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Introduction 
There are several ways to generalize t h e Jordan-Holder theorem. One 

m a y consider th is theorem as a result on equivalence relat ions on a set1 ( the 
set being the g roup or ring i tself) ; or as a s ta tement on t h e „subnormal" 
elements of lat t ices upon which a binary relation ("a is normal in b") is defined,2 

t h e lattice being the lattice of all subgroups of the given group. But if we 
look at the theorem as it is t h e n the most na tu ra l way of generalization is 
t o get rid of t he axioms of g roups (rings) a n d prove the resu l t for a rb i t r a ry 
universal algebras. This was done by A. W. GOLDIE [3] and my first aim is 
t o give a var ian t of his proof. My proof is much shorter a l though no essen-
t ial ly new idea is used. The concepts are also different and , I hope, more 
na tura l . At the proper place (§ 4) I'll give m y reasons for n o t following t h e 
old pat tern. 

Then we will point out t h a t the proof employed makes us possible t o 
give further generalizations. I n t he proofs we used the concept of homomor-
ph ism and subalgebra but t h e operations were very seldom taken in to 
consideration. Therefore we consider universal algebras as sets among which 
cer tain mappings, called homomorphisms, a re defined, satisfying certain 
axioms.3 This axiomatic t r e a t m e n t makes us possible to ex tend the Jo rdan-
Holder theorem to multialgebras. 

§ 1. Preliminaries 

An algebra is a couple (A; F) where H is a set and t h e elements of F 
are f in i tary operat ions on A, i.e. each f £ F is a function of «-variables, n 
depending on / , i t associates w i t h every «- tup le (av . . a n ) of elements of 
A an element f(av . .., an) of A. Let Fn deno te the set of all operations of 

n variable, F = IJ Fn . 
n=о 

1 See e.g. B I R K H O F F [ 1 ] , p p . 8 7 — 8 9 and t h e r e f e r ences on p . 89 . 
2 See e.g. Z A S S E N H A U S [7], p p . 190—198, w h e r e some re fe rences a r e also g i v e n . 
3 T h a t t h i s is t h e n a t u r a l f r a m e w o r k for t h e J o r d a n - H o l d e r t h e o r e m was f i r s t 

p o i n t e d out t o m e b y E . F R I E D w h o a l so gave a n a x i o m sys tem s i m i l a r t o I — V I I I of 
§ 5. I don ' t k n o w w h a t is t h e c o n n e c t i o n between h i s (s t i l l u n p u b l i s h e d ) ax iom s y s t e m 
a n d m i n e . Of course , t h i s is not n e w . I f we go one s t e p fu r the r , we g e t t h e not ion of 
c a t ego r i e s . 

397 

10 A Matematikai Kutató Intézet Közleményei VIII. A/3. 
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In this note all algebras considered are of the same type, i.e. t h e set 
of operations can be denoted by the same letter F. For simplicity's sake 
we omit t he letter F. Thus if we say t h a t A is an algebra then we have the 
algebra (A; F) in mind. 

A non-void subset В of A is a subalgebra if bv . . ., bn £ B, f £ Fn imply 
f(bv .. ., bn) Ç B. The intersection of two subalgebras is again a subalgebra, 
provided i t is non-void. 

The set of all equivalence relations over A is denoted by P(A). If 
(A), A £ A then (J defined by x = y( (J £*) if and only if there exists 

in A A f in i te sequence x = z0, zv ..., zn = у such tha t = Z,(£AÍ) for some 
A,- £ A, i= 1 ,2 , . . . , « . and П defined by x = y{ f] £/) if a n f l only if 
x = for all A £ A are again in P(A). If we partially order P(A) by £x ^ e2 
if and only if £x = £j П £2 then we see t h a t P(A) is a complete lattice in which 
(J £), and П are the least upper bound, resp. greatest lower bound of t he set 
К ; А < Е Л } . 

