ON THE CONNECTEDNESS OF BICHROMATIC RANDOM GRAPHS

by
Irona PALASTI

§ 1. Introduction

A graph is given by a set of labelled points (vertices) P,, P,, ..., P,
and by a set of pairs (P;, P;) of its points, called the edges of the graph. (See
[2], [3].) Let us suppose that ¢ =] (no loops are allowed).

A graph is bichromatic, if the set of its » points can be split into two
subsets P, P,,..., P, and @Q,,@,, ..., @,_,, (we can imagine that all the
points are coloured e.g. all the points P; are red but all @, are blue), so that
no vertices of the same colour are connected by an edge.

A graph is called a random graph if its edges are chosen at random
so that each admitted choice has the same probability. (See in [1] and [4].)

P. Erp6s and A. RENYI considered in the paper [1] the random graphs
I', v with n vertices and N edges, the latter chosen at random so that all
n

possible ( ; ) choices have the same probability. They answered the question:

what is the probability of the random graph obtained in such a way being
connected. They showed that if the number of the edges is equal to N,, where

(1) X = I:g log n + cn]

and ¢ is an arbitrary fixed real number ([2] means the integral part of z),
and if P, (n, N,) denotes the probability of the random graph 17, n, being
connected, then
(2) litn Polw, N) = e %,

N—>co

The outline of their proof is the following.

Let us call a graph to be of type A if it consists of a connected sub-
graph with n — k vertices and of k isolated points (k = 0, 1, .. .). Any graph
which is not of type A4 is called to be of type 4. Let P(4, n, N,) denote the
probability that the random graph be of type 4.

It has been shown in [1] that

(3a) lim P(4,n,N,) =0
n—>o0
holds if N, is given by (1).
It follows from (3a) that if Py (n, N,) denotes the probability that the
random graph [7, n, should contain no isolated points, then

(3b) lim (P¥(n, N;) — Py(n,N,)) =0.

Nn—>oo
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It remained only to prove that

(4) limg P(n, N,) = e,

N—>oo
which could be achieved relatively easily; (2) follows evidently from (3b)
and (4).

The problem had to be treated in this way because no explicit formula
is known for the number of connected graphs with n vertices and N edges
which would admit asymptotic evaluation.

Our aim is to determine the probability of a bichromatic random graph
being connected and to examine the asymptotical behaviour of these probab-
ilities.

§ 2. Bichromatic random graphs

Let the bichromatic random graph I3,y have m given labelled
points P,, P,, ..., P, of one colour (say red), n given labelled points @,
Q,, . . ., @, of another colour (say blue) and IV edges, each of which connecting
a red point with a blue point, chosen at random in such a way that all possible

choices have the same probability 1 K (see in [5], [6]).

A bichromatic graph G is connected, if any P; can be connected with
any @; by a path in G. (This implies that any two points can be connected
by a path.)

We shall deal with the case when m ~ 4 n (where 2 > 0 is a constant).
First let be 2 =1, m = n and let us prove the following

Theorem 1. If P(n, n, N,) denote the probability of the bichromatic random
graph Iy n N, being connected, assuming that

(5) N, = [nlogn + cn]
(where ¢ is an arbitrary fixed real mumber), then
(6) lim P(n, n, N,) =e2".

n—>eo

Proof. Likewise to the considerations of P. Erpds and A. RENYI in [1]
we shall call the bichromatic random graph to be of type A4 if it has a component
with exactly n — k red points and n — [ blue points, further k isolated red
points (k=0,1,...) and ! isolated blue points (I =0,1,...). All other
graphs belong to the type 4

Let us first prove the following lemma.

Lemma 1. Let P(4, n, n, N,) denote the probability that the random graph
Iy n, N, s of type A. Then we have

(7) lim P(4,7n,n,N,) =0,

n—oco
where N, is given by (5). Thus if n is large enough then ,almost all”’ graphs
Ly on, N, are of type A, assuming that (5) holds.

Proof of Lemma 1. Let us put U =loglog n. All graphs 17, , n, consist-
ing of the vertices P, P,, ..., P,, and Q,, @,, . . ., @, and N_. edges belong
to one of the following two classes: Let us define X as the class consisting
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of those graphs in which the greatest component (i.e. with the greatest num-
ber of points) contains not less than n— U red points and not less than n — U
blue points. All other graphs belong to the class Ey (i.e. those graphs in which
the greatest components consist of less than n —U red or less than n—U
blue points).

