FILLING OF A DOMAIN BY DISCS

by
Arapir HEPPES

As it is well known the area a and perimeter p of a plane domain!
satisfy the so called isoperimetric inequality p? > 4 7 @, and equality holds
only for a circle. This statement has two meanings: on the one hand, of the
domains of given perimeter the circle has the greatest possible area, on the
other hand, of the domains of given area the circle has the least possible
perimeter. Of the numerous variants of the isoperimetric inequality we men-
tion only the following result of Besicovirca [1]:

Let C be a convex domain and C(r) the union of the points of those
circles of radius » which can be placed into C . Then C(r) has of all isoperi-
metric discs lying in C the greatest area, and C(r) has of all equiareal discs
lying in C the least perimeter. ;

In the case when C is a convex polygon, C(r) — the outer parallel
domain of radius r of the inner parallel domain of radius » of ' — arises from
C by rounding off each corner by circular arcs which can be put together
to form one circle of radius r (Fig. 1). Such a domain we shall call a smooth
polygon.

Let R be a regular hexagon of unit area, a;(p) the upper bound of the
areas of the discs of perimeter < p contained in R and pg(a) the lower bound
of the perimeters of the discs of area > a contained in £ . It is clear that for
small values of p (for small values of a) the bound ag(p) (ps(a)) is attained by
a circle, on the other hand, in view of the theorem of Besicovitcs, for values
of p (of a) graeter than the perimeter (area) of the incircle of R the extremal
domain will be a smooth hexagon. An elementary computation shows that
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I Both words ,,domain’ and ,,disc”” will be used for a bounded closed set the
inner points of which form a simply connected set.
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where the constant d = —%2 equals the density of the densest packing of equal

circles in the plane? i.e. the ratio of the area of a circle and that of the circum-

2
scribed regular hexagon. (For 4p— = i- as(p) and pg(a) are inverse functions.)
7

Fig. 1.

Feses ToétH extended the investigation of the isoperimetric problem,
concerning with a single domain, to the study of a certain set of domains
and raised the following two problems:

Problem A. Find the upper bound of the average area a of » non-
overlapping discs, each of perimeter < p, lying in a given domain® D.

Problem P. Find the lower bound of the average perimeter p of 2 non-

. : D S : ;
overlapping discs, each of area > a |¢ < —| lying in a given domain D .
n

As it is quite hopeless to solve these problems in such a general form
they were investigated under several restrictions. The problem of the deter-
mination of the asymptotic behaviour of the extremal configuration for great
values of », may be consider as the fundamental isoperimetric problems for
two-dimensional cellaggregates. For convex discs these questions were inves-
tigated by FEJES TOtH [2] (Problem A) and by Frses TéTH and the author [3]
(Problem P). Their results are summarised in the following theorems*

Theorem A. The average area a of m convex discs, each of perimeter < p
lying in a convex hexagon® H of area n without mutual overlapping, is not greater
than the greatest possible area of one disc of perimeter < p lying in a reqular
hexagon of unit area, i.e.

* Of. L. Fresus ToTH: Lagerungen in der Ebene, auf der Kugel und im Raum. Berlin—
Gottingen—Heidelberg, 1953.

3 We denote a domain and its area with the same symbol.

4In the original form of the above theorems the discs are supposed to be isoperi-
metric (Theorem A) and equiareal (Theorem P), respectively, but the original proofs
remain valid without any modification for these slightly more general statements too.

® Hexagon in a wider sense: polygon having at most six vertices.
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Theorem P. The average perimeter p of n convex discs, each of area = a
(@ £ 1), lying in a convex hexagon® H of area n without mutual overlapping,
is mot smaller than the least possible perimeter of one disc of area = a lying in

reqular hexagon of unit area, i.e.

P 2 pg(a).

Equality holdsin the following cases: (i) H is a regular hexagon containing
one single disc, namely the corresponding smooth hexagon, (ii) the discs are
congruent circles (in both theorems) and (iii) — in Theorem A — when they
fill H without gaps. However these bounds can be approximated with an
arbitrary exactitude for great values of n. Since for great values of n the
special shape of the given domain is irrelevant these theorems inform us about
the asymptotic behaviour of the extremal configurations of the discs in an
arbitrary domain. It is interesting to observe that in spite of the fact that the
arrengements to be compared were originally entirely irregular a single
optimum-requirement implies the congruence of the discs as well as their
regular shape and arrengement.

Now the question arises whether Theorems A and P remain valid without
the restriction of the convexity of the dises.