A congruence relation 0 is an equivalence relation satisfying the substi-
tution property : if a,• = b, ( 0 ) , i = 1 ,2 , . . n and / £ Fn then f(av . . ., an) = 
= f(bv . . ., bn) (0). The set of all congruence relations is denoted by 0(A). 
Obviously, 0(A) ^ P(A) and as it is known ek Ç 0(A) , AÇA imply (J £X, 
П £\ € 0(A) . We denote by со and t the least, resp. greates t element of P(A). 
Obviously со, i £ 0(A). 

If 0 is a congruence relation on A and Я is a subset of A let \H] 0 
denote the union of the congruence classes of A represented by H, i.e. 
[Я] 0 = {ж; x = Л(0) for some h Ç H}. The algebra A / 0 is defined on the 
congruence classes [ж] 0 in the following way: 

/ ([жх]0, . . . , [ ж п ] 0 ) = [/(ж1, . . . , ж „ ) ] 0 . 

The mapping y. x —»- [ж] 0 is called a homormorphism. 
I t is easy to prove t h a t if Я is a subalgebra then so is [ 5 ] 0 . В is called 

closed under 0 if В = [Я] 0 . 
A subalgebra Я of A is called normal if A is a whole congruence class 

under some congruence relation 0 , i.e. В is closed under 0 and x = y(0) 
for every ж, у £ В. 

Let 0 be a congruence relation and В a subalgebra of A. Then we define 
0 S , the restriction of 0 t o B, as follows: 

ж = y( 0 B ) if and only if ж, у £ В and ж = y ( 0 ) . Obviously, Q B is a 
congruence relation of B. 

Let 0 , Ф £ 0 (A) such that В is closed under 0 and Ф. Then В is closed 
under 0 (J Ф 

Let 0 , Ф £ 0(A) and В a subalgebra of A. We say (modifying t h e notion 
invented by G O L D I E [3]) t h a t 0 and Ф are weakly associable over В if 

[ [ [ Я ] 0 ] Ф ] 0 = [ [ Я 1 0 ] Ф , 
or equivalently, 

[ [Я]0 ]Ф = [ [ Я ] Ф ] 0 , 

or, a third equivalent form 

[ Я ] 0 У Ф = [[ВЩФ 
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This means, tha t if 6 = x(0) and x = у(Ф), b £ В, x, у £ A, then there exist 
b'£B, z£A with Ь' = г(Ф), z = y(0). 

Let В, С and D be subalgebras of i , 0 and Ф congruence relations 
on В and C, respectively, D Q В f] С. 0 and Ф a re said to be weakly asso-
ciable over D if 0 B n c and Ф в п с

 a r e weakly associable over D. 

§ 2. The Zassenhaus lemma 

The following s ta tement is the essence of t h e Zassenhaus lemma: 
Lemma 1. Let A be an algebra, В a subalgebra of A, 0 a congruence 

relation of А, Ф a congruence relation of В such that 0B g Ф. Define a relation 
0(Ф) on [ 5 ] 0 by 

(1) a = b (0(Ф)) if and only if there exist c,dtB such that 
а=с(0), с = й(Ф), d = b( 0 ) . 

Then 0(Ф) is a congruence relation of [S]0 and 

(2) [В]0/0(Ф)шВ1Ф, 

where an isomorphism is given by 

(3) [х]0(Ф)-а-[х]Ф, x í B . 

The relation 0(Ф) is obviously reflexive and symmetric on \ B ) 0 . The 
transi t ivi ty can be verified as follows: if a = Ь(0(Ф)), a' = 6 ' (0(Ф)), b = a' 
then there exist c, d £ В and c', d' £ В as required by (1). Since d = 6(0), 
b = a' = c'(0) we get d = c ' (0) , t hus d = с'(Ф). Therefore с ^ d = c'= 
= d'(0) hence с = d'(0) and a •== 6 ' (0(Ф)) is verif ied. 

If / £ Fn, at == 6Д0), i = 1, 2 n (with ct,dt satisfying (1)) then 
f(cv ...,cn) =f(dv ...,dn) (Ф), f(av ...,an) =f(cv ...,cn)( 0),f(bv . . . ,6„) ^ 
=f(dx, ...,dn) (0), t hus f(av ..., an) —f(bv ...,bn) (0(Ф)), proving that 
0(Ф) is a congruence relation on \B]0. 