Let r and s denote the number of points outside a greatest component
of the first colour and the second colour resp.

If a graph consists of ¢ components such that the i-th component con-
sists of a; red and b; blue points where of course '

t

aizzbizn

t
i=1 i=1

and
t
= ab; z N,
i=1
holds; then — according to the inequality concerning the arithmetic and
geometric means — we obtain
t 2
2 {—a";— Iﬁ) = N
i=1
and thus
t
max (a; + b)) (2 (@; + bi)J E4N,,
i i=1
therefore

2N,

e (@;+b) = =

Accordingly if the greatest component consists of n — 7 red and n — s blue
points, then

2N
I
whence
N
max(n—r,n—s)g—ni
i.e.
N,
n — min (r, 8) = —<,
n
thus
N,
min (r,8) < n — n"

Let us fix the n — 7 red points, and the n — s blue points belonging
to the greatest component; then s(n — r) -+ r(n — s) edges could be established
connecting these points with points outside, this component and these edges
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cannot belong to the graph; thus if .#"(Ey,n,n, N,) denotes the number of
graphs not belonging to the class B, then

(8) S (Ey,n,n,N)<2 > > (n] [n](n‘l_s(n—-;\’])—r(n—s) .
U<r<n Ossgn_% $ c
SZr

If P(Ey, n,n, N, ) denotes the probability of the event that the graph
Gp,n n, does not belong to the class E;; then

A (Ey,n, n; N,)
n? i

N,

(9) P(EU! n,n, Nc)é

Now we have (by the inequality 1 —z < e~%)

(n2—s(n—r)—r(n—s)J

roas NS L27S|
(10) [n L N, é.n__n_e Nc(n +n)+N° "

r\@ nz' rl sl
N,
Making use of the assumption (5), we obtain according to (9) and (10),
(11) PEy,n,n,Ny<2 =2 2 a,
U<r<n OSSSn—%
s=r

where

n—sn—r)—r(n—s
( ) ( ) ")nﬁ (logn+c¢)—cr—cs+2

n) (n Y e
12 a.= ") = < e
r S n P8t
N,

Let us estimate the sums on the right hand side of (11).
Case 1. Let us write (12) in the following form

eR—Or+ (2—c)s+2 ?(Iogn%c)—Zr—Zs

(12) 0=

rs =

r!s!

and let us consider first the values of » and s for which

%(logn+0)§r+s,

that is

(13) logn + ¢

1
e
n r

1
L i
ol
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(13) certainly holds, if

(14) s ———.
logn + ¢

If s satisfies (14) we say that we have case 1. Thus

e@—or+Q@2—c)s+2

(15) a,s =
r!s!

holds, if (14) is valid.
Case 2. Let us consider the terms in (11), for which (14) does not hold, but

(16) r+s8s<mn.
Applying Stirling’s formula we obtain that, for sufficiently large =, these
terms are less than

(17) exp{gan(logn+c)+(r+s)(l—c)—rlogr—slogs 3

Using the inequality
2
2rs é .(I_is_)_
2

the expression in brackets in (17) is less than

(r + s)?
2

(18) (logn +¢) + (1 —¢) (r +8) — (rlogr + slogs) .

Since xzlog z is a convex function, we conclude by Jensen’s inequality

— (rlogr — slogs) < —(r+s)logr—;s.

Thus (18) is less than ¢(z)+ zlog 2 where

2
®(x) =—2:£—(10gn—f—c) +(1—c¢)x—2zlogx
n

and
r=r-+s.
: 2n
According to (16) ————— <z < n. Now
logn + ¢
@' (x) =%(logn+c) —(logx+¢)<0;if el <z<n,
because ——— is an increasing function of z if

c+logx
elst < w<<m
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Thus it follows that
2n

K nloglogn
logn +c

(19) q)(x)éw( )_s_—zn+

log n

where K > 0 is a constant. Thus for n > n, the sum of the terms on the
right side of (11) for which (16) holds does not exced n?~" and therefore
tends to 0, if n— oo,

Case 3. Taking into account that a,, = a, ;- wherer’ =n—s, " =n—r
the estimation of the terms @, with » +s > 7n can be reduced to the estim-
ation of the terms a, ¢ with »” 4 8" < n, regarding the fact that from r +

