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Introduction

A great number of works deal with the stability and asymptotic behaviour
of the solutions of the nonlinear differential equation (system)

(1) L f(t, 0) =0
i

where & = (1, ) @ =l fGE) = (o fd fi= il )

t=1,2..,n and 4 = (ay), a; = const, %, k= .., n. Their state-

ments bring into connection the behaviour Of the solutlons of (1) and those
of the linear approximate equation
dy =
(2) A Ay .
dt

First PorNcarE and LiapuNov obtained results of this type. They assumed the
real parts of the characteristic roots of A to be different, x and f(, #) analytic,
the series of the last function hegmnmg with at least second power. PERRON [1]
aseummg the continuity of *f(£, ) only, and the property! ||f(¢, ) || =
=o(||z]]) (x—>0,t{—> + o0), weakened these hypotheses and restated the
theorems of the above authors. As long as these results involved relations on
a logarithmic scale, Corron [2] found certain proper asymptotic connections,
which hold between z and y. He assured the ,,smallness” of the perturbation

f(t, z) = Bz by the condition s || B || dt < oo.

WINTNER ([3]—[4]) treated the contrary-case, where the characteristic
roots of 4 have all equal (vanishing) real parts (equal roots permitted too),
however he assumed that (2) possesses bounded (pure sinusoid) solutions only,
i.e. the corresponding elementary divisors of 4 are linear. LEvINsoN [5] did
not assume the roots to be imaginary, but the boundedness of every solution of
(2) and showed — having been restricted to linear f(¢, ) = Bx — that every
solution z(f) of (1) determines a solution y(¢) of (2) containing pure sinusoid
terms only, with the property z(t) — y(t) —> 0 as t — + oo. A special case
of this theorem is involved in [4], and in certain papers of CESARI [6] and
BeLLMAN [7] previously appeared. The last two works pertain to homogeneous
linear equations of n-th order. LEVINSON’s theorem has been generalized by

! Throughout this paper ||Z| = X'|a;|, [|4||= N | ai|

i ik
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H. WevL [8], namely in two respects. First he did not assume f{(t,z) to be linear,
instead, he imposed on f(f, ) the requirement to have a ‘linear majorant’
in the sense

oo

e, @) < g(0) 2] gttt < oo

On the other hand, he showed the converse of the theorem too, that there
belongs to every solution %(f) of (2) a solution z(t) of (1) with ¥y — 2z — 0,
{ — -+ oo, provided that a linear condition of the type

oo

(3) 7, Z) — ft, 7%)|| < g(¢) || — z*||, [ gltydt < o

is satisfied (¢ = 0, z, * arbitrary). This means, that there exists a one-to-one
correspondence between the solutions of (1) and (2).

The author stipulated in [9] instead of the linear majorization (3) the -
nonlinear condition

(4) (6, %) < g(t) (), { gitydt < oo

(t = 0,z arbitrary and w(«) continuous, monotone increasing etc.) and con-
cluded from the boundedness of the solutions of (2) to that of the solutions
of (1) and to the stability of the solution # = 0.

The present paper gives the generalization of the LEVINSON—WEYL
theorem under the condition (4) and

(5) e, @) — e, )| < gy oo(& — 2¥) {gltydt < oo
(¢, =, z* arbitrary)

In addition, it involves the extension of a result of WINTNER [10] concerning
the convergence of successive approximations and of another [12] related to
a result of the author [11].

1. Let us begin with the mentioned remark as to the successive approxi-
mations.

If f(t, ) is continuous in a certain domain of the space (¢, x), then there
is a solution of (1) passing through every point of the domain and existing
on an interval which includes the point. However, without any further condi-
tions this solution cannot be obtained by successive approximation, i.e. the
correspondent (usual) successive approximations do not converge. For an
equation of the form

dx A
6 — =g,z
(6) 5 = HB)
a Lipschitz condition assures the convergence and the uniqueness. This suggests,
that perhaps the mere uniqueness of the solution is sufficient for the conver-
gence, but some known examples refute this. Nevertheless, if the sufficient
assumptions of the well-known uniqueness theorems are stipulated for g(f, x)
then the successive approximations relative to (6) are to be convergent at
least in a sufficiently short interval (s. [10], [13] p. 53, [14], [15]). The
same will be shown here concerning (1), provided that f(¢, x) satisfies an
analogous condition which is not the most general one (it is more resp. less
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general than that of [10] resp. [13]), on the other hand the convergence will
be established on the whole ¢t > 0 axis.