By (1) every congruence class of [ B ] 0 modulo 0(Ф) can be represented 
by an element of В, t hus we get t h a t (3) maps t h e lef t side of (2) onto the 
right side of (2). Fur the r x = у(0(Ф)) is equivalent to x = у{Ф) if x, у £ В 
therefore (3) sets up an isomorphism. 

Corollary (Zassenhaus lemma). Let D and E be subalgebras of A with 
non-void intersection, 0 and Ф congruence relations of D and E, respectively. 

Put T = 0DnE U ФоПЕ- Then 

(4 ) [D f) E]0/0(T) c* [D f) Е]Ф/Ф(Т) , 
an isomorphism is given by 
(5) [ х ] 0 ( Ф ) ^ [ х ] Ф С Р ) , x í D n E . 

Indeed, Lemma 1 applied to the algebras A = [D f] E]0 and В = D f| E 
with the congruence relations 0 and W (obviously ODHE á T) gives 

[D П E]010(W) шD p\ EIT, 

[ х ] 0 ( Ф ) - > [ х ] Ф , x í D n E . 

This, and the similar result for Ф ra ther than 0 gives (4) and (5). 

10* 
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§ 3. The Jordan-Holder-Schreier theorem 

Normal series 

A normal series of A is a series of subalgebras 

(6) 4 = Л 2 Л 3 . . . 2 4 „ 

such t ha t there exists a series of relations 

(7) 0O,01, ...,0n = coAn, 

such t h a t 0 , is a congruence relat ion on A, and А,- = [A,,]©,-^, i = 1, 2, . . . , n. 
The algebras А,/0,-, г = 0, 1, . . ., n — 1 are called the quotient algebras 

of (6) (with respect t o (7)). 
Le t 

(8) 4 = B „ i S 1 i . . . i Bm 

be also a normal series, accompanied by 

(9) Ф0,ФХ, ...,Фт = соВт, 

Ф, € 0 ( 5 , ) , i = 0 ,1 , . . m , Bt= [ 5 т ] Ф , _ 1 , i = 1, 2, . . . , m . 

The normal series (6) and (8) are called isomorphic if n = m, An = Bm, 
and (7), (9) can be chosen in such a way that A, /0 , ей Вк]Фк1, for some permu-
ta t ion 1c0, lclt . .., kn_x of 0, 1, . . . , n — 1. 

(8) is a r e f inement of (6) if An = Bm and every Ai is a Bj. 
Theorem 1 (Schreier 's theorem). The normal series (6) and (8) have 

isomorphic refinements if An = Bm and (7), (9) can be chosen in such a way 
that 0 , is wealcly associable with Фу over An(= Bm), i — 0, . . . , n, j — 0, . . . , m. 

Define 

(10) A u = [A,- n B f 0 ; , By = [A,- n Bj] T j , 

0,7 = 0 , (Ф, 7 ) , Ф,7 = 0 j { V t j ) , where V t ) = 0 , ^ U Ф ] а > п Щ . 

Then A,7/0,7 ш, В у/Фу by the Zassenhaus lemma. 
Fur ther Ai0 = A,-, Aim = [А,- fl Bm] 0,- = [ A J 0 , = Ai+1, Ay 3 AiJ+1, 

hence to prove t h a t 

A = A00 i A01 5 . . . 3 A0m = Ax i . . . i A„ 
and 

A = B002B10-^ ...^Bn0 = B1^...^Bm 

are isomorphic ref inements it is enough to ve r i fy tha t 

( И ) [An] 0y = A i ; + 1 (0 A. 7 < m) 
and the similar s ta tement for Фу. Indeed , [An]0, = [A n ]0 , (Ту) = 
= [Ш Ту] 0 , i [ í A n ] 0 j A i n B j ] 0i=[Aif)BJ+1] 0i = Aij+1 Ш An, hence 
[ A„] 0 у = ( А у + х ] 0 у , thus in o rder to show (11) i t is enough t o prove t h a t 

(12) d , 7 + 1 is closed under 0y. 



