

ZC'i 
i=1 

N 

2 В ( Р ^ ) 
— ^ F 

N 

N N 
2 Pi 2 Vi 1 1 = 1 

N J N 
g F(l,Q) = a6(p), 

where, for i = m + I + 1, ... , n + к +1 = N, C\ = 0, P f = 0 and vt = 6. 
Equal i ty holds only when C'v . . . , C'N are regular hexagons lving in the cells 
of Ъ . 

L e t us return now to Problem P . I t admits of no doubt t h a t also Theorem 
P continues to hold for not necessarily convex discs, but the proof of this 
conjecture seems to involve considerable difficulties. These difficulties are 

8 F o r t he deta i ls of t h e proof of t h i s s t a t ement see L . F E J E S T Ó T H [ 2 ] I I and I I I . 
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implied in the fact t h a t the best arrengement generally contains also not 
convex discs. Le t us divide, for instance, a regular triangle into two parts 
of equal area by a shortest arc. I t is easy to show9 t h a t this arc is an arc of 
circle centered at a ver tex of the triangle. Thus one of t he parts is n o t convex. 

More generally, i t is not diff icult t o show t h a t t h e shortest ne t , dividing 
a (plane or spherical) domain into par t ia l domains each of given area, consists 
of arcs of circle (of f in i te or infinite radius) meeting another at an angle equal 

2 л л 
to — and meeting t he boundary of the domain a t an angle not less t h a n — .10 

This necessary condition yields 
Theorem S. For n =f= 2, 3, 4, 6, 12, the shortest net dividing the sphere 

into n parts of equal area contains a non-convex mesh. 
Suppose t ha t for n = 1c > 1 t he shortest ne t consists of convex meshes 

i.e. convex spherical polygons. Then, in view of t h e equality of t h e angles, 
t he area of a polygon depends only on the number of its sides. Thus each 

I 12) 12 
polygon must be a 6 gon, and, consequently, — must be an integer. 

к к 
I t is almost trivial t h a t for n = 2 and n = 3 the extremal net consists of a 
great circle and of three half great circles meeting another at equal angles. 
I t would he interesting to show t h a t for n = 4, 6 a n d 12 the best n e t is the 
spherical ne t of a regular te t rahedron, hexahedron and dodekahedron, res-
pectively. These nets play an impor tan t role in an analogous problem dis-
cussed by L . F E J E S T Ó T H [ 5 ] . H E has given an est imation for the length of a 
spherical ne t consisting of n convex meshes of equal area. His estimation is 
exact in the cases n = 2, 3, 4, 6, 12 for the nets l is ted above. 

(Received J u n e 10, 1963) 
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ЗАПОЛНЕНИЕ ОБЛАСТИ ПЛОСКИМИ ФИГУРАМИ 

A . H E P P E S 

Резюме 

В качестве продолжения исследований, начатых несколько лет назад 
([2], [3]) автор доказывает следующую теорему, а также другие теоремы. 

Теорема. Если в области, построенной как соединение п регулярных 
шестиугольников, являющихся составляющими мозаиками, помещены п друг 
друга не перекрывающих плоских фигур, причём периметр каждой из них 
не более р, тогда среднее значение площадей этих плоских фигур не может 
быть больше максимума площадей плоских фигур с периметрами не более р, 
помещаемыми в одном составляющем (шестиугольнике) мозаики. 

Эту оценку, очевидно, нельзя улучшить; ведь максимума можно до-
стать, если в каждом составляющем мозаики поместить плоскую фигуру 
возможно наибольшей площади. Следовательно, экстремальная система со-
стоит — соответственно значениям р — из конгруентных окружений, или 
же из шестиугольников, окруженных посредством конгруентных дуг окруж-
ностей, помещенных в первоначальных составляющих мозаики. 
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