There will be used the familiar formula
t
(7) Z(t) =yt) + | Y(t —7) Kz, %(v)) dr, y)=Yt)a
0

connecting the solutions z(t) and y(¢) of (1) and (2) resp., where Y (t) denotes
the solution of

(8) — =4y, Y(0)=1 (identity)
(@ is an arbitrary vector).

Theorem 1. Let the following conditions be satisfied:

1. every solution of (2) is bounded for t = 0, t.e. the real parts of the
characteristic roots of A are mon-positive and the elementary divisors belonging
to the roots wzth zero real parts are linear (e.g. these roots are simple )

2. f(t,z) is defined for t = 0 and arbitrary x and satzsfzes ), where
; o : ©du du
w(u) is positive, continuous, non-decreaszrng foru =0, J = oo, [ — = oo
(u) w(u)
1
(of course w(0 j g(t) dt < o= and ¢(t) is bounded.

Then the successive approximations

@y(t) = y(0) , yt)=Y(t)a

Tpral) =30 + [ Yt — ) (v, Z,(v))dz, (n=0,1,2,...)

0

(9)

converge uniformly on t = 0 to the unique solution of (1) with z(0) = a. (The
starting point x(¢) is here not as commonly a constant)

Proof. First we show that the sequence {z,({)} is equicontinuous for
t = 0. Namely, if ¢, > 0, ¢, > 0 are arbitrary values, then by (9)

t, t,
Zpiq(ty) — Tpya () = Y(ty) — Yty ) + Y (t,) s (—% fndT— f —T .fnd'r

where f, = f(7, ,(7)). Making use of the fact that the sequence {z,(t)}is
uniformly bounded (see below where this bound is given explicitly) say
[|Z,(t) || £ M, t = 0 we have (e.g. for ¢, < t,)

[ 11(tr) — Zosa ()| < ]| [1 ¥ (8) — Y (&)]] +

+ (17 () — I—’(tz)llw(llf)(_} ¥ (=) 9(z) dv + [| ¥ (t,)]| o (1) fhl\l_’(—fllg(f) dv

Here the right member is independent of » and may be arbitrary small by
choosing ¢, — ¢, small enough, which means exactly the mentioned equi-
continuity.

15 A Matematikai Kutaté Intézet Kozleményei VIII. A/3.
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In the second place the same sequence is uniformly bounded for ¢ > 0.
According to cond. 1 || Y(¢) || < ¢ for some c.

We assert that

(10) 1) = |@0)] < 92 o gl de) = K@) (n=0,1,2, .
where a = ¢ ||a||, Q(u) = Jlf = (wy > 0). As Jujg(t) < oo and J? gt = oo ,
o(2) o(u)

Uy 1
(10) assures the boundedness in question. Actually, we state somewhat more.
From (9) we have
t
rmpasa-+tc j w(rn) g('t) dv (: Vn(t))

0

and a stronger assertion than (10) will be proved, namely that

0)
(11) V) < K(t), t=0 R=0,1,2,...)

I fact, suppose V,_,(t) < K(t), t = 0 and prove V ({) < K(t), t = 0. But
V,.(0) = K(0), and if the last inequality failed to hold for all ¢ > 0, there
would exist a first place ¢, > 0, where

(12) Vo) = K(t,) and V,(t) > K({t), t,<t<lty,
where ¢, — ¢, > 0 is small enough. Then
Vocalt) < Valt) o (V) S a(V,), £ 28,

whence beingr, < V,_,resp.o(r,)) < o(V,_)and V,=2a>0,V, , =2 a>0
we have

cglt) o) _ cglt) ofr,)

oV, — oV,)

< cg(t) lo <t <t
Hence by integration

AV alt) £ 2V (to) + ¢

t
| g(r)dr.
ty
However, by (12)

t

OV o(ty)) = QK (te)) = 2(a) + ¢ 6s"'g<r> dr,

therefore
t
QV,(#) = Le) ¢ j g(r)dv = Q(K (1)), b <t<t
0
or V (¢) < K(t) in contradiction with (12). This proves (11).Butr,(t) < V,_,(t),
consequently r,(t) < K(t), ¢ = 0. It remains to ascertain whether V (¢) < K(t)
t = 0 holds. Really we have
t

Vo(t) = + 068' o(|[y]) g(z) dv
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and the relation
.