ON THE J O E D A N - H O L D E R THEOREM FOR UNIVERSAL ALGEBRAS 4 0 1 

Ay+i is, by definition, closed under 0,-, hence it is closed under 0,-; = 
= ei(0iAinB, u Ч + п в Р if and o n ' y if Aij+1 n (A, n Bj) = Aij+1 n Bj is closed 
under Ф, . Since 

JAtnBj 
A n A+i = Л п И г ] А = \An\ Ф]А1ПВ1 

and 

Aij+1 n Bj = [Aj n Bj+1] 0, n Bj = [А, П Bj+1) 01щ = [\An] АД ( Л J . 0 , ^ = 

(by the definition of weak associability of 0 , and Ф, over A J = 

= [ \ A n \ G i A i n B } 0 i A i n B j  

which was to be proved. 

Principal series 

The normal series (6) is a principal series if At (i = 0, 1, . . . , та) is a 
normal subalgebra and if in (7) every 0,- is a congruence relation of A; then 
the factor algebras are A) 0iA, 7 = 0, 1, . .., n— 1. 

Theorem 2 (Schreier's theorem). The principal series (6) and (8) have 
isomorphic refinements if An = Bm and (7), (9) can be chosen in such a way 
that 0j and Ф ; are weakly associable over An. 

Since A (Bj) is a normal subalgebra, there exists a congruence relation 
t]j (I,) of A such that A ( ß , ) is a whole congruence class m o d u l o ^ (£,•). We put 

Ajj = [An Bj] 0j, Bjj = [Ajn Bj] 0 j , 

0jj = (0, и A ) n Vi-1. ф,7 = ( A u 0j) n • 

Now Ajjl&jj íd Bjjl 0 j (J Фу follows f rom Lemma 1 (with 0 = 0,7, Ф = 
= (A U 0j)AtnB,) therefore 

A j j l 0 j j ^ B j j l 0 j j , 

hence again i t remained only to verify (11), which is again reduced to (12). 
But Ajj Q Aj therefore it is in one class modulo rjj_v thus the problem is 
reduced to ( 0,- U A A a n d therefore the proof given at the end of Theorem 
1 applies here too. 

§ 4. Some definitions of normal series 

The situation in groups and rings is very simple compared to abstract 
algebras (due to the fact t h a t every homomorphism of a group or a r ing is 
determined by its kernel) therefore it is difficult to f i nd the most natural 
generalization of normal (and principal) series. 1 want to compare here some 
definitions. 

G O L D I E defined the notion of A homomorphic relation R of an algebra 
A, which means a congruence relation of a subalgebra D(R) of A. Fur ther , 
he supposed the existence of a subalgebra A 0 contained in every subalgebra 
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of A, and he p u t {R} = [A0~\R, which he called the kernel of R. Then he 
defined a normal series to be a sequence of homomorphic relations t = R0, 
Bv ..., Rn = coAe, such t h a t {й,+ 1} Я {Ä,} Я D{Ri+1) and {/?,} is closed 
under Rj+y. The quotient algebras are {/it }jRi + V In th is way, one might 
think, i t is possible to get a stronger form of Theorem 1 since there we say 
nothing about the relations accompanying the refinements, while in this fo rm 
every relation which was a member of a series will remain a member of t h e 
new series. 

This is obviously t r u e in the proof of Theorem 1 too. Simply, because 
(~)im = 0 ( . B u t is it of any importance? In every application of the general 

theory (to groups, rings, loops, groupoids, semigroups or lattices) we consider 
only normal series in which Ai+1 is an entire class modulo 0 ( (i = 0, . . . , n — 1). 
I n this case Aim\0im = Aim\0i is a one element algebra. Therefore if we omi t 
f rom the re f ined series t he superfluous t e rms 0(- will be among the omi t ted 
ones. 