-+ s > n there follows that 7”4 s” < n further that from s < n — & it follows

n
that »” = e > U = loglog n, if n is sufficiently large.
n
Thus we have for (11)
i - (2—o)r (2—c)s
P(Bu,n,n,N)<4e2 3 ° el
N T} s!
osrsn—-= U<s<n
(20) )
c (2—c)s
§4e2+e'*(2 - ]+ o(l).
g<s ¢!
As we have chosen U = loglog n, we obtain
(21) lim P(Byogiogns s 1 Np) = 0.
n—>eo

Now we only need to show that the probability of obtaining a random
graph not being of the type 4, but nevertheless belonging to the class E.
tends to zero. That is we have to show that

(22) lim P(AE

n—>co

loglogn »

loglogns "> T N)=0.

Since in these graphs the greatest component consists of 7 — r red and
n— s blue points, therefore ¢ > 1 denoting the number of edges con-
necting some of the 7 and soutside points, these outside edges can be chosen

in || different ways; thus the remaining N ,— ¢ inner edges must be selected

u Uy rs ((n = 8)]
(23)  P(AEgogn s N) < 22 ":] (7;] 2 (rqs] Ncn:q _
g=1 '°

r=1 s=1 )
Nc

from the (n—7) (n — s) possibilities, i.e.

Taking into account the inequalities

n)(n ' ns " (rs
< ; =2 =1 < 28,
(r]‘s rls! Z[q)

q=1
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and
[(n —7r)(n— s))
Ne—g | __ Nt ((n—n)(n—sg) N
ol T (mt—gt| mP—g ’
N,
we obtain
P(AEloglogm n,n, Nc) =
(24)
U U_ors p—(r+s)c (loglog n)?
élogn 2? e :0[2 logn]zo(l).
n sl el 7]l n

Thus (22) holds and therefore the proof of Lemma 1 is completed.

The proof of Theorem 1. Denoting by #7(n,n, N,) the number of
bichromatic random graphs without isolated points, according to the sieve
method we have evidently

n (n
E)\!

Putting into (25) k + 1 = h, we obtain a more often used form:

25) A (n,n,N,) = 2 2"7(_ et

k=0 [=0

(n— k) (n —1)
( i ]

c

2,

(26) ‘/'I(n’ n, Nc) (_ l)h ‘}gh

h

=

I
o

where
n(n — h) + k(h — k)
N, g

"{"Z,Z’;(ZJ 'hik]

Using the following inequalities (similarly as was done in [1], p. 295):

2H+1 2H

(27) S (— )< A 'm,n, N) £ (= 1) 8,
h=0 h=0

and taking into account that for any fixed value of A
—ch

lim =
n—>eo nz) Zk'(h—k

N,

we obtain

i V//‘,( ’ vNc)
,%EI:, nnzn . 2 2 k! (h — k
N

&
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and

N,
Since H can be chosen arbitrarily large, we obtain
“( — —ck & —cl
(28) lim M=2(_1)kﬁ__ R Ly

= 2
iz L J frames) k! 1=

N

It is however evident that if .7 (n, n, N,) denotes the number of the connec-
ted graphs, then

'/‘l(ny n, Nc) e ‘/‘ (n) n, Nc)

n2

N,

(29) 0= < P(d,n,n,N,) .

¢!
Applying Lemma 1, Theorem 1 follows immediately.
Let us suppose now that 1 = 1.

Theorem 2. Let us denote by P(m,n, N, ,) the probability that the bi-
chromatic random graph I'mnn,, be connected, assuming that m ~ An and

(30) N, =[mlogm + cm]
(where. % > 1 and ¢ are constants); then

(31) lim P(m,n, N,,) =e "
holds. T

Proof. In this case we shall call the graphs consisting of a component
with m — k red and n blue vertices and of £ isolated red points (k = 0, 1, . . .)
(that is one component contains all blue points) to be of type B. Any graph
I'mn,N,;, Which is not of type B shall be called to be of type B. We shall
prove that the following lemma is valid.

Lemma 2. Let P(B, m, n, N,,) denote the probability that the bichromatic
random graph [mnn,, is of the type B; then
(32) lim P(B,m,n,N,,) =

n—>oco

Thus in case n is sufficiently large and N, is the same as in (30), then ,,almost
all” graphs I'mpnn,, will be of type B.

Proof of Lemma 2. The proof of Lemma 2 is similar to that of Lemma
1, therefore we give only the outlines of the proof.

