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1.

First we recall some definitions.

Following A. YA. KHINCHIN (see e.g. [1], p. 157)a distribution function
F(x) is called unimodal if there exists at least one value x = a (called the
vertex of the distribution function) such that F(x) is convex for © < a and
concave for x > a. Let us notice that F(z) is then continuous at every point
T=a.

Following G. P6LyA (see e.g. [2],p. 70), a function y(¢) defined for all
real ¢ is called a convex characteristic function if

a) y(t) is real-valued and continuous,
b) for ¢ > 0, y(f) is convex,
(I ¢) lim y(t) = 0,
t—>o

d) y(0) =1,
e) for ¢ < 0, p(t) = p(—*).

As proved by G. PéLya, such a function is in fact the characteristic function
of a distribution function; moreover this distribution function is absolutely
continuous.

2.

There exist representation theorems concerning the characteristic
functions of unimodal distribution functions and convex characteristic func-
tions, resp.

Theorem 1. The function @(t) is the characteristic function of a unimodal
distribution function F(x) (with the vertex at x = 0) if and only if it can be
represented in the form

where y(u) is some characteristic function.

This theorem is due to A. Ya. KaincHIN (1938). For its proof see e. g.
[1], pp. 157—160, supplemented by the corrections of K. L. Crung, bid.,
PP. 252—253.

This proof also involves that Theorem 1 is equivalent to the following
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Theorem 1'. The function F(y) is a unimodal distribution function (with
the vertex at y = 0) if and only if it can be represented in the following form:

y u p
(2.1) for y<0, Fy)= — J J de(x)du= f(l—%

—oo — oo — oo

av (@),

oo

i C [ dV(a) P
(2.2) for y>0, Fly)=1— : R e [1——

av (x)

& x
y
(see [1], pp. 158—160) where V(x) is some distribution function (exactly, this
is the distribution function possessing the characteristic function y(u)).
Evidently, F(—0) = V(—0), F(-40) = V(+40).
Our investigations will be based on this latter version of Theorem 1.

Theorem 2. The function y(t) is a convex characteristic function if and
only if for t > 0 it can be represented in the form

oo

(2.3) v(t) = J [1 s %] a6 () (t > 0)

where G(x) is some distribution function for which G(x) =0 if © < 0 and
G(+0) = 0, and

(s4) for t <0, w(t) =w(—1t).

Evidently, y(+40) = p(—0) = »(0) = 1.

This is a simple consequence of a result due to D. Dueuvk (1955) and
of some remarks of M. GIRAULT (see [3], pp. 6—7 and [4], p. 292). The rep-
resentation (2.3) is to be found in [3], p. 6.

3.

Our aim is to show that there is an intimate interconnection between
Theorem 1’ and Theorem 2 in 2.

A. Theorem 2 can be deduced by the aid of Theorem 1’. Namely, let y(t)
be a convex characteristic function and let us consider the function F(y)
defined by

i r =] it

1—yy) if y>o0

(see Fig. 1.). F(y) will be a unimodal distribution function with vertex at
x = 0; further, F(+40) = 0. Then, by (2.2), for y > 0 we have

(3.2) Fly)=1- J (1 o
J |



INTERCONNECTION BETWEEN REPRESENTATION THEOREMS 427
where V(x) is some distribution function; further, F(-0) = V(-40) = 0.
Now let

(3.3) W(z) = [O i ==0

Vi) it im0,
Then, for ¢ > 0, by (3.1), (3.2) and (3.3) we have

(3.4) w(t) = J (1 = ;tC-JdV(x) :J (1 = %JdW(x).
t 5
" Wt : do
0 t o Y
Fag. 1.

(3.4) is identical with the representation (2.3), since W(z) is evidently of the
same type as G(x) in (2.3). Since, per definitionem, y(t) = yp(—t) for t < 0,
all these facts involve that the conditions (2.3), (2.4) are necessary for that
y(t) be a convex characteristic function. — Conversely, if y(¢) is any function
satisfying the conditions (2.3) — (2.4) then it is easily seen that y(t) satisfies
also the conditions under (I).

Thus the conditions (2.3) — (2.4) are also sufficient for that y(f) be a
convex characteristic function and, consequently, the deduction of Theorem
2 from Theorem 1’ is completed.

B. As to Theorem 17, for
ginat =<0
Ply) = Fy(y) = { =

1 it -l >0

Theorem 1’ is obvious from the identities

y
(3.5) Py = [ [1- 4 ary (v <0)

oo

oo

(3.6) Fo) =1 | (1 o -g] dF (@) > 0.
Y

If F(y) = F(y) i.e.if F(y) is non-degenerate, Theorem 1’ can be deduced
from Theorem 2. The way of showing this consists in reverting the sequence
of ideas in A in some sense, — having to distinguish, at any rate, three par-
ticular cases.
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a) Let F, (x) be a non-degenerate unimodal distribution function with
vertex at x = 0 for which F, () = 1 if @ > 0. Then, per definitionem, the
function

=i i),
(3.7) p,(t) = F1(—0)
1 if >0

may be regarded over (— oo, 0) as the part lying over (— oo, 0) of a convex
characteristic function and, by (2.3) and (2.4), we have

(3.8) wit) = [ [1+ 5] a0 (t<0)
“t

where @, (x) is a distribution function for which G, () =0 if x < 0 and
G, (+0) = 0. Then, by (3.7) and (3.8)

y
(3.9) By = = Fi=0) [ (1= %]d6y(— =) W <0).