Let us see an example. Le t В be a one element subalgebra of A such 
t ha t A has two non-trivial congruence relations 0 , Ф ( 0 =j= Ф) and В is closed 
under 0 and Ф. Then t, 0 , coB and i, Ф, ыв are two normal series, the series of 
kernels of bo th is А, В, B. The ref inements will he 

« , 0 и Ф , 0 , wB, the kernels are A,B,B,B\ 

t , 0 U Ф , Ф , с о в , the kernels are A,B,B,B. 

And af ter omit t ing the superf luous terms, 0 and Ф drop out . In this s i tuat ion 
this is inevitable. 

S T E I N F E L D [6] defines a normal sequences as a sequence of couples: 

A = Ao(0 0 ) i . . . i An(Qn), 

where At is a subalgebra of A and 0,- is a congruence relat ion of Ar B u t 
fixing the congruence relat ion to the subalgebra makes it impossible to def ine 
the ref inement , see the example above. 

To sum up, even if in the definition of normal series the congruence 
relations are included, in t he actual applications they have no well def ined 
connection wi th the congruence relations of the refined sequence. Therefore 
there is no loss if we do no t f i x in the defini t ion the accompanying sequence 
of congruence relations. 

However, my defini t ion has a disadvantage. I t is no t obvious whether 
or not the isomorphism of normal series is a transit ive relation. I t would be 
of interest t o f ind an answer to this problem. 

Of course, i t is very easy the change t he definition so as to make t h e 
isomorphism of normal series transitive. Le t us say t h a t (6) and (8) are iso-
morphic if to any accompanying series (7) the re corresponds an accompanying 
series (9) such t ha t H ;/0 ;. e^ Bkf <l>ki. 

Then e.g. Theorem I has to be modif ied as follows: "(7) and (9) can be 
chosen in such a way" is t o be replaced by " t o any accompanying series (7) 
there corresponds an accompanying series (9) such". 



ON THE J O E D A N - H O L D E R THEOREM FOR UNIVERSAL ALGEBRAS 4 0 3 

§ 5. Classes of algebras 

If we analyse the proofs in § 2 and the proof of t he statements made 
in § 1 we arrive at the conslusion, t h a t the operations very seldom played 
rôle in them. Therefore i t is not surprising tha t we can generalize these results 
by considering „algebras" where besides t h e sets only mappings are considered. 

A class of algebras is a class of sets К and a class of mappings H, called 
homomorphisms. A cp £ H is always a many-one mapping q>: A-> В where 
А, век. 

To simplify the axioms we define t h e basic notions. 
If A £ К and В Q A, then В is called a subalgebra if there exists a 

С £ К and a cp £ H, <p: С'-> A such tha t Сер = B. 
An equivalence relat ion 0 on A (Ç K) is a congruence relation if there 

exists а В Ç К and a <p £ H, ср: А-*- В such that a = b(&) (a, b £ A) if and 
only if a cp = b cp. 

The set of all subalgebras, resp. congruence relation on A (£ K) is deno-
ted by 5(A) and 6(A), respectively. 

The notations we use (e.g. [ 5 ] 0 ) are the same as those defined in § 1. 
Now we list the axioms: 

I. if cpp A-* B, q>2: В —>C and cpv <p2 £ H, A, B,C £ K, then 
<Ру cp2 Ç H; fu r the r if A = С, В £ К and <pv cp2 are one-to-one and 
onto then cpy Ç H implies <p2 £ H; 

I I . со, i £ 0(A); 
I I I . В £ 8(A) and 0 € 0(A) imply 0B Ç 0 ( 5 ) ; 
IV. if В, С 6 5(A) and В П С is no t void then В fl С £ 5(A); 
V. 0 (A) is a U -semilattice, i.e. 0 U Ф exists4 for every 0 , Ф Ç 0 (A) ; 

VI. В e S(A) and 0 Ç 0(A) imply [B]0 6 8(A); 
VII. В e 5(A), 0,Фе 0(A), [ 5 ] 0 = В and [В]Ф = В imply5  

[ 5 ] 0 U Ф = B-, 
VIII. В £ 5(A), 0 6 0(A) , Ф ç 0 ( 5 ) and 0B g Ф imply6  

0(Ф) 6 0 ( [ 5 ] 0 ) . 