Let us denote by -#7(B, m, n, N_,) the number of bichromatic graphs,
with m red and n blue points and N_, edges, which are of type B. Then we
have clearly

= m n-—1 m
(33) - ABmnN,,) < [ ]

mn —s(m—r) —r(n —s)
Nc,A

n
S
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The probability of the random graph I'man,; being of the type B
is equal to

A (B,m,n, N
(34) P(B,m,n, N,y = LM% e
vy
and thus
m n-—1
(35) PB,m,n,N,,) < réo‘ = b,
where
(36) b =(m (n [mn——s(m—r)—r(n—s)
" rlls Nes
and thus
2
(37) bt ) N
rs = .

r! s!

Let now E, denote the set of those pairs (r, s) for which

(38) 0rsam, 1<s<n-—1
where
(39) 0<a<’1—_21j1_—‘s 0<d<i—1).
Then we obtain easily
; ) i
(40) > %zohy
(r,8) €E, n

Let now E, denote the set of those pairs (r, s) for which

(41) am<r<m, 1§s§%.
For these terms we get
1
(42) 2 brs =0 ( Ve
(r,8) €E, n

Finally if B, denotes the set of those pairs (r, s) for which

(43) 0o<r<m, %<s§_n—l

we get, in view of

(44) brs = bm——r,n—s

(45) o A -
(r,8)€Es (r,8) €E, (r,s)€E.

Thus it follows from (35), (40), (42) and (45) that (32) holds.
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Thus Lemma 2 has been proved.

Proof of Theorem 2. In this case we denote by -#™(m, n, N, ,) the number
of those graphs, which do not contain isolated red points. We obtain

: B m s m (m——k)”
(46) ol (i, m, N gy ) = g( l)k{kj[ Na '

Since -/7(m, n, N,,) lies between any two consecutive partial sums of the

c,

right hand side of (46), in the case of any fixed k,

(m —k)n
(47) (mJ [——N BEL o, ﬁk[l £ ﬁ)m.
k mn k! m
Nc,k
Thus we obtain
(48) lim 2 Nea) _ 2 (— =
n>e mn Py k!
¥,

From the inequality where -/ (m, n, N_,) denotes the number of connected
graphs

A (m,n, N ) — A (m,n, N_,)
[ mn
Nc,l.

(49) 0<

é P(B: m,n, NC,A) L

Theorem 2 follows.
I am indebted to Professors A. RENyYI and T. GALLAI for their valuable
remarks.

(Received September 10, 1963)
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0 CBA3HOCTHU JABYXLIBETHbIX CJIYUAHHBIX I'PA®OB
I. PALASTI

Pe3iome

[lycth ByXUBeTHBbI cnydyaiinpii rpadg 17,y COCTOMT M3 m NPOHyMe-
poBaHHbIX BepuuH P;, P, ..., P,, KoTopble OKpalleHbl IIepBOii KpacKoH, U3 n
NPOHYMEPOBAHHBIX BepUIUH @y, @;,. . ., §,, KOTOPble OKpallleHbl BTOPOH KpacKoi,
u u3 N ciyuaitHo BblOpaHHBIX rpaHeidl. ToUKM 0JMHAKOBOIO LBETa HeJIb3s
COeMHATL IpaHblo. B paGoTe moKasbiBaeTcss, 4T0 B ciaydae m = An (rje
A>1 KOHCTaHTa) BePOSITHOCTb TOT0, UTO JABYXUBeTHbI ciyuaiinbiit rpad I, , N,
Oy/leT CBSI3HBIM, CTPEMMTCSI NPH % —> oo K €€ (¢ — NPOU3BOJIbHASE KOHCTAHTA)
NpU YCJIOBMM, UYTO uucyio rpaHeit N, = [m log m 4 + em] ([x] obosnayaer
eyl yacTb yucsa x) u A > 1. B ciayyae A < 1 BepOATHOCTb CBSSHOCTH TaKyKe
CTPeMUTCS K IIpefie]ly e—¢° NpU YCJIOBUM, 4TO 4ucio rpaHeit N, = [n logn +
+ ¢n]. B ciiyyae m = m npejejbHas BePOSITHOCTb CBASHOCTH JIBYXIBETHBIX
cJlyyaiiHpiX rpadoB paBHA e2¢° NIPU yCJIOBUM, YTO YMCJIO BBIOPAHHBIX I'paHeii
N.=[n log n 4 cn].
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