ON THE CONNECTEDNESS OF BICHROMATIC RANDOM GRAPHS

by Ilona PALÁSTI

§ 1. Introduction

A graph is given by a set of labelled points (vertices) P_1, P_2, \ldots, P_n and by a set of pairs (P_i, P_j) of its points, called the edges of the graph. (See [2], [3].) Let us suppose that $i \neq j$ (no loops are allowed).

A graph is bichromatic, if the set of its n points can be split into two subsets P_1, P_2, \ldots, P_m and $Q_1, Q_2, \ldots, Q_{n-m}$ (we can imagine that all the points are coloured e.g. all the points P_i are red but all Q_j are blue), so that no vertices of the same colour are connected by an edge.

A graph is called a random graph if its edges are chosen at random so that each admitted choice has the same probability. (See in [1] and [4].)

P. Erdős and A. Rényi considered in the paper [1] the random graphs $\Gamma_{n,N}$ with n vertices and N edges, the latter chosen at random so that all

possible $\binom{\binom{n}{2}}{N}$ choices have the same probability. They answered the question:

what is the probability of the random graph obtained in such a way being connected. They showed that if the number of the edges is equal to N_c , where

$$(1) N_c = \left\lceil \frac{n}{2} \log n + cn \right\rceil$$

and c is an arbitrary fixed real number ([x] means the integral part of x), and if $\mathbf{P}_0(n, N_c)$ denotes the probability of the random graph Γ_{n,N_c} being connected, then

(2)
$$\lim_{n \to \infty} \mathbf{P}_0(n, N_c) = e^{-e^{-2e}}.$$

The outline of their proof is the following.

Let us call a graph to be of type A if it consists of a connected subgraph with n-k vertices and of k isolated points ($k=0,1,\ldots$). Any graph which is not of type A is called to be of type \bar{A} . Let $\mathbf{P}(\bar{A},n,N_c)$ denote the probability that the random graph be of type \bar{A} .

It has been shown in [1] that

(3a)
$$\lim_{n\to\infty} \mathbf{P}(\bar{A}, n, N_c) = 0$$

holds if N_c is given by (1).

It follows from (3a) that if \mathbf{P}_0^* (n, N_c) denotes the probability that the random graph Γ_{n, N_c} should contain no isolated points, then

(3b)
$$\lim_{n \to \infty} (\mathbf{P}_0^*(n, N_c) - \mathbf{P}_0(n, N_c)) = 0.$$

432 PALÁSTI

It remained only to prove that

$$\lim_{n\to\infty} \mathbf{P_0^*}(n,N_c) = e^{-e^{-2c}},$$

which could be achieved relatively easily; (2) follows evidently from (3b) and (4).

The problem had to be treated in this way because no explicit formula is known for the number of connected graphs with n vertices and N edges which would admit asymptotic evaluation.

Our aim is to determine the probability of a bichromatic random graph being connected and to examine the asymptotical behaviour of these probab-

ilities.

§ 2. Bichromatic random graphs

Let the bichromatic random graph $\Gamma_{m,n,N}$ have m given labelled points P_1, P_2, \ldots, P_m of one colour (say red), n given labelled points Q_1, Q_2, \ldots, Q_n of another colour (say blue) and N edges, each of which connecting a red point with a blue point, chosen at random in such a way that all possible choices have the same probability $1 \mid \binom{m \ n}{N}$ (see in [5], [6]).

A bichromatic graph G is connected, if any P_i can be connected with any Q_j by a path in G. (This implies that any two points can be connected by a path.)

We shall deal with the case when $m \sim \lambda n$ (where $\lambda > 0$ is a constant).

First let be $\lambda = 1$, m = n and let us prove the following

Theorem 1. If $P(n, n, N_c)$ denote the probability of the bichromatic random graph Γ_{n,n,N_c} being connected, assuming that

$$(5) N_c = [n \log n + cn]$$

(where c is an arbitrary fixed real number), then

(6)
$$\lim_{n \to \infty} \mathbf{P}(n, n, N_c) = e^{-2e^{-c}}.$$

Proof. Likewise to the considerations of P. Erdős and A. Rényi in [1] we shall call the bichromatic random graph to be of type A if it has a component with exactly n-k red points and n-l blue points, further k isolated red points $(k=0,1,\ldots)$ and l isolated blue points $(l=0,1,\ldots)$. All other graphs belong to the type \bar{A} .