QVy(t)) = e + ¢ | o(yl]) 9(z) dr) < Q(a) + Céf 9(v) dv = Q(K(t))

0

holds for ¢ > 0, since it holds for £ = 0 and the derivative of the right member
is not less for £ > 0 than that of the left one. In fact

d t co(lyl) () cw(a)g(t)
—|2|a+c| o(yl)g(z)dr|| =" 7 = i
dt [ ( oj )] w(a+ coj' o(ly)g(z)dr)  o(a+ cof o(ly) g(z)dr)

and

d
— (K (t)) = cg(t
Q) = cglt)

and an immediate comparison verifies our assertion.

Thus the sequence (9) turned out to be uniformly bounded and equi-
continuous. Therefore — corresponding to Arzela’s theorem — it involves a
uniformly convergent subsequence on every interval 0 < ¢ < 7', the continuous
limit function of which let be denoted by x(¢). An easy argumentation shows
that 7' may be taken 7' = oo too. Viz.,let be T' =n (n = 1, 2, . . .) and regard
the corresponding subsequence for [0, n,] (n, is a fixed integer), then one of
its convergent subsequences corresponding to [0, n, + 1], etc. Now making
use of the well-known diagonal method, we receive a subsequence uniformly
converging for ¢ > 0. Denote this by {Z(t)} (n =1,2,...) and its limit
function by z(t). We assert z(f) to be the (unique) required solution, and the
total successive approximation is converging to it. Namely

(7, %(2)) — Iz, 20, (2))]| < 9(7) (2 — i)
Denote max ||  — x, || by 6, then

0ST< oo
t S el t
| Y Y(t—1) [}‘(1:, z(7)) — f(z, xkn(t))] dr|| £ ¢ w(dx,) jg(t) dr
0 0
which tends to 0 as » — oo. Therefore the sequence {@ . ,}(n=1,2,...)

consisting of the terms subsequent to the terms of the sequence {Z,}, is also
uniformly convergent and its limit z*(¢) satisfies (according to (9))

z*(t) = y(t) +Oj : Y(t — 1) f(v,%(r)) dr

Therefore z(t) is a solution of (1) for ¢ > 0 if and only if
) =Z(t), t=0
To this end it suffices to prove that
u(t) = lim sup |[@, () — Z,(0)]| = O, t=0.

n—>oco

This may be done by a slight modification of Wintner’s proof in [10] which
can be omitted here (s. there).2 In order to demonstrate the convergence of
the total sequence (9), it is enough to ascertain that (1) has a unique solution

2 Otherwise this proof will be carried out later (in 4) in a more complicated case.

15*
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with 2(0) = @, as in this case {,({)} cannot have another cluster element
(viz. this would be also a solution).

Suppose (1) has another solution z,(¢) for ¢ > 0 with #,(0) = @, then by
(7) we have for the function ||z —z, || = ()

(13) r(t) < céf‘ g(7) o(r(r))dr

where 7(0) = 0. Let ¢, = 0 be the first place, where 7»(¢,) = 0, but »(f) > 0
for t, <t < t, with t,— ¢, small enough. Then by (13)

(14) r(t) < cj g(7) o(r(7)) dr .

Let the right member be denoted by V (¢), then V(¢) > O (¢ > ¢;) and 7(t) < V (¢),
whence
o(r(®) = (¥ () resp. TEOCO) < o).
a(V)
Hence by integration

(15) J—diéojg(r)dt, e

According to cond. 2 the integral on the left is divergent, whereas that on
the right is convergent, which involves a contradiction.
2. The ‘“‘asymptotic initial value problem” may be treated in the same

way. Here the relation (o0) = a@ = y(o°) or z(t) — y(t) - 0, t - + oo will be
t

prescribed (the latter when y(oo) does not exist). Then inin (7) and (9) the sign f
must be replaced by — s and instead of the estimate (10) we get
t

nmwéﬂﬂmw+gﬁmw

where ¢’ = sup || Y(¢) ||, that is, now the boundedness of the solutions of (2)
t<0

for £ < 0 must be supposed. The corresponding successive approximations
converge then too.