We shall show that in the case of Theorem A the answer is affirmative.
This is expressed in

Theorem A*. The average area a of n discs, each of perimeter < p, lying in
a convex hexagon H of area n without mutual overlapping, is not greater than the
greatest possible area of a disc of perimeter < p lying in a regular hexagon of
unit area, i.e.

a < ag(p) .

We also shall prove a variant of Theorem A*:

Theorem A**. Let U be the union of n faces of a tessellation consisting
of regular hexagons of unit area. The average area a of n discs, each of perimeter®

s

=p= l’ 8V3 =372..., lying in U without mutual overlapping, attains
its maximum in the case when all the discs are congruent, namely circles or
smooth hexagons of perimeter p, inscribed in the faces of the tessellation contained
wm U, 1.e.

a = ag(p) -

The proofs of Theorem A* and Theorem A** are based on the proof of
Theorem A and on three lemmas listed below.

We shall say that two closed convex domains O, and C, intersect simply
if they satisfy one of the following conditions:

(i) C; and C, have no inner points in common,

(ii) one of them is completely covered by the other, or

(iii) €, and C, overlap and the boundary of their (convex) intersection
can be split up into two non-overlapping connected arcs, one belonging to
the boundary of C; and the other to that of C,.

Lemma 1. If two discs, D, and D, have no inner points in common then
the convex hull of D, and that of D, intersect simply.

% The constant V—S——V? is the perimeter of a hexagonal face of the tessallation.

8 A Matematikai Kutaté Intézet Kozleményei VIII. A/3.
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Let C; and C, be the convex hulls of D, and D,. In contrary to our
statement we suppose that C; and C, do not intersect simply. Then they have
inner points in common but none of the discs is completely covered by the
other. Thus the boundary B of the union C; U C, consists of the common
points of the two boundaries (single points or closed arcs) and of the open
“proper boundary arcs” of C; and C,, respectively, consisting of the boundary
points of C; outside C, and the boundary points of C, outside C, . Since C,
and C, do not satisfy (iii) there exist (at least) two pairs of proper boundary
arcs belonging to C; and C,, respectively, and having the property that each
of this pairs separates the arcs of the other pair on B. It is easy to see that
to each proper boundary arc there exist a supporting line, which does not
meet the other disc. On the other hand each supporting line of the convex
hull of a connected bounded set contains at least one of the boundary points
of the original set. Consequently B contains two pairs of points belonging
alternately to the boundaries of the original discs D; and D,. Thus both pairs
of their four different points can be connected by a single arc through the
interior of D, and D,, respectively. But this contradicts to the fact that D,
and D, have no inner points in common.

Lemma 2. Suppose that any two of the convex discs C,, . .., C,, intersect
simply and, that none of them is completely covered by the others. Then the discs
can be contracted into non-overlapping discs Cy, . . . ,C, (C; C C;, i =1,...,m),
the union of which equals the wunion of Cy, ...,C,,.

The proof rests on the following lemma of BAMBAH and RoGERS (see
[4] Lemma 1) which we quote without proof:

Lemma 3. Let S and T be two convex discs which intersects simply. Suppose
that a segment divides S into two sets SV and S®. Then SV and T intersect
simply ; exept possibly when the segment divides T into sets TV and T®, one
of which is contained in S®. In this latter case SV and T intersect simply.

Lemma 2 is trivial if no pair of the discs have inner points in common.
Therefore we suppose that there exist two discs, say C; and C;, which overlap.
Since the discs intersect simply we can find (according to (iii)) two points
P, and P, on the intersection of the boundaries of C; and C;, which split the
boundary of the union C;UC; into two non-overlapping connected arcs B,
and B; belonging to the boundary of C; and O, respectively. Thus the segment
P,P, divides C;UC; into the non-overlapping dises C{ and C{ (CW C O,
and C{® c C)). Replacing now C,; by ¥ and C; by C(V it may happen that
some of the new discs do not intersect simply (Fig. 2). For instance, let C,
be a disc which does not intersect O simply. Then, referring to Lemma 3,
P, P, divides C,, into two parts, one of which is contained in C{V and the other,
O, intersects O (and OV) simply. In this case we replace C, by COf.
Proceeding in this way step by step, we can construct a new system of convex
discs, intersecting simply one another. In each step of this process the union
of the discs remains unchanged, but the number of the overlapping pairs of

discs decreases. Thus in at most | steps we obtain the desired system

s 30 2
€y, ....C, . (Since, by assumption, none of the original discs were completely
covered by the others, all the discs Cy, . . ., (), really occur.)