Let us first prove the following lemma.

Lemma 1. Let $P(\bar{A}, n, n, N_c)$ denote the probability that the random graph Γ_{n,n,N_c} is of type \bar{A} . Then we have

(7)
$$\lim_{n\to\infty} \mathbf{P}(\bar{A}, n, n, N_c) = 0,$$

where N_c is given by (5). Thus if n is large enough then "almost all" graphs Γ_{n,n,N_c} are of type A, assuming that (5) holds.

Proof of Lemma 1. Let us put U = loglog n. All graphs Γ_{n,n,N_c} consisting of the vertices P_1, P_2, \ldots, P_m and Q_1, Q_2, \ldots, Q_n and N_c edges belong to one of the following two classes: Let us define E_U as the class consisting

of those graphs in which the greatest component (i.e. with the greatest number of points) contains not less than n-U red points and not less than n-U blue points. All other graphs belong to the class \overline{E}_U (i.e. those graphs in which the greatest components consist of less than n-U red or less than n-U blue points).

Let r and s denote the number of points outside a greatest component

of the first colour and the second colour resp.

If a graph consists of t components such that the i-th component consists of a_i red and b_i blue points where of course

$$\sum_{i=1}^t a_i = \sum_{i=1}^t b_i = n$$

and

$$\sum_{i=1}^{t} a_i b_i \ge N_c$$

holds; then — according to the inequality concerning the arithmetic and geometric means — we obtain

$$\sum_{i=1}^{t} \left(\frac{a_i + b_i}{2} \right)^2 \ge N_c$$

and thus

$$\max_i \ (a_i + b_i) \left(\sum_{i=1}^t (a_i + b_i) \right) \ge 4 \ N_c \,,$$

therefore

$$\max_{i} (a_i + b_i) \ge \frac{2 N_c}{n}.$$

Accordingly if the greatest component consists of n-r red and n-s blue points, then

$$n-r+n-s \ge \frac{2N_c}{n},$$

whence

$$\max\left(n-r,n-s\right) \geq \frac{N_c}{n},$$

i.e.

$$n - \min(r, s) \ge \frac{N_c}{n},$$

thus

$$\min(r,s) \le n - \frac{N_c}{n}.$$

Let us fix the n-r red points, and the n-s blue points belonging to the greatest component; then s(n-r)+r(n-s) edges could be established connecting these points with points outside, this component and these edges

434 PALÁSTI

cannot belong to the graph; thus if $\mathscr{N}(\overline{E}_U, n, n, N_c)$ denotes the number of graphs not belonging to the class E_U , then

$$(8) \ \mathscr{N}(\overline{E}_U, n, n, N_c) \leq 2 \sum_{U < r < n} \sum_{\substack{0 \leq s \leq n - \frac{N_c}{n} \\ s \leq r}} \binom{n}{r} \binom{n}{s} \binom{n^2 - s(n-r) - r(n-s)}{N_c}.$$

If $\mathbf{P}(\overline{E}_U, n, n, N_c)$ denotes the probability of the event that the graph G_{n,n,N_c} does not belong to the class E_U then

(9)
$$\mathbf{P}(\overline{E}_{U}, n, n, N_{c}) \leq \frac{\mathscr{N}(\overline{E}_{U}, n, n, N_{c})}{\binom{n^{2}}{N_{c}}}.$$

Now we have (by the inequality $1 - x \le e^{-x}$)

$$(10) \quad \binom{n}{r} \binom{n}{s} \frac{\binom{n^2 - s(n-r) - r(n-s)}{N_c}}{\binom{n^2}{N_c}} \leq \frac{n^r}{r!} \frac{n^s}{s!} e^{-N_c \left(\frac{r}{n} + \frac{s}{n}\right) + N_c \frac{2rs}{n^s}}.$$

Making use of the assumption (5), we obtain according to (9) and (10),

(11)
$$\mathbf{P}(\overline{E}_U, n, n, N_c) \leq 2 \sum_{U < r < n} \sum_{\substack{0 \leq s \leq n - \frac{N_c}{n} \\ s \leq r}} a_{rs}$$

where

$$(12) \quad a_{rs} = \binom{n}{r} \binom{n}{s} \frac{\binom{n^2 - s(n-r) - r(n-s)}{N_c}}{\binom{n^2}{N_c}} \leq \frac{\frac{2rs}{n} (\log n + c) - cr - cs + 2}{r! \, s!}.$$