3. Now we turn to the generalization of the result of LEviNsoN and
WEYL.

Theorem 2. Let the conditions 1 and 2 of Theorem 1 be satisfied and in
addition the following one:

Cond. 3:

i du
2(me,) — 2(mo,) = J > @y — 01 Co > 0y

w(u)

(F,) =

- du
Q(me,) — 2me,) = J =104, 102, Gy

w(u)

mo,
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where ;= c;q(t=1,2),9 = f gtydt, 0 <m < w(2M) (M and Y(t),Y,()
0

will be defined later) and ¢, = sup || Y (t)|, ¢, =sup||Y,(t)||. Summarising
=0 t<0

du =
J — =~ 2y = min (g, 05), 4, = max (gy, 0,) -
m#,

(This is involved by cond. 2 provided A, = 0).

Then every solution z(t) of (1) determines a solution y(t) of (2) with
z(t) — y(t) - 0 as t — -+ oo and the converse statement holds too.

In the case of a linear majorant — say case (W) — w(u) =« and con-
dition 3 reads

(F4)

Q
Since the function f(p) :% has a minimum at ¢ = 1, condition (#,) is

satisfied if A4, < 1—the only case observed by WEYL—, but obviously in
other cases too (e.g. for 4, =1 or 4, =0,1, 4, =1,1).

The first part of the proof differs hardly from that of WeyrL.

In a suitable coordinate system (carrying out a non-degenerate trans-
formation, if necessary) Y(f) consists of blocks (elementary divisors) of
the form

Tty 0 ... 0
et ettty 0 ti

) SR ol ey )
where 2 means a characteristic root of A. If Re A = 0, m =1 (s. cond. 1).
Unifying every elementary divisor corresponding to Re 2 < 0 in a block Z,

and those corresponding to Re 2 = 0 in another block Z, we obtain a decompo-
sition of Y(f) as follows

7 — [Zl_‘?]
07,

in which Z,({) — 0 (t — o) and Z,({) are bounded for every t (also for ¢t < 0).
Let the corresponding decomposition of the unit-matrix be

= S )
I =|"1"\=1 7§
[092) S

where 7, and I, are n % n matrices. Then Y (¢) dissociates in the form

Y=YL+YL,=Y.+} T,
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Obv10usly, Y,(t) >0, t—> + oo and Y,(¢) is bounded (for ¢ < 0 too). Say
H Eult) || 2 <0).

Regard the solution of (1) and (2) corresponding to z(0) = y(0) =
— @ (= const). Then y(t) = Y ({)a. These solutions are connected by the
relation (7).Conversely, if (7) holds and x(¢) satisfies (1), then y(¢) fulfils
(2) and y(0) = z(0).

Corresponding to Y (t), Z(t) will be decomposed as follows:

_ Lz+4+ Lz=2+7%,
and similarly y(¢) dissociates in the vectors y,(f) and ¥,(t), where ¥,(¢) is a damped

oscillation and 7,(¢) consists of pure sinusoid terms. Carrying out this decompo-
sition in (7) too,

| = ¢ -
(16)  3(t) =y(t) + [ Yyt — ) fdr + | Y,(t —7) fdv, [ = [(z,%(7)).
0 0
Transform the second integral in the following way

g =Y (t) fY (—7) fdr—jyzt—z)fdr
(viz. Yot — ) =Yt —v) L,=Y({) ¥Y(—v) I, = Y (t) ¥Y,(— 7).