Since the notions of weakly associable congruence relations, normal 
series are defined in te rms of congruence relations and subalgebras therefore 
these definitions apply in t h e general situation as well. 

Theorem 1'. Schreier's theorem for normal series holds for algebras satisfy-
ing axioms I—VIII . 

To verify this s ta tement one has to observe that nothing else but axioms 
I—VIII were used in the proof of Theorem 1. 

To prove Theorem 2 we used another axiom: 
IX. if 0 , Ф £ 0(A), and we form 0 Г) Ф in 5 (A) then 0 ( 1 Ф € 0 (A) . 

Theorem 2'. Schreier's theorem for principal series holds for algebras 
satisfying axioms I—IX. 

4 We d o not require t h a t © U Ф should h e t h e same u n i o n a s defined in § 1. 
6 I n o t h e r words, if В i s closed under © a n d Ф it be closed u n d e r © U Ф. 
6 0(Ф) was def ined in L e m m a 1. Axiom V I I I is the f i r s t s t a t e m e n t of L e m m a 1. 
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§ 6. Mulli algebras 

The not ion of groups was generalized t o multi groups7 by defining t h e 
product of two elements as a subset rather t h a n an element. In the same w a y 

we define multi algebras as a couple (A\ F) where A is a set , F = (J Ft a n d 
i = 0 

Fn i s t h e s e t o f multi operations of « v a r i a b l e s ; / £ Fn i f . f ( a v . . a n ) i s a 
unique subset of A for every «- tuple (e1, . . . , an) of elements of A. Ins tead 
of (A; F) we use again the no ta t ion A. 

A subset В of A is a subalgebra if bv . . - ,bn£ B.f Ç Fn imply f(bv . . . 
. . . , b n ) £ B. If A and В a re multi a lgebras then a many-one mapping 
g>: A —>- В is called a homomorphism if f(ax, . . ., an) <p = f(ax cp, ..., an <p) for 
every / £ Fn, where for a subse t С of А, С cp denotes the set of all с cp, с Ç_C. 
Accordingly, an equivalence relation 0 is called a congruence relation if 
a, = bj(0), г = 1, 2 « , / Ç Fn imply t h a t t o every с £f(ax an) t h e r e 
exists a d £f(bv . . ., bn) such t h a t с = d(0). 

We are going to verify t h a t the class of multi algebras К and the class 
of homomorphisms H satisfy axioms I — I X . 

Axioms I—IV obviously hold true. Axioms V and V I I and IX follow, 
as usual, f r o m the following s ta tement : 

0(A) is a complete sublat t ice of P(A). This can be ver i f ied in the same 
w a y as for algebras by p roper ly using t h e characterization of congruence 
relations, as given above. 

To ver i fy Axiom VI let Я be a subalgebra and 0 a congruence relat ion 
of A. If cv . . ., cn Ç [B]0, f Ç Fn then t h e r e exist bv . . .,bn £ В such t h a t 
ct = bj(0), i = 1,2, . . . , « . T h e n с £f(cv . . ., cn) implies t h e existence of a 
d £f(bv . . ., bn) such that d = c(0). But f(bv . .., bn) Я В therefore d £ Я, 
t h u s с 6 [Я] 0 and f(cv ...,cn) g [Я] 0 follows. 

The proof of Lemma 1 applies to mul t i algebras as well excepting t h e 
p a r t where we proved tha t 0 ( Ф ) satisfies t h e substitution property. Argu-
ments, as t h e one used in t h e above pa ragraph , can be applied to modi fy 
t h e proof. Therefore axiom V I I I is valid. W e get 

T h e o r e m s 1 " and 2" . Theorems 1 and 2 hold true for multi algebras. 
Even more is true. We do not have t o require t ha t t h e operations are 

finitary and everything remains true. However, we do not go into the detai ls 

A pplications 

Several applications of Theorems 1 a n d 2 are found in G O L D I E ' S p a p e r 
[3]. In case of groups, rings a n y two congruence relations are weakly associable 
therefore Theorems 1 and 2 apply. 

