ON THE JORDAN-HOLDER THEOREM FOR UNIVERSAL
ALGEBRAS

by
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Introduction

There are several ways to generalize the Jordan-Holder theorem. One
may consider this theorem as a result on equivalence relations on a set! (the
set being the group or ring itself); or as a statement on the ,,subnormal”
elements of lattices upon which a binary relation (‘‘@is normal in b”’) is defined,?
the lattice being the lattice of all subgroups of the given group. But if we
look at the theorem as it is then the most natural way of generalization is
to get rid of the axioms of groups (rings) and prove the result for arbitrary
universal algebras. This was done by A. W. Gorpik [3] and my first aim is
to give a variant of his proof. My proof is much shorter although no essen-
tially new idea is used. The concepts are also different and, I hope, more
natural. At the proper place (§ 4) I'll give my reasons for not following the
old pattern.

Then we will point out that the proof employed makes us possible to
give further generalizations. In the proofs we used the concept of homomor-
phism and subalgebra but the operations were very seldom taken into
consideration. Therefore we consider universal algebras as sets among which
certain mappings, called homomorphisms, are defined, satisfying certain
axioms.® This axiomatic treatment makes us possible to extend the Jordan-
Holder theorem to multialgebras.

§ 1. Preliminaries

An algebra is a couple (A4; F) where 4 is a set and the elements of F
are finitary operations on 4, i.e. each f € F is a function of nm-variables, n
depending on f, it associates with every n-tuple (a,, ..., a,) of elements of
A an element f(a,, ..., a,) of A. Let F, denote the set of all operations of

n variable, F = G e
n=0

!See e.g. BIRKHOFF [1], pp. 87—89 and the references on p. 89.

2See e.g. ZASSENHAUS [7], pp. 190—198, where some references are also given.

3That this is the natural framework for the Jordan-Holder theorem was first
pointed out to me by E. Friep who also gave an axiom system similar to I—VIII of
§ 5. I don’t know what is the connection between his (still unpublished) axiom system
and mine. Of course, this is not new. If we go one step further, we get the notion of
categories.
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In this note all algebras considered are of the same type, i.e. the set
of operations can be denoted by the same letter /. For simplicity’s sake
we omit the letter . Thus if we say that 4 is an algebra then we have the
algebra (A4; F) in mind.

A non-void subset B of A is a subalgebra if b, ..., b, € B, f€ F, imply
f(by, ..., b,) € B. The intersection of two subalgebras is again a subalgebra,
provided it is non-void.

The set of all equivalence relations over 4 is denoted by P(4). If
g, € P (4), 2 € 4 then Ug,, defined by @ = y(U ¢,) if and only if there exists
in A a finite sequence x = 2z, 2, ..., 2, = y such that z,_; = z,(es) for some
Aed, i=1,2,...,n and N¢, defined by z=y(N ¢) if and only if
x = y(¢,) for all 2 € 4 are again in P(A). If we partially order P(4) by ¢ < &,
if and only if ¢ = ¢ N &, then we see that P(A4) is a complete lattice in which
Ue, and N e, are the least upper bound, resp. greatest lower bound of the set

e AleAY.

1% A co}fngrueme relation O is an equivalence relation satisfying the substi-
tution property:ifa;=0b;(0),i=1,2,...,nand f€ F, then f(a,, ..., a,) =
== (Dis 2en10%)1(10) y TThe %et of all congruence relations is denoted by 0( ).
Obviously, @(4) S P(4) and as it is known ¢, € O(4), 1€ 4 imply U ¢,
N &, € O(4). We denote by w and ¢ the least, resp. greatest element of P(4).
Obviously o, ¢t € O(4).

If O is a congruence relation on 4 and H is a subset of 4 let [H] O
denote the union of the congruence classes of 4 represented by H, i.e.
[H] © = {x; © = h(O) for some h € H}. The algebra 4]0 is defined on the
congruence classes [x] @ in the following way:

(2,10, ..., [%,]0) = [f(z,, ..., %,)]0.

The mapping ¢: x— [x] O is called a homormorphism.

It is easy to prove that if Bis a subalgebra then so is [B]O. B is called
closed under O if B = [B] 0.