Here the term ‘m Y,(—7) fdt is a constant vector b, consequently (16) takes

on the form
(17) =(t) =z(t) + [ Y,(t—7) fdr — [ Y,(t — ) fdr, Z(t) = Y(t) (@+b)

where Z(f) is a solution of (2), belonging to the initial condition Z(0) = a + b
(recall @ = ¥(0)), and 2(¢) is a solution of (1) in the future too independ-
ently of the preliminaries, provided Z(t) satisfies (2) and the second integral
in (17) converges. But this converges, z(t) being bounded — say || (¢ ﬁ
< M,t>=0— and

7ot — ) (7. 2(0))]| £ cag9(v) o(f2]) < cog(r) (M), [g(t)dt < o
Conversely, if z(f) is a solution of (1) ,then

(17') ﬂﬂ=ﬂ0—§7ﬂ—wmh+ffw—wﬁh, [ = f(z. %))

is one of (2). Thus by (17’) to all solutions of (1) there corresponds a unique
solution of (2). p 3
(17") gives after a multiplication by I, and 1,, resp.

(18,) am=5ﬁr—y?ﬁ—ﬂﬂnﬂﬂMr
(18,) 50 =50 + [ Tt — 1) {(z.30) dr
(viz. ,Y,=Y,, I,Y,=0, L Y,=0, ,Y,=7,)
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Now the relation z,(t) — z,({) - 0, t - + oo follows from the conver-
gence of the integral in (18,). In order to prove that z,(t) —Zz,({)—0, { —> + oo,
it is necessary to show that the integral in (18,) tends to 0 as ¢ — -+ oo, since
Z,(¢) behaves similarly.

Really, according to the definition of Y,(f) the relation || ¥,(f) || <
< c,e ¥ (k > 0) holds, consequently

z
M) § g(z) dv +
0

::a__ﬁ -
&
I
=
ﬂ
Si
E
IS
B
Il
Sty
+
IA
Ky
.Y

Here both terms tend to zero as ¢ — -+ <o. The first because of the exponential

factor, the second in virtue of the convergence of fg t)dt. According to (18),
2,(0) = 2,(0), Zy(t) — 2y(t) > 0, t - + oo.

In order to prove the converse assertion, we apply successive approxi-
mation to solve the integral-equation (17°) for a given z(¢). Namely, let it be
defined by

(19 1 2 alt) = 5) + [ ot — 2)1(5, Bale)) d5 — | Talt — 1) fr Bolr))

(n=0,1,2,...)

Hence ||zy(f)||=Z ¢, ||c||=p and let us suppose that e.g. ¢, >c, and

(200 ralt) = |[Zul0)]| < K(t) = 27 (R + @) + (a—7) § g dr),  £20
t

then we prove r,,,(l) < K(t), t > 0. Here a is defined — if possible — by

Q3

y+—a
: e &
(20) ez—el=9(y+9a)—-0(7/+a)= J 2 s
(51 i w(u)

In the case (W) a =g, —— .
01 e% — 0y ea
We have from (20)

oo

QK@) =2+ a) + (c; — ¢,) s g(r)dv

1

3 This is a restriction concerning w(u), y, 0,, 0;. It is unchanged for ¢; > c,.
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whence
(21) K'(t) = — (cy — ¢1) g(t) o(K(t)) .
Hence by (19), (20) and (21)
t -
Fnpa®) v+ ¢y [ g(x) o(r (7)) dv + ¢, | g(z) o(r,(7)) dv <
0 t
t

<y+e g o(K(D)dr + o, | g(7) o(K(v)) dr —
t

0

—y——2 JK'(ﬂdr* = .-JK’(r)dr=y+K(t)+‘31K°
C—(‘l (?2—(1

Here it holds K(o) =y + a and by (20')

KO0) =212y +a)+e—e)=7+ gj
Therefore
T = K(l)s =10,
But
ro(t) = ||lz(0)]| = ¥y < K(¢).

thus (20) is proven by induction, i.c.

s 2 KN < B0 =91 Ba =8, 120, B=013%
01

e.g. in the case (W)

== 1
(22) M—=yga—2"60
0167 — @y

Therefore the sequence {Z,(¢)} (n=0,1,2, ...) is uniformly bounded. It is
also equicontinuous, what can be easily shown along the lines of 1.