Let us estimate the sums on the right hand side of (11). Case 1. Let us write (12) in the following form

(12')
$$a_{rs} \leq \frac{e^{(2-c)r + (2-c)s + 2}}{r! \ s!} e^{\frac{2rs}{n} (\log n + c) - 2r - 2s}$$

and let us consider first the values of r and s for which

$$\frac{rs}{n}(\log n + c) \le r + s,$$

that is

$$\frac{\log n + c}{n} \le \frac{1}{r} + \frac{1}{s}.$$

(13) certainly holds, if

$$s \le \frac{n}{\log n + c} \,.$$

If s satisfies (14) we say that we have case 1. Thus

(15)
$$a_{rs} \le \frac{e^{(2-c)\,r + (2-c)\,s + 2}}{r!\,s!}$$

holds, if (14) is valid.

Case 2. Let us consider the terms in (11), for which (14) does not hold, but

$$(16) r + s \le n.$$

Applying Stirling's formula we obtain that, for sufficiently large n, these terms are less than

(17)
$$\exp\left\{\frac{2rs}{n}(\log n + c) + (r+s)(1-c) - r\log r - s\log s\right\}.$$

Using the inequality

$$2 rs \leq \frac{(r+s)^2}{2}$$

the expression in brackets in (17) is less than

(18)
$$\frac{(r+s)^2}{2} (\log n + c) + (1-c)(r+s) - (r\log r + s\log s).$$

Since $x \log x$ is a convex function, we conclude by Jensen's inequality

$$-(r\log r - s\log s) \le -(r+s)\log\frac{r+s}{2}.$$

Thus (18) is less than $\varphi(x) + x \log 2$ where

$$\varphi(x) = \frac{x^2}{2n} (\log n + c) + (1 - c) x - x \log x$$

and

$$x=r+s$$

According to (16) $\frac{2n}{\log n + c} < x \le n$. Now

$$\varphi'(x) = \frac{x}{n} (\log n + c) - (\log x + c) < 0; \text{ if } e^{1-c} < x \le n,$$

because $\frac{x}{c + \log x}$ is an increasing function of x if

$$e^{1-c} < x < n$$
.

Thus it follows that

(19)
$$\varphi(x) \le \varphi\left(\frac{2n}{\log n + c}\right) \le -2n + \frac{Kn\log\log n}{\log n}$$

where K > 0 is a constant. Thus for $n \ge n_0$ the sum of the terms on the right side of (11) for which (16) holds does not exced n^2e^{-n} and therefore tends to 0, if $n \to \infty$.

Case 3. Taking into account that $a_{rs} = a_{r's'}$ where r' = n - s, s' = n - r the estimation of the terms a_{rs} with r + s > n can be reduced to the estimation of the terms $a_{r's'}$ with $r' + s' \le n$, regarding the fact that from r + s > n there follows that r' + s' < n further that from $s \le n - \frac{N_c}{n}$ it follows

that $r' \ge \frac{N_c}{n} > U = \log \log n$, if n is sufficiently large.

Thus we have for (11)

(20)
$$\begin{split} \mathbf{P}(\overline{E}_{U}, n, n, N_{c}) & \leq 4 \, e^{2} \sum_{0 \, \leq \, r \, \leq \, n \, -\frac{N_{c}}{n}} \frac{e^{(2-c)r}}{r!} \sum_{U < s < n} \frac{e^{(2-c)s}}{s!} + o(1) \leq \\ & \leq 4 \, e^{2+e^{2-c}} \bigg(\sum_{U < s} \frac{e^{(2-c)s}}{s!} + o(1) \, . \end{split}$$

As we have chosen $U = \log \log n$, we obtain

(21)
$$\lim_{n\to\infty} \mathbf{P}(\overline{E}_{\log\log n}, n, n, N_c) = 0.$$

Now we only need to show that the probability of obtaining a random graph not being of the type A, but nevertheless belonging to the class $E_{\log\log n}$, tends to zero. That is we have to show that

(22)
$$\lim_{n \to \infty} \mathbf{P}(\bar{A}E_{\log\log n}, n, n, N_c) = 0.$$

Since in these graphs the greatest component consists of n-r red and n-s blue points, therefore $q \geq 1$ denoting the number of edges connecting some of the r and s outside points, these outside edges can be chosen in $\binom{r}{q}$ different ways; thus the remaining N_c-q inner edges must be selected from the (n-r) (n-s) possibilities, i.e.