A subalgebra B of A is called normal if 4 is a whole congruence class
under some congruence relation @, i.e. B is closed under O and z = y(0)
for every w, y € B.

Let O be a congruence relation and B a subalgebra of 4. Then we define
Og, the restriction of @ to B, as follows:

x = y(Op) if and only if x, y € B and x = y(©). Obviously, O is a
congruence relation of B.

Let @, ® ¢ O (4) such that B is closed under ® and @. Then B is closed
under @ U &

Let 0, ® € ©(4) and B a subalgebra of . We say (modifying the notion
invented by GowrpIE [3]) that @ and @ are weakly associable over B if

[[[B16]®|© = [[BIO] @,
or equivalently,

[[Bl@]® = [[B1?] @,
or, a third equivalent form

[BIOU® — [[BIO] ®.
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This means, that if b = x(0) and x = y(P), b € B, x, y € A, then there exist
b€ B, z€ A with b’ = 2(D), z = y(0).

Let B,C and D be subalgebras of 4, ©® and @ congruence relations
on B and C, respectively, D & B N C. O and @ are said to be weakly asso-
ciable over D if Oy, and Py, are weakly associable over D.

§ 2. The Zassenhaus lemma

The following statement is the essence of the Zassenhaus lemma:
Lemma 1. Let A be an algebra, B a subalgebra of A, © a congruence
relation of A, @ a congruence relation of B such that Oy < ®. Define a relation
O(D) on [B]O by
(1) a=b(O(DP)) if and only if there exist c,d € B such that
a=¢(0), c =d(D), d= b(0).
Then O(D) is a congruence relation of [B]1O and

(2) [B1O/O(®) = B|®,
where an isomorphism is given by
(3) [2]O(D) — [2]D, x€B.

The relation @(®) is obviously reflexive and symmetric on [B]60. The
transitivity can be verified as follows: if @« = b(O (D)), a’ = b’(O(D)), b = a’
then there exist ¢,d € B and ¢’, d’ € B as required by (1). Since d = b(0),
b=a" = c¢'(0) we get d =c¢’(0), thus d = ¢’(P). Therefore c =d =c¢’' =
= d’(P) hence ¢ = d’(P) and a = b’((')((D)) is verified.

It feF ap=b,(0), 4 =1,2 ., n (with ¢;, d; satisfying (1)) then
Ve tes ) =f(d,, ...,d,) (D), f(al, s .,a f(cl, S .,c,,) (0),f(by, ..., b,) =
_f(d soes ) (08), ThUB Jld, - . _f - by) (O(P)), proving that

O(D) is a congruence relation on [B]

By (1) every congruence class of [B]O modulo @(®P) can be represented
by an element of B, thus we get that (3) maps the left side of (2) onto the
right side of (2). Further x = y(O(®)) is equlvalent to x =y(®) if x,y€ B
therefore (3) sets up an isomorphism.

Corollary (Zassenhaus lemma). Let D and E be subalgebras of A with
non-void intersection, ©@ and ® congruence relations of D and E, respectively.

Pyt = QDnE U ¢DnE- Then

(4) [D N E10|0(P) =< [D N B1D|D(¥
an isomorphism is given by
(5) [x]1OW) > [z]P(¥), zeDNE.

Indeed, Lemma 1 applied to the algebras 4 = [D N E]@and B =D N E
with the congruence relations @ and ¥ (obviously @p g < ¥) gives

[DNEO|O(P)=<DNE|Y,
[x]O(¥)—[z]¥, z€DNE.
This, and the similar result for @ rather than O gives (4) and (5).

10%*
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§ 3. The Jordan-Hélder-Schreier theorem
Normal series

A normal series of A is a series of subalgebras

(6) A:A02A12---::)An

such that there exists a series of relations

(7) i Ot O 15

such that 0O, is a congruence relation on 4;and 4, =[4,10;,—,,i=1,2,...,n.
The algebras A4,/0,, i = 0,1, ...,n—1 are called the quotient algebras

of (6) (with respect to (7)).
Let

(8) A:BogBlg"'gBm

be also a normal series, accompanied by
(9) ¢0’¢1 3 SiE R 2 ¢nl = wB?ll ’
D.eOB), t=01,.0..00, B; =B, 1P _;,1=12,...,m.