Corresponding to Arzela’s theorem these two properties imply the exis-
tence of a for ¢= 0 uniformly convergent subsequence {Zp,(t)} (k = 1,2, ...)
of the previous one (as in 1.; see the proof there), the continuous limit
function #(¢) of which and that of the also uniformly convergent subse-
quence {Tp,.,(f)} (k=1,2,...) — denoting its limit by Z*() — satisfy
together

t

o s (e —7)f )dt—fY (t —v) f(v, T(v)) dr
4 If ¢, >y, M = K(o0) =y -+ a and in case (W) this reads as M_yeglfTieg}E

'II)‘he solution z(t) of (17) is stable relative to (17) at least in the case (W). This is obvious
y (22).
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Therefore z(t) is a solution of (17) if and only if
TH) =F(f), t=0
In order to see this it is enough to prove that

7(f) = lim sup r,(¢) = 0, Talt) = ||7,(8) — Ty (8) ||

furthermore that (17) has a unique solution (see 1.). Then the total suc-
cessive approximation (19) converges too.
Now (19) gives

t
Tnga(t) < ) [ g(x) o(ra(7 )d‘t+c2fg (ra(7)) dr, =12 ...)
0

whence by a lemma of Fatou (cf. [10] p. 17)

: =
r(t) < ¢, | g(7) lim sup o(r,(7)) dt + ¢, | g(v) lim sup o(r,(7)) dz
0 == £ =
but lim sup o(r,(t)) < o(r(t)). Viz., for n>N with a certain integer N >0,

n=

ra(t) < 7(t) + & (e > 0) umformly in ¢ (i.e. for ¢ > 0; see [13] p. 55),5
consequently (r,(t)) < o(r(t) + €) or hm 1 sup o(r,(t) < o(r(t) + &) what
involves our assertion, since ¢ > 0 is arbltrary Hence 7(t) satisfies

1

(23) r(t) < ¢ [ g(z) o(r(v)) dr + ¢, | g(r) o(r(2)) dv (=V@®).t=0,
0 t

If (17) had two solutions — say @(¢) and 2°(t) — —, then o(t) = ||@(t) — @°(¢)||
also satisfies (23) with p(¢) instead of 7(¢). Therefore the proof of the identical
vanishing of 7(¢) and p(t) takes place simultaneously.

If e.g. r(t)5£0, t >0, then in (23) V() >0, t=0, i.e. o(r(t)) < w(V(t)) or

(cp — ;) (r(2)) g(2) <

o (V1) = (ey —¢) 9(2) (g > ¢y)
and by the substitution u = V(t), du = — (¢, — ¢,) g(t) w(r(t)) dt
70) .» :
du
J J gltydt =(cx—¢)g =g —e -
w(u)
V(=) 0

Here we have

[ ¥ (0) =c¢, Ofg(r) o(r(r)) dt = c,mq I
O<m=Zow

w (20)
| Vi1 =ex o atrte) e = egmg ]

0

5 First this holds for a finite interval (0,7'), but also for ¢ > 7' provided 7T is
sufficiently large, since 7(t) — 0, r,(t) — 0 uniformly in » as ¢ — co.
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0m

thus J tf—u) < 0, — p, in contradiction to the condition 3. The case ¢, > c,
w(u

\m
mayebe treated m the same way.

For ¢, 5= ¢, w(u) can be chosen as follows (suppose e.g. ¢, > ¢;)
w(u):uloglz—ulogu {O<u§l)
u e
and in a suitable manner for » > s .5 The condition 3 reads now
e
1
B J _ogloglem
ulogu log (0om)
om
provided that g,m < ] or
e
(24) e log (0, m) < e® log (p,m), or (o,m)* < (o, m)e*.

The function f(o) = €? log (¢ m) has a maximum at ¢ = g, provided m < L)

e
resp. 2M < = where g, is the solution of the equation glog (om) +1=0, i.e.
e

(24) is fullfilled for g, < g,, but in other cases as well. Condition g,m < L
k e
is surely satisfied, when g,w(2M) < £ and 2M < —1—, 1e.
e e
1 .5
—0(2M)log(2M)<— or (2M)M=e **
e

1

This holds e.g. for g, < 1, since the minimum of k(z) = 2" is ¢ °. Equation
(20") requires

y+€'ia
41

u o . 04
—J =0, — @y, resp. exlog {y+—
ulogu

1

a) = e log

y+&ﬂ
0

v+a

provided M =y + &a_s_ —1—) 2
0, 2e
For certain y, g, 0,, @ this may be satisfied. Then all requirements are satisfied

if p, is small enough. However the assumption M < —l—is not necessary. Per-
2e

¢ E.g. w(u):%—{—ulogu suits for u.>—:—.
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haps in the opposite case the function f(o) = e log (em) has no maximum

— viz. if m > e and then g, can be arbitrary large.
e

g ; 1 1 1t

The functions w(u) = ulog—loglog—, ... and u log—] om0l 1)

u u u

can also be applied hLere.
The case ¢, =c, =c may be settled in a straightforward way or by
the limit process p,— p, = p carried out in cond. 3 and (20"). Obtaining

w(om) <m, 0<m=wi2M)

(25)
M = po(M) + y, M=yv+a.