In case of semigroups (or even without t h e associativity of multiplication) 
we can get Schreier 's theorems if the ideals t a k e the place of subsemigroups 
and 0 is a congruence relation if x = y(0) if and only if x = у or x and у a re 
elements of a f ixed ideal. But in this case i t is not enough t o verify tha t a n y 
two congruence relations are permutable b u t one has to ve r i fy axioms I — I X 
as well. This is easy since all these s ta tements are consequences of the f a c t 
t h a t the set theoretical union and intersection of two ideals is again an ideal. 

' S e e e . g . BRUCK [2] a n d t h e b i b l i o g r a p h y t h e r e i n . 
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A new appl ica t ion is t he case of multi g roups . In the p a p e r [4] I I n t r o -
duced the no t ion of s tandard ideals in la t t ices (the English version of t h i s 
pape r is G R Ä T Z E R a n d S C H M I D T [5], whore a m o r e detailed t h e o r y of s t a n d a r d 
ideals was given). Given an ideal S of a l a t t i ce L we can d e f i n e a re la t ion 
Os on L as follows: 

x = y( 0S) if a n d only if (x П y) U s = x (J y for some s £ S. If 0 S is a 
congruence re la t ion then S is called a standard ideal and 0 S is called a standard 
congruence relation (in [4] this is no t the de f in i t i on of a s t a n d a r d ideal, b u t 
an equivalent condi t ion, see condi t ion (y) of Theorem 1, also the same i n 
[5]). The set 0S(L) of all s t a n d a r d congruence relations is a sublatt ice of 
0 ( 1 ) and S(L) t h e set of all s t a n d a r d ideals f o r m a sublatt ice of t he lat t ice of 
all ideals of L. (This is Lemma 1 of [4], see T h e o r e m 3 in [5] as well.) 

Let L be t h e class of all lattices, Lx, L2 Ç L. A m a n y one mapp ing 
<p:Lx^y L2 is called an S-homomorphism if t he re exists a s t anda rd ideal S in Lx 

such t h a t acp = b cp if and only if a = b(0s), f u r t h e r , every isomorphism is also 
called an iS'-homomorphism; le t S denote t h e class of ib-homomorphisms. 
The class L, S j u s t def ined sa t is f ies the ax ioms I — I X . 

All axioms b u t axiom V I I I are tr ivial or consequences of s t a t emen t s 
a b o u t s tandard ideals and congruences men t ioned above. 

To ver i fy ax iom VII I let В be a subla t t ice and S a s t a n d a r d ideal of 
L, T be a s t a n d a r d ideal of В such tha t 8 0T g ( 0 S ) B . We e x t e n d L by de f in -
ing a zero element 0. Le t Lx = {L, 0}, Bx = {B, 0}, Sx = {S, 0}, Tx = {T, 0}. 
If we ver i fy axiom V I I I for Lx, Bx, 0 S l and 0Tl, t hen it implies t h a t it holds 
for L, B, 0S and 0T. Therefore we may suppose t h a t L has a 0 and 0 ( 5 . 

We s ta te t h a t 
1. [ B ] 0 S = { 6 U « ; 6 ( 5 , s ( 8}; 
2. S is a standard ideal of [B)0S\ 
3. [T\0S is a standard ideal of [ B] 0S. 
If 0 = 0 S , ф = 0T in B, 0B g Ф, t h e n 0(Ф) = 0[T]©s is an easy 

consequence of s t a t e m e n t 3, t he re fo re it is e n o u g h to prove s t a t emen t s 1—3. 
Proof of 1. T h e relation 

[B\0S 3 {6Us; bíB,saS} 

is obvious, f u r t h e r t h e right side is a (J -semilat t ice containing B. Hence it is 
enough to prove t h a t {b U s; b £ B, s £ 5 } is a f | -semilat t ice. L e t tx = bx (J + 
t2 — b2 U «г (bv b2 £ B' sv s2 £ $)> t h e n bx = tx(0s) and b2 = t2(0s); therefore 
bx П b2 = tx П t2( 0S) implying t h e existence of an s £ S w i t h ^ (1 í2 = 
= (bx П b2) U s" which means tx f | t2 £ {b U 6 ( 5 , « ( S} s ince bx f | b2 Ç B. 