After these preparations we can easily prove Theorem A*. Let Dy, . . .,
D, be n non-overlapping discs, each of perimeter < p, contained in the convex
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hexagon H. Instead of D, ..., D,, consider their convex hulls C,, ... ,C,.
In consequence of Lemma 1, Cy, .. ., C, intersect simply. If some of them
are covered by the others we cancel them one after another. Finally we obtain
a subset of the C;’s consisting of m < n discs, none of which is covered by the
others and having the same union as originally. Then, using Lemma 2, we
can construct, a system of m non-overlapping convex discs, each of perimeter

< p, lying in H and having a union U, which contains each of the original

discs. Applying Theorem A to these convex discs, we have

L=
o

<nm
n

P =< aq¢(p).

Theorem A** is trivial in the case, when all the discs are circles of

perimeter p or, more generally, if p < Fl Thus we restrict ourselves to the
Viz

case p > ?i We shall show that the problem may be reduced to the case
V12

of cellaggregates consisting of convex cells. The rest of the proof is similar
to the proof of Theorem A.

Let " be a tessellation consisting of regular hexagons of unit area and
U the union of n cells of “&. Without loss of generality we may suppose that
U is connected. Let U’ denote the union of U and the cells of & adjacent
to U (Fig. 3). Being given = discs D,, D,, ..., D,, each of perimeter < p,
lying in U without mutual overlapping, we have to show that the average
area of these discs is not greater than ag4(p). For this purpose we place into
each cell of U’ not contained in U a smooth hexagon of perimeter p and area

ag(p). We denote these new discs with C, 4, ..., C,4;. We have only to show
that the average area of the disecs D,, ..., D,, C,4,, ..., Cpy; is not greater
than a4(p).

8*
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Denote the convex hulls of the discs D, ..., D, with O}, ..., C,. It is
not difficult to show that each disc C; (2 < n) lies in U”: Let ¢, be the circum-
circle of a cell of “Onot contained in U’ and ¢, the concentric circle of double
radius (Fig. 4). Since D; lies outside of ¢, and its perimeter is not greater than

that of a cell of ‘G [pg VB J3J, the convex hull C; of D, can not contain a
e
chord of ¢, longer than ~§E , and therefore C; can not intersect the cell lying
1 ch (f—=1, 5 ) 2
1

In view of Lemma 1 any pair of C,, ..., C, ., intersect simply. Then,
referring to Lemma 2 and using similar considerations as in the proof of
Theorem A*, we can construct a new system of m < n -k non-overlapping
convex discs Cf, ..., O, each of perimeter < p, contained in U’ and covering
together the original discs O, ..., C,4,.

Fig. 4.

First of all we join to the domain U’ the neigbouring cells of " obtaining
the domain U”’. Just as above, we place into each new adjoined hexagon a
smooth hexagon of perimeter p (and consequently of area a4(p)). We denote
these new dises with Cj,4,, ..., Cry

Let us now “blow up” the dises Cf, ..., Cp, ., preserving their con-
vexity and the property of neither overlapping nor streching out of U”,
obtaining m +1 convex polygons P, ..., Py, having », ..., v, sides,
respectively. Although, in general, these polygons do not fill out U"” without
gaps, they may be considered from a combinatorial point of view as to form
a ,,polygonal decomposition’” of U’’7. We proceed to prove that the average
Vi Traind sV

m+1 ,
For this purpose we shall compare the irregular decomposition with the
regular hexagonal decomposition of U’’. In the hexagonal decomposition
let e denote the number of the edges, e, the number of the edges on the bound-
ary of U”’, v the number of the vertices and v, the number of the vertices in
which only two edges meet. Let ¢, ¢;, v" and v, denote the corresponding

number of sides » = of these polygons does not exceed 6.

7Cf. L. Feses TotH [2].
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data of the irregular polygonal decomposition. Counting the edges and vertices
in both decompositions we obtain

6(n+k+1l)=2e—e, vim+1)=2e¢ —e,
3v—-v,=2e and 3v —uv;<2¢€ .

As a consequence of the construction of U’” the polygons, lying along the
boundary of U’’, of the irregular decomposition coincide with the cells of
the regular decomposition. It follows from this that e, = ¢; and v, = vj.
Using Euler’s formula

mn+k+1l)+v=e+1 and (m+1)+ov'=¢ +1
we obtain from the above relations that
e +6=2v, and e, 4 6=2v,+ (6 —7¥)(m+1)

which involves the desired inequality 6 > .