The normal series (6) and (8) are called isomorphic if n = m, 4, = B,
and (7), (9) can be chosen in such a way that 4,/0; == By|®,,, for some permu-
tation kg ly cvos kg £ 0,1, oo, — 1

(8) is a refinement of (6) if 4, = B, and every 4,is a B;.

Theorem 1 (Schreier’s theorem). The normal series (6) and (8) have
isomorphic refinements if A, = B, and (7), (9) can be chosen in such a way
that O, is weakly associable with @; over A, (= B,,), i =0,...,n,j=0, ..., m.

Define

(10) 4,;,=[4;nB;]10;, B;=[4,n B;]19;,
0,;=04¥), D;=D(¥,), where ¥;; = 0;, ., UP;

g AinB; °

Then A4,/0;; 22 B;;/®;; by the Zassenhaus lemma.
Further A, = A, A,,= [4; N B,]0; = [4,10, = 4,,,, 4

hence to prove that

iy 2 Aija
A=A, 24,2 ...24,,=4,2...24
and
A=By2By=2...2B,=5B,2...2B
are isomorphic refinements it is enough to verify that
(11) [4,]0;;= 4,4, (0=j<m)

and the similar statement for @, Indeed, [4,]0,, = [4,]0; (¥;) =
- [[An] T‘]] @i 2 [[An] QjA,'nBj] Ol = [AlnB]+l] 9[ = Aij+1 2 ‘4n, hence
[4,10;; = [4;;41]0;;, thus in order to show (11) it is enough to prove that

(12) A;j41 18 closed under @

i

ij *
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A; j4q is, by definition, closed under 0, hence it is closed under 0, =
= @i(OiA,-nB,- U (DjAmB?_) if and only if 4;;,, N(4; N B)) = 4;;4, N B, is closed
under @; Since

JA;n By
AiﬂB,-ﬂ == Ain [Ar] ¢j = [An] ¢jz‘\iﬂBj

and

4;;::N By = [4;N B;4;]10;NB; = [4;N Bj44] @iB, = [[45] ‘ijm B].] QiAinBi =

(by the definition of weak associability of @, and @; over 4,) =
=[[4:]8 |1 ©;

{0 B A¢n By

which was to be proved.

Principal series

The normal series (6) is a principal series if A, (i = 0,1, ..., 7) is a
normal subalgebra and if in (7) every 0, is a congruence relation of 4; then
the factor algebras are 4,/0;,,¢=0,1,...,n—1.

Theorem 2 (Schreier’s theorem). T'he principal series (6) and (8) have
isomorphic refinements if A, = B,, and (7), (9) can be chosen in such a way
that ©; and @; are weakly associable over A,.

Since 4; (B;) is a normal subalgebra, there exists a congruence relation
n; (&) of Asuch that 4; (B,;)is awhole congruence class modulo n; (§;). We put

4,;,=[4,nB;]0,, B;;=[4,n B;] 9;,
0,;=(0:;,UP)Nn—y, ;= (0O,UD)NE;—, -
Now 4,/0,; =~ B;/0; U ®; follows from Lemma 1 (with® = 0,;, ® =
= (0; U D)) anp,) therefore
Aij/@fj = Bij/@ij:
hence again it remained only to verify (11), which is again reduced to (12).
But 4;; & A, therefore it is in one class modulo 7;_;, thus the problem is

reduced to (O;U®)),, and therefore the proof given at the end of Theorem
1 applies here too.

§ 4. Some definitions of normal series

The situation in groups and rings is very simple compared to abstract
algebras (due to the fact that every homomorphism of a group or a ring is
determined by its kernel) therefore it is difficult to find the most natural
generalization of normal (and principal) series. I want to compare here some
definitions.