Proof of 2. [ ß ] 0 s is a subla t t ice of L conta ining S t he re fo re S is a 
s t a n d a r d ideal of I R ] 0 s . 

Proof of 3. W e pu t I=[T]0s. Then T =} S. We a p p l y Theorem 
9 of [4] (see also Theorem 14 of [5]) which says tha t I is s tandard in 
| ß ] 0 s if and only if I\S (I\S denotes I\0S) is s t anda rd in [ R ] 0 s / 0 s - B u t 
x —>• [T ]0S is an isomorphism be tween В and [ R ] 0 s / $ ca r ry ing T into I]S. 
Therefore I is s t a n d a r d in [B]0s/S if and only if / / $ is s t a n d a r d in [B)0slS 
which in tu rn is equivalent to t h e f ac t t ha t T is s t andard in B, which in f a c t 
holds t rue . 

8 (0.s)s is Bie restr ict ion of & s t o the subla t t ice B . 
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Thus we get tha t we can apply Theorems 1' and 2 ' for lattices. Theorem 
V in this special case gives a generalization of the Jordan—Holder—Schreier 
theorem of [4]. In the mentioned theorem we require t h a t in a normal series 
1 = ... 3? Sn, 8/ is a s t andard ideal of As an application 
of Theorem 1' we require only that St is a sublattice of and t h a t 
as a lattice contains a s tandard ideal Т,—i s u c h tha t 

= 0Tl_it 7=1,2, .. . ,n . 
If, as an application we want to get only t he original results we can 

define in L the notion of homomorphism in the following way. <p is a homo-
morphism of Lx into L2 if cp is an S-homomorphism and L, q> is an ideal in L2. 
In this case the verification of axioms I — I X is simpler. 

The application of Theorem 2' t o standard ideals gives a new result 
contained neither in [4], nor in [5]. 

(Received J u n e 28, 1963) 

R E F E R E N C E S 

[ 1 ] B I R K H O F F , G.: Lattice theory. New York , 1 9 4 8 . 
[2] B R U C K , R . H. : A survey of binary systems. Berlin, 1958. 
[3] G O L D I E , A. W.: "The Jordan-Holder t h e o r e m for genera l abstract a l g e b r a s " . Proc. 

London Math. Soc. (2) 52 (1950) 107—131. 
[ 4 ] G R Ä T Z E R , G . : " S t a n d a r d ideálok" (S t anda rd ideals). MTA I I I . О. Közi. 9 (1959) 

81—97 (Hungarian) . 
[ 5 ] G R Ä T Z E R , G . — S C H M I D T , E . T . : " S t a n d a r d ideals in la t t i ces" . Acta Math. Acad. 

Sei. Hung. 12 (1961) 17—87. 
[6] STEINFELD, О.: " Ü b e r da s Zassenhaussche Lemma in allgemeinen algebraischen 

S t r u k t u r e n " . Annales Univ. Sei. Budapestinensis de R. Eötvös nom. Sectio Math. 
3—4 (1960/61) 309—314. 

[7] Z A S S E N H A U S , H . J . : The theory of groups. N e w York, 1948. 

0 ТЕОРЕМЕ JORDAN-HÖLDER ДЛЯ УНИВЕРСАЛЬНЫХ АЛГЕБР 

G. G R Ä T Z E R 

Автор предлагает более простое доказательство и дальнейшее рас-
пространения обобщения Goldie теоремы Jordan—Holder. 
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