Upon introducing the distribution function

- ={F1<— 0Ol —Gy(—2)] i z=0
1 if 23>0
(Ry(— 0) = Fy(—0), R,(+4 0)=1) we then have [cf. (3.9) and (3.6)]:
=
(3.10) F(y) :J 1- %) dR,(2) if  y<0
(3.11) L J (1 £ %J dB(x) if y>o0.
B

Consequently, (3.10) and (3.11) are necessary for that F,(x) be a unimodal
distribution function.

b) Let F, (x) be a non-degenerate unimodal distribution function with
vertex at @ = 0 for which F,(z) = 0 if @ < 0. Then, per definitionem, the
function

0 it =0
(3.12) vat) =1 1 — F,()
1 — Fy(40)

it S5 =>0
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may be regarded over (0, oo) as the part lying over (0, o) of a convex charac-
teristic function and, by (2.3), we have

(3.13) pylt) = J (1 - %] dG,(x) (t > 0)
' §

where G,(x) is a distribution function for which G,(x) =0 if * < 0 and
Gy (+0) = 0. Then, by (3.12) and (3.13)

(3.14) Fyg) =1 —[1 — Fy(+0)] j (1 = %) dGy() >0).
b 4
Upon introducing the distribution function
R2<x)={ . = e
[1 — Fy+ 0)] Go@) + Fy(+0) i x>0
(By(— 0) =0, Ry(+ 0) = Fy(+ 0)) we then have [cf. (3.14) and (3.5)]:
y
(3.15) Fyly) = f (1 o %] dR,() if y<o0
(3.16) Poly) =1 = J (1 - %} dRy(z) if y>o0.

Consequently, (3.15) and (3.16) are necessary for that F, (x) be a unimodal
distribution function.

c¢) Let F(y) be a non-degenerate unimodal distribution function, F(y)
# F, (y), F(y) # F, (y). Then, over (—oo, 0), it is of the same type as F, (z)
over (—oo, 0) and, over (0, =), it is of the same type as F, (x) over (0, o).
Then we have, with respect to (3.10) and (3.16):

¥
J(1—E]dsl(x) if y<o

x

—o0

1—j (1—:’1}dsz(x) if y>0
x
Y

where S;(z) and S,(x) are distribution functions of the type of R, (x) and
R, (x), resp. [hence §;(—0)= F,(—0), S;(+0)=1, 8,(—0) =0,
S, (4+0) = F(+40)]. Defining the distribution function R(z) by

R(z) = | i) At w0
i, [ Sa(z): af @S0

12 A Matematikai Kutat6 Intézet Kozleményei VIIT. A[3.
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we finally have

b
(8.17) F(y) = J (1—%)dR(x) if y<o0
(3.18) Fly)=1— J (1 _% dR(x) if y>0
¥

(F(—0) = R(—0), F(+0)= R(-+0)). Consequently, (3.17) and (3.18) are
necessary for that F(x) be a unimodal distribution function.

As to the converse considerations, if F, (y), F, (y), F(y) are functions
satisfying the conditions (3.10) — (3.11), (3.15) —(3.16), (3.17) — (3.18),
resp. then it is easily shown that they are unimodal distribution functions
(with the vertex at y = 0). Thus the validity of (3.10) — (3.11), (3.15) — (3.16),
(3.17) — (3.18) is also sufficient for that F, (y), F,(y), F(y) be unimodal
distribution functions (with the vertex at y = 0). Consequently, the deduction
of Theorem 1’ from Theorem 2 is completed.

This way of deducing Theorem 1’ (and, implicitely, Theorem 1) by the
aid of Theorem 2, whose proof is relatively simple, seems to have some advan-
tages with respect to the original one presented in [1], pp. 157—160, which
is, in view of the remarks of K. L. CHUNG referring hereto (see [1], pp. 252—
253), rather complicated.

(Received January 21, 1963; in revised form September 9, 1963)
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0 CBsI3U ME)XJ1Y TEOPEMAMH ITPEJICTABJIEHHUSI XAPAK-

TEPUCTUUECKON ®YHKUHWU OJHOBEPIIMHHOI0 3AKOHA

PACIIPEJAEJIEHUMS M BbINYKJIO0A XAPAKTEPUCTUUECKOH
®YHKLUUHU

P. MEDGYESSY
Pe3ome

B 1938 r. A. $1. XunuuH J1aJ1 U3BeCTHOe Npe/ICTaBjleHue XapaKTepucTuyec
KOit (yHKUMH OJIHOBEPLIMHHOIO 3aKoHa pacnpejesenus. B 1955 r. D. Duaus
coo0mur GopMyJly IpeJCTaBJIeHUs] BBHIIYKIJIONH XapaKTepUCTUUYEeCKOH (QyHKUMU.
B paGore ycraHaBiauBaeTcsl TecHasl CBsI3b YINOMSHYTHIX JBYX TeOpeM INpe-
CTaBJIEHUSI.
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