$$(23) \qquad \mathbf{P}(\bar{A}E_{\log\log n}, n, n, N_c) \leq \sum_{r=1}^{U} \sum_{s=1}^{U} \binom{n}{r} \binom{n}{s} \sum_{q=1}^{rs} \binom{rs}{q} \frac{\binom{(n-r)(n-s)}{N_c - q}}{\binom{n^2}{N_c}} \ .$$

Taking into account the inequalities

$$\binom{n}{r}\binom{n}{s} < \frac{n^r n^s}{r! \, s!}; \qquad \sum_{q=1}^{rs} \binom{r \, s}{q} = 2^{rs} - 1 < 2^{rs},$$

and

$$\frac{\binom{(n-r)\,(n-s)}{N_c-q}}{\binom{n^2}{N_c}} \leq \frac{N_c^q}{(n^2-q)^q} \left(\frac{(n-r)\,(n-s)}{n^2-q}\right)^{N_c-q},$$

we obtain

$$\begin{aligned} & \mathbf{P}(\bar{A}E_{\log\log n}, n, n, N_c) \leq \\ & \leq \frac{\log n}{n} \sum_{s=1}^{U} \sum_{s=1}^{2^{rs}} \frac{2^{rs} \, e^{-(r+s)c}}{r! \, s!} = O\Big(\frac{2^{(\log\log n)^a} \log n}{n}\Big) = o(1) \; . \end{aligned}$$

Thus (22) holds and therefore the proof of Lemma 1 is completed.

The proof of Theorem 1. Denoting by $\mathscr{N}'(n, n, N_c)$ the number of bichromatic random graphs without isolated points, according to the sieve method we have evidently

$$(25) \qquad \mathscr{N}'(n,n,N_c) = \sum_{k=0}^n \sum_{l=0}^n (-1)^{k+l} \binom{n}{k} \binom{n}{l} \binom{(n-k)(n-l)}{N_c}.$$

Putting into (25) k + l = h, we obtain a more often used form:

(26)
$$\mathscr{N}'(n, n, N_c) = \sum_{h=0}^{2n} (-1)^h \mathscr{A}_h$$

where

$$\mathscr{A}_h = \sum_{k=0}^h \binom{n}{k} \binom{n}{h-k} \binom{n(n-h)+k(h-k)}{N_c}.$$

Using the following inequalities (similarly as was done in [1], p. 295):

(27)
$$\sum_{h=0}^{2H+1} (-1)^h \mathcal{A}_h \leq \mathcal{N}'(n, n, N_c) \leq \sum_{h=0}^{2H} (-1)^h \mathcal{A}_h$$

and taking into account that for any fixed value of h

$$\lim_{n o \infty} rac{\mathscr{K}_h}{inom{n^2}{N_c}} = \sum_{k=0}^h rac{e^{-ch}}{k! \, (h-k)!},$$

we obtain

$$\overline{\lim_{n\to\infty}}\,\frac{\mathscr{N}'(n,n,N_c)}{\binom{n^2}{N_c}}\leqq \sum_{h=0}^{2H}\,(-1)^h\,\sum_{k=0}^h\,\frac{e^{-ch}}{k\,!\,(h-k)\,!}$$

and

$$\varliminf_{n\to\infty} \frac{\mathscr{N}'(n,n,N_c)}{\binom{n^2}{N_c}} \geqq \sum_{h=0}^{2H+1} (-1)^h \sum_{k=0}^h \frac{e^{-ch}}{k! \, (h-k) \, !} \, .$$

Since H can be chosen arbitrarily large, we obtain

(28)
$$\lim_{n \to \infty} \frac{\mathscr{N}'(n, n, N_c)}{\binom{n^2}{N_c}} = \sum_{k=0}^{\infty} (-1)^k \frac{e^{-ck}}{k!} \sum_{l=0}^{\infty} (-1)^l \frac{e^{-cl}}{l!} = e^{-2e^{-c}}.$$

It is however evident that if $\mathcal{N}(n, n, N_c)$ denotes the number of the connected graphs, then

(29)
$$0 \leq \frac{\mathscr{N}'(n, n, N_c) - \mathscr{N}(n, n, N_c)}{\binom{n^2}{N_c}} \leq \mathbf{P}(\bar{A}, n, n, N_c).$$

Applying Lemma 1, Theorem 1 follows immediately.