GoLpiE defined the notion of a homomorphic relation R of an algebra
A, which means a congruence relation of a subalgebra D(R) of A. Further,
he supposed the existence of a subalgebra A4, contained in every subalgebra
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of 4, and he put {R} = [4,]R, which he called the kernel of R. Then he
defined a normal series to be a sequence of homomorphic relations « = R,
R, ...,R, = wa, such that {R;,,} S {BR;} & D(R;.;) and {R;} is closed
under R;.,. The quotient algebras are {R;}/R;,,. In this way, one might
think, it is possible to get a stronger form of Theorem 1 since there we say
nothing about the relations accompanying the refinements, while in this form
every relation which was a member of a series will remain a member of the
new series.

This is obviously true in the proof of Theorem 1 too. Simply, because
0,, = 0,. But is it of any importance? In every application of the general
theory (to groups, rings, loops, groupoids, semigroups or lattices) we consider
only normal series in which 4, is an entire class modulo 0, (i =0, ..., n —1).
In this case 4,,/0;, = A4,,/0; is a one element algebra. Therefore if we omit
from the refined series the superfluous terms ©; will be among the omitted
ones.

Let us see an example. Let B be a one element subalgebra of 4 such
that 4 has two non-trivial congruence relations 0, @ (0 == @) and B is closed
under O and @. Then ¢, O, wg and ¢, @, wgz are two normal series, the series of
kernels of both is 4, B, B. The refinements will be

;,0UD,0, wg, the kernels are 4,B, B, B;
t,OUD, D, wy, the kernels are A4,B,B,B.

And after omitting the superfluous terms, @ and @ drop out. In this situation
this is inevitable.
STEINFELD [6] defines a normal sequences as a sequence of couples:

A = AO(@O) 2 O] 2 An(@n)’

where A; is a subalgebra of 4 and 6, is a congruence relation of 4;,. But
fixing the congruence relation to the subalgebra makes it impossible to define
the refinement, see the example above.

To sum up, even if in the definition of normal series the congruence
relations are included, in the actual applications they have no well defined
connection with the congruence relations of the refined sequence. Therefore
there is no loss if we do not fix in the definition the accompanying sequence
of congruence relations.

However, my definition has a disadvantage. It is not obvious whether
or not the isomorphism of normal series is a transitive relation. It would be
of interest to find an answer to this problem.

Of course, it is very easy the change the definition so as to make the
isomorphism of normal series transitive. Let us say that (6) and (8) are iso-
morphic if to any accompanying series (7) there corresponds an accompanying
series (9) such that 4,/0; =~ By, [Py,

Then e.g. Theorem 1 has to be modified as follows: “«(7) and (9) can be
chosen in such a way” is to be replaced by ““to any accompanying series (7)
there corresponds an accompanying series (9) such”.
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§ 5. Classes of algebras

If we analyse the proofs in § 2 and the proof of the statements made
in § 1 we arrive at the conslusion, that the operations very seldom played
role in them. Therefore it is not surprising that we can generalize these results
by considering ,,algebras’ where besides the sets only mappings are considered.

A class of algebras is a class of sets K and a class of mappings H, called
homomorphisms. A ¢ € H is always a many-one mapping ¢: 4 — B where
A, BEK.

To simplify the axioms we define the basic notions.

If A€¢K and B S A, then B is called a subalgebra if there exists a
C¢K and a ¢ € H, ¢: C — A such that Cp = B

An equivalence relation @ on 4 (€ K) is a congruence relation if there
exists a BE€K and a ¢ € H, ¢: 4 — B such that a=b(0) (a,b¢€ 4) if and
only if ap = b ¢.

The set of all subalgebras, resp. congruence relation on 4 (€ K) is deno-
ted by S(4) and O(4), respectively.

The notations we use (e.g. [B] 0) are the same as those defined in § 1.

Now we list the axioms:

I.if ¢ A—> B, ¢;:B—>C and ¢,p,€H, A4,B,C¢cK, then
@, @, € H; further if A =C, B €K and ¢, ¢, are one-to-one and
onto then ¢, € H implies ¢, € H;

II. w, ¢ € O(4);
III. B€ S(A4) and O € O(A) imply Op € O(B);
IV. if "B, C’ES( ) and BﬂCls not void then B N C € §(4);

V. ©O(A4) is a U-semilattice, i.e. @ U @ exists? for every 6, @ € O(A4);
VI. B€ S(4) and @ € O(4) imply [B]O € S(4);
VII. B€S(A),0,® € O(4),[B]® = B and [B]® = B imply®
[BI® U @ = B;
VIII. BES(A) Oc ( ), D€O(B) and Oz < @ imply®
O(P) € O([B]O

Since the notions of weakly associable congruence relations, normal
series are defined in terms of congruence relations and subalgebras therefore
these definitions apply in the general situation as well.