In the case (W) this leads to

et e s

1—io

In the present case for an actual nonlinear w(u) it seems to be im-
possible to obtain a reasonable result.
~ Remark. Theorem 1 may be easily extended to a variable matrix
A(t) too provided that it is periodic or

t

;iEJ tr(A)dt > — oo

——

holds. Theorem 2 seems also to be capable to an extension for a periodic A(#).
5. As an application let us regard the equation (see [11])

(26) w' 4+ u 4 o(t) h(u, ') =0, k(0,%) =0

for the scalar function = w(f) with the following conditions to be satisfied.

oo

1. p(¢) is continuous for ¢ > 0 and J | o) | dt < oo,

2. | M(u, v) — h(u*, v*) < o(|u— u*| + |v—ov*|) where o(z) is as
before.

Then corresponding to every solution of (26) there exist two constants
o. # 0 and 6. such that

u(t) — agsin (¢ + 0,) >0, w'(t) — a,cos(t + 0,)—>0, t— + oo

holds and the converse assertion is valid as well.

This statement is closely related to the result of [11] (where the converse
statement fails), and is a generalization of [12], p. 388. In particular, the
estimate given in [11] may be obtained also here. In the present case as
Y, =0, cond. 3 of 3 is superfluous. Strange enough, neither of the conditions
(2w, Av) = 4 h(u, v), sg h(u, v) = sg u (for arbitrary 2, u, v) of [11] is here
necessary.

(Received January 14, 1963.)
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ACUMIITOTUUECKOE IIOBEJEHUE PEWEHWUA HEJUHEWUHBIX
AUPPEPEHLUAJNISHbIX YPABHEHHA

I. BIHARI
Pesiome

Levinsox [5] u WEYL [8] nokasaiu, UTO ecJIM Bce pelleHust ypaBHeHHst
(2) orpaHuYeHbl, TOT/A Ka)KJOMY peuleHuro x(f) ypaBHeHMs1 (1) NMpUIOATIEXKHUT

0/IHO pelleHue ¥(f) ypaBHeHHUs (2) Takoe, 4TO

z(t) —y(t) —>0, e t— oo,

1 uT0 06paTHOe yTBeP)KJAeHUE TaKKe UMeeT cujy. PegynabraT LEVINSONa 0THO-
CUTCS TOJILKO K JIMHe#dHBIM cucTemaM, pedysibTaT WEYLa nMmeeT cuiy M JUis

HeJIMHeHHBIX CHCTeM, 0JIHAKO TOJIbKO B TOM ciyuae, ecnu GyHkuusa f(¢, x) B (1)

¥MeeT WiMHeNHbIH Ma)kopaHT». B HacTosimieif cTaTbe aBTOp pacrpocTpaHsieT 3Ty

TeopeMy Ha HeJIMHeHHble CUCTeMbl NpU ycsoBuM (4), cooTB. (5), nanee oH JjaeT
o0o0menue ojHoro pesysnpraTa WINTNERA [10], oTHOCSAIErocs K ¢X0JAMMOCTH

M0CJIelOBATEJIbHBIX NPUOIMIKeHHH. OH NMoKa3blBaeT CX0/AMMOCTb T110CJIe0BaATe b=
HBIX Tnpubmmrennit (9), oTHocsimmxest K ypaBHenuio (1) npu ycaosun (5). Ha-
KOHell, B KauecTBe NPUJIOYKEHUsI OH JiaeT 06001enue oqHoit Teopembl WINTNER
u3 [12], KOTOpOe OYeHb CXOXKe € OJHMM pe3yJIbTaToM aBTopa u3 [11].
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