Let us suppose now that $\lambda \neq 1$.

Theorem 2. Let us denote by $P(m, n, N_{c, \lambda})$ the probability that the bichromatic random graph $\Gamma_{m,n,N_{c,\lambda}}$ be connected, assuming that $m \sim \lambda n$ and

$$(30) N_{c,\lambda} = [m \log m + cm]$$

(where $\lambda > 1$ and c are constants); then

(31)
$$\lim_{n \to \infty} \mathbf{P}(m, n, N_{c, \lambda}) = e^{-e^{-c}}$$

holds.

Proof. In this case we shall call the graphs consisting of a component with m-k red and n blue vertices and of k isolated red points ($k=0,1,\ldots$) (that is one component contains all blue points) to be of type B. Any graph $\Gamma_{m,n,N_{e,\lambda}}$ which is not of type B shall be called to be of type \overline{B} . We shall prove that the following lemma is valid.

Lemma 2. Let $\mathbf{P}(\bar{B}, m, n, N_{c,\lambda})$ denote the probability that the bichromatic random graph $\Gamma_{m,n,N_c\lambda}$ is of the type \bar{B} ; then

(32)
$$\lim_{n \to \infty} \mathbf{P}(\bar{B}, m, n, N_{c, \lambda}) = 0.$$

Thus in case n is sufficiently large and $N_{c,\lambda}$ is the same as in (30), then "almost all" graphs $\Gamma_{m,n,N_{c,\lambda}}$ will be of type B.

Proof of Lemma 2. The proof of Lemma 2 is similar to that of Lemma 1, therefore we give only the outlines of the proof.

Let us denote by $\mathscr{N}(\bar{B}, m, n, N_{c,\lambda})$ the number of bichromatic graphs, with m red and n blue points and $N_{c,\lambda}$ edges, which are of type \bar{B} . Then we have clearly

$$(33) \qquad \mathscr{N}(\overline{B}, m, n, N_{c, \lambda}) \leq \sum_{r=0}^{m} \sum_{s=1}^{n-1} \binom{m}{r} \binom{n}{s} \binom{mn - s(m-r) - r(n-s)}{N_{c, \lambda}}.$$

The probability of the random graph $\Gamma_{m,n,N_e,\lambda}$ being of the type \overline{B} is equal to

(34)
$$\mathbf{P}(\bar{B}, m, n, N_{c, \lambda}) = \frac{\mathscr{N}(\bar{B}, m, n, N_{c, \lambda})}{\binom{mn}{N_{c, \lambda}}}$$

and thus

(35)
$$\mathbf{P}(\overline{B}, m, n, N_{c, \lambda}) \leq \sum_{r=0}^{m} \sum_{s=1}^{n-1} b_{rs}$$

where

$$(36) \hspace{3.1em} b_{rs} = \binom{m}{r} \binom{n}{s} \binom{mn-s(m-r)-r(n-s)}{N_{c,\lambda}}$$

and thus

(37)
$$b_{rs} \leq \frac{m^r n^s}{r! \, s!} e^{-\left(\frac{r}{m} + \frac{s}{n} - \frac{2rs}{mn}\right) N_{e,\lambda}}.$$

Let now E_1 denote the set of those pairs (r, s) for which

$$(38) 0 \le r \le \alpha m, 1 \le s \le n-1$$

where

$$(39) 0 < \alpha < \frac{\lambda - 1 - \delta}{2\lambda} (0 < \delta < \lambda - 1).$$

Then we obtain easily

(40)
$$\sum_{(r,s)\in E_1} b_{rs} = O\left(\frac{1}{n^{\delta}}\right).$$

Let now E_2 denote the set of those pairs (r, s) for which

(41)
$$\alpha \, m < r < m \,, \quad 1 \le s \le \frac{n}{2} \,.$$

For these terms we get

(42)
$$\sum_{(r,s)\in E_2} b_{rs} = O\left(\frac{1}{n^{\lambda-1}}\right).$$

Finally if E_3 denotes the set of those pairs (r, s) for which

$$(43) 0 \le r \le m, \quad \frac{n}{2} < s \le n - 1$$

we get, in view of

$$b_{rs} = b_{m-r, n-s}$$

(45)
$$\sum_{(r,s)\in E_{s}} b_{rs} \leq \sum_{(r,s)\in E_{s}} b_{rs} + \sum_{(r,s)\in E_{s}} b_{rs}.$$

Thus it follows from (35), (40), (42) and (45) that (32) holds.