Theorem 1’. Schreier’s theorem for normal series holds for algebras satisfy-
ing axioms I—VIII.

To verify this statement one has to observe that nothing else but axioms
I—VIII were used in the proof of Theorem 1.

To prove Theorem 2 we used another axiom:

IX. if O, D¢ 0(4), and we form @ NP in P(A) then O NP € O(4).

Theorem 2'. Schreier’s theorem for principal series holds for algebras
satisfying axioms 1—IX.

4+ We do not require that @ U @ should be the same union as defined in § 1.
5Tn other words, if B is closed under ® and @ it be closed under © U D.
5 @(®) was defined in Lemma 1. Axiom VIII is the first statement of Lemma 1.
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§ 6. Multi algebras

The notion of groups was generalized to multi groups? by defining the
product of two elements as a subset rather than an element. In the same way

we define multi algebras as a couple (4; F) where 4 is a set, F = D F; and
i=0

F, is the set of multi operations of n variables; f€ F, if. f(a,, ..., a,) is a
unique subset of A for every m-tuple (a,, ..., a,) of elements of A. Instead
of (A4; F) we use again the notation 4.

A subset B of 4 is a subalgebra if b, ..., b, € B,f € F, imply f(b,, ...

...b,) € B. If A and B are multi algebras then a many-one mapping
¢: A— B is called a homomorphism if f(a,, ..., a,) 9 = fla, ¢, ..., a,p) for
every f € F,, where for a subset C of 4, C ¢ denotes the set of all ¢ ¢, ¢ €C.
Accordingly, an equivalence relation @ is called a congruence relation if
a;="5b(0), i =1,2,..., n,f€F, imply that to every c € f(a,, ..., a,) there
exists a d € f(by, ..., b,) such that ¢ = d(0O).

We are going to verify that the class of multi algebras K and the class
of homomorphisms H satisfy axioms I—IX.

Axioms I—IV obviously hold true. Axioms V and VII and IX follow,
as usual, from the following statement:

O(A) is a complete sublattice of P(A4). This can be verified in the same
way as for algebras by properly using the characterization of congruence
relations, as given above.

To verify Axiom VI let B be a subalgebra and @ a congruence relation

of A. If ¢}, ...,c, € [B]O, f€ F, then there exist b, ..., b, € B such that
¢ =0b(0), i=1,2, ...,n Then c¢é€flc, -..,0c,) implies the existence of a
d € f(by, ..., b,) such that d = ¢(0). But f(b,, ..., b,) & B therefore d € B,

thus ¢ € [B] O and f(c, ..., ¢,) S [B] O follows.

The proof of Lemma 1 applies to multi algebras as well excepting the
part where we proved that O(®) satisfies the substitution property. Argu-
ments, as the one used in the above paragraph, can be applied to modify
the proof. Therefore axiom VIII is valid. We get

Theorems 1’ and 2. Theorems 1 and 2 hold true for multi algebras.

Even more is true. We do not have to require that the operations are
[finitary and everything remains true. However, we do not go into the details

Applications

Several applications of Theorems 1 and 2 are found in (GOLDIE’s paper
[3]. In case of groups, rings any two congruence relations are weakly associable
therefore Theorems 1 and 2 apply.

In case of semigroups (or even without the associativity of multiplication)
we can get Schreier’s theorems if the ideals take the place of subsemigroups
and 0 is a congruence relation if @ = y(0) if and only if * = y or x and y are
elements of a fixed ideal. But in this case it is not enough to verify that any
two congruence relations are permutable but one has to verify axioms I—IX
as well. This is easy since all these statements are consequences of the fact
that the set theoretical union and intersection of two ideals is again an ideal.