Now we make use of a known inequality. Let C' be a disc of perimeter
< p contained in a convex polygon of given area P and given number of side
v. Than C < F(P, »), where the function F(P, ») is defined by

P for P<——£2—
4vtg —
4
B pVPvtg————pz—:tP 4 .
BEa= for P <SP —p—-vtgz
vig L — 4vtgZ & PR
g 4 vig
v v
2 2
Ay for P vtg— < P
47 4 72 Y

In the middle. interval F(P, ») equals the area of a smooth polygon of peri-
meter p lying in a regular »-gon of area P. Since F(P, ») is a non-decreasing
function both of P and », and as a function of two variables, it is concave,?
we have, in view of Jensen’s inequality

N N : N N
‘Z;Ci iZ: F(P,») iZ;Pi Z: i
A=l e < Hl— — = PP )= ’
¥ = ¥ == i _7( ) = ag(p)

where, for i =m +14+1,...,n +k +1=N,C;=0, P, = 0 and v, = 6.

Equality holds only when O, ..., C}y are regular hexagons lying in the cells
of .

Let us return now to Problem P. It admits of no doubt that also Theorem
P continues to hold for not necessarily convex discs, but the proof of this
conjecture seems to involve considerable difficulties. These difficulties are

8 For the details of the proof of this statement see L. FEJE;S Térr [2] IT and III.
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implied in the fact that the best arrengement generally contains also not
convex discs. Let us divide, for instance, a regular triangle into two parts
of equal area by a shortest arc. It is easy to show? that this arc is an arc of
circle centered at a vertex of the triangle. Thus one of the parts is not convex.

More generally, it is not difficult to show that the shortest net, dividing
a (plane or spherical) domain into partial domains each of given area, consists
of arcs of circle (of finite or infinite radius) meeting another at an angle equal

to %7_‘ and meeting the boundary of the domain at an angle not less than Z

This necessary condition yields

Theorem S. For n =2, 3,4, 6,12, the shortest met dividing the sphere
into n parts of equal area contains a non-convex mesh.

Suppose that for » = k > 1 the shortest net consists of convex meshes
i.e. convex spherical polygons. Then, in view of the equality of the angles,
the area of a polygon depends only on the number of its sides. Thus each

polygon must be a |6 —1—: -gon, and, consequently, lkg must be an integer.

It is almost trivial that for n = 2 and n = 3 the extremal net consists of a
great circle and of three half great circles meeting another at equal angles.
It would be interesting to show that for » = 4, 6 and 12 the best net is the
spherical net of a regular tetrahedron, hexahedron and dodekahedron, res-
pectively. These nets play an important role in an analogous problem dis-
cussed by L. Feses TétH [5]. He has given an estimation for the length of a
spherical net consisting of n convexr meshes of equal area. His estimation is
exact in the cases n = 2, 3, 4, 6, 12 for the nets listed above.

(Received June 10, 1963)
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3ANNOJIHEHHUE OBJACTH ITJIOCKUMHU PUT'YPAMU
A. HEPPES

Pe3iome

B KkauecTBe NMPOJOJHKEHUsST UCCJIeJOBAHUI, HAUYATHIX HECKOJIbKO JIeT Hasaj
([2], [3]) aBTOp NOKa3LIBAET CJIEAYIOLLYIO TEOPeMy, a TAaKKe JAPyrue TeopeMbl.

Teopema. Ecau 6 obaacmu, nocmpoenHoll kax coeOurenue m pe2yaAspHbiX
wiecmuy 2016HUK08, AGAAIOWUXCA COCMABAAOWUMI MO3QUKAMU, NOMeweHsl n 0pye2
Opyea He nepexpuléaroiyux nAaockux ueyp, npudém nepumemp ka#cool u3 Hux
He 00aee p, moz20a cpedHee 3HadeHue naowaoel IMux NAOCKuUX @fuayp He modcem
Gbimb Ooablie makcumyma naowaodell naockux @uayp ¢ nepumempamu He 6oaee p,
nomelyaeMiMu 6 00HOM cocmasasioujem (Uecmuy20AbHUKe) MO3QUKU.

Ty OLEHKY, 0YeBM/HO, HeJlb3sl YJIYULIATb; BeJlb MAKCUMyMa MOJKHO J0-
CTUTb, €CJIM B KaXKJIOM COCTABJISIOIIEM MO3aMKU IOMECTUTH IUIOCKYI0 GUrypy
BO3MO)KHO Hauboibluei rromaau. CreoBaTesbHO, SKCTPeMaibHas CUCTeMa CO-
CTOUT — COOTBETCTBEHHO 3HAUEHHSIM P — M3 KOHTPYEHTHBIX OKPY)KeHWH, WiH
yKe U3 LIeCTUYTOJbHUKOB, OKPY)KEHHBIX IOCPEJCTBOM KOHI'PYEHTHBIX YT OKPYK-
HOCTei, MOMeIleHHbIX B IepPBOHAYaJbHBIX COCTABJISIOLIMX MO3aUKHU.
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