Thus Lemma 2 has been proved.

Proof of Theorem 2. In this case we denote by $\mathscr{N}'(m, n, N_{c,\lambda})$ the number of those graphs, which do not contain isolated red points. We obtain

$$\mathscr{N}'(m,n,N_{c,\lambda}) = \sum_{k=1}^{m} (-1)^k \binom{m}{k} \binom{(m-k)}{N_{c,\lambda}}.$$

Since $\mathcal{N}'(m, n, N_{c,\lambda})$ lies between any two consecutive partial sums of the right hand side of (46), in the case of any fixed k,

$$\binom{m}{k} \frac{\binom{(m-k)\ n}{N_{c,\lambda}}}{\binom{m\ n}{N_{c,\lambda}}} \sim \frac{m^k}{k!} \left(1 - \frac{k}{m}\right)^{N_{c,\lambda}}.$$

Thus we obtain

(48)
$$\lim_{n\to\infty} \frac{\mathscr{N}'(m,n,N_{c,\lambda})}{\binom{mn}{N_{c,\lambda}}} = \sum_{k=0}^{\infty} (-1)^k \frac{e^{-ck}}{k!} = e^{-e^{-c}}.$$

From the inequality where $\mathscr{N}(m, n, N_{c,\lambda})$ denotes the number of connected graphs

(49)
$$0 \leq \frac{\mathscr{N}'(m, n, N_{c, \lambda}) - \mathscr{N}(m, n, N_{c, \lambda})}{\binom{mn}{N_{c, \lambda}}} \leq \mathbf{P}(\bar{B}, m, n, N_{c, \lambda}).$$

Theorem 2 follows.

I am indebted to Professors A. RÉNYI and T. GALLAI for their valuable remarks.

(Received September 10, 1963)

REFERENCES

- [1] Erdős, P. and Rényi, A.: "On random graphs I". Publ. Math. Debrecen 6 (1959)

- [2] BERGE, C.: Theorie des graphes et ses applications. Paris, Dunod, 1958.
 [3] ORE, O.: Theory of graphs. American Math. Soc., 1962.
 [4] ERDŐS, P. and RÉNYI, A.: "On the evolution of random graphs". Publ. Math. Inst. Hung. Acad. Sci. 5 (1960) 17—61.
- [5] PALÁSTI, I.: ,,On the distribution of the number of trees which are isolated subgraphs of a chromatic random graph". Publ. Math. Inst. Hung. Acad. Sci. 6 (1961) 405-409.
- [6] Palásti, I.: ,Threshold functions for subgraphs of given type of the bichromatic random graph". Publ. Math. Inst. Hung. Acad. Sci. 7 (1962) 215—221.
- [7] RÉNYI, A.: Wahrscheinlichkeitsrechnung mit einem Anhang über Informationstheorie. Berlin, Deutscher Verl. der Wiss., 1962.

0 СВЯЗНОСТИ ДВУХЦВЕТНЫХ СЛУЧАЙНЫХ ГРАФОВ

I. PALÁSTI

Резюме

Пусть двухцветный случайный граф $\Gamma_{m,n,N}$ состоит из m пронумерованных вершин P_1, P_2, \ldots, P_m , которые окрашены первой краской, из n пронумерованных вершин Q_1, Q_1, \ldots, Q_n , которые окрашены второй краской, и из N случайно выбранных граней. Точки одинакового цвета нельзя соединять гранью. В работе показывается, что в случае $m=\lambda n$ (где $\lambda>1$ константа) вероятность того, что двухцветный случайный граф $\Gamma_{m,n,Ne,\lambda}$ будет связным, стремится при $n\to\infty$ к $e^{-e^{-e}}$ (c— произвольная константа) при условии, что число граней $N_{c,\lambda}=[m\log m++cm]$ ([x] обозначает целую часть числа x) и $\lambda>1$. В случае $\lambda<1$ вероятность связности также стремится к пределу $e^{-e^{-e}}$ при условии, что число граней $N_c=[n\log n++cn]$. В случае m=n предельная вероятность связности двухцветных случайных графов равна $e^{-2e^{-e}}$ при условии, что число выбранных граней $N_c=[n\log n+cn]$.