"See e.g. Bruck [2] and the bibliography therein.
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A new application is the case of multi groups. In the paper [4] I Intro-
duced the notion of standard ideals in lattices (the English version of this
paper is GRATZER and ScHMIDT [5], where a more detailed theory of standard
ideals was given). Given an ideal S of a lattice L we can define a relation
O, on L as follows:

x = y(0,) if and only if (x Ny) Us =2 U y for some s € S. If O, is a
congruence relation then S is called a standard ideal and O is called a standard
congruence relation (in [4] this is not the definition of a standard ideal, but
an equivalent condition, see condition (y) of Theorem 1, also the same in
[5]). The set O(L) of all standard congruence relations is a sublattice of
O(L) and S(L) the set of all standard ideals form a sublattice of the lattice of
all ideals of L. (This is Lemma 1 of [4], see Theorem 3 in [5] as well.)

Let L be the class of all lattices, L;, L, € L. A many one mapping
@: Ly — L, is called an S-homomorphism if there exists a standard ideal § in L,
such that ap = b ¢ if and only if @ = b(0,), further, every isomorphism is also
called an S-homomorphism; let S denote the class of S-homomorphisms.
The class L, S just defined satisfies the axioms I—IX.

All axioms but axiom VIII are trivial or consequences of statements
about standard ideals and congruences mentioned above.

To verify axiom VIII let B be a sublattice and S a standard ideal of
L, T be a standard ideal of B such that® 0, < (0,)5. We extend L by defin-
ing a zero element 0. Let L, = {L, 0}, B,= {B, 0}, 8;,={S,0}, T, = {T,0}.
If we verify axiom VIII for L;, B,, Og and @, then it implies that it holds
for L, B, Og and O . Therefore we may suppose that L has a 0 and 0 € B.

We state that

1. [B]Os = (b U s; b€ B,s€S};

2. 8 is a standard ideal of [ B]0Og;

3. [T']Og is a standard ideal of [B]Og .

If ©=0g ®=0;in B, Og < ®, then O(P) = Orrje, is an easy
consequence of statement 3, therefore it is enough to prove statements 1—3.

Proof of 1. The relation

[B]Os 2 {bUs: be B,seS}

is obvious, further the right side is a U-semilattice containing B. Hence it is
enough to prove that {b U s; b € B, s € S}is a N-semilattice. Let ¢, = b, U s,,
ty = b, U 8, (by, by € B, 81,8, €8), then b, = #,(Og) and b, = t,(Os); therefore
by N by, =1t Ni(Og) implying the existence of an s€S§ with ¢ N, =
= (by N'by) U s which means t; Nt, € {bU s; b€ B,s€ S} since b, N b, € B.

Proof of 2. [ B]Og is a sublattice of L containing S therefore S is a
standard ideal of [ B]Og.

Proof of 3. We put I = [T']Os. Then T 2 §. We apply Theorem
9 of [4] (see also Theorem 14 of [5]) which says that / is standard in
[B]Os if and only if I/S (I/S denotes I|Og) is standard in [B]Og/Os. But
x — [2]Og is an isomorphism between B and [B]0Og[S carrying 7T into I]S.
Therefore I is standard in [B]Og/S if and only if I]Sis standard in [ B]Og/S
which in turn is equivalent to the fact that 7' is standard in B, which in fact
holds true.

8 (Og)p is the restriction of @g to the sublattice B.
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Thus we get that we can apply Theorems 1’ and 2’ for lattices. Theorem
17 in this special case gives a generalization of the Jordan—Holder—Schreier
theorem of [4]. In the mentioned theorem we require that in a normal series
L=8,28,2 ... 28, 8, is a standard ideal of 8;_;. As an application
of Theorem 1’ we require only that S; is a sublattice of 8;_; and that §;_;
as a lattice contains a standard ideal T, 1 such that

= 0,10 . 0=1,8 ., B

If, as an application we want to get only the original results we can
define in L the notion of homomorphism in the following way. ¢ is a homo-
morphism of L, into L, if ¢ is an S-homomorphism and L, ¢ is an ideal in L,.
In this case the verification of axioms I—IX is simpler.

The application of Theorem 2” to standard ideals gives a new result
contained neither in [4], nor in [5].

(Received June 28, 1963)
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