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ABSTRACT

As part of the energy design synthesis method, complex dynamic building simulation database was
created with IDA ICE code for all family house building configurations for a considered problem. In this
paper, the annual heat energy demand output parameter is considered to serve as basis of a building
energy design investigation. The sensitivity analysis performed by Morris’ elementary effect method
was used. As the result of the sensitivity analysis of the output parameter, the most important input
parameters can be identified, that influence the buildings’ energy efficiency, that can support further
building designs.
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1. FAMILY HOUSE

Design of buildings has a key role in the world’s energy consumption and due to the negative
environmental impacts caused by the building industry sustainable buildings frequently gain
focus recently. In this relation, the process of building energy and climate responsive design
represents a key factor. For energy issues see for example [1], and for nature-based solutions
consider for example [2]. Unfortunately, conventional building design method in industry
practice generates only one or a very limited number of concepts, based on previous expe-
rience. This is often supported by the fact, that architects consider the artistic side of design
more important than complex building physics simulations and complicated mathematical
models to be evaluated from the beginning of the design. Thus, when the architectural plan is
ready, i.e., the building body shape together with the space organization or layout are ready as
the most fundamental design features, and the technical apparatus is designed subsequently.

Energy design method [3] integrates some of these high-level engineering calculations to
implement a sustainable architectural design. The method includes some heuristic building
simulations, quantifying the chosen design concepts. As its extension, Energy Design Syn-
thesis (EDS) method is a unique technique ensuring optimal buildings performing highest
energy efficiency while offering best comfort. A family house geometry case was considered,
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where the house was constructed from 6 building blocks.
First geometry generation rules were determined to generate
all feasible and potentially optimal building configurations
for a family house class. For these 167 configurations as
accepted geometries, 5010 complex dynamic thermal simu-
lations were performed, i.e., all the configurations were
modeled and the family houses were fully generated within
IDA ICE code. Please note that during the simulations two
different structures including isolation as main building
property were considered: one meeting the minimum stan-
dards of a family house, while the other is close to a passive
house. Further, the simulations included 3 wall-window
ratios and 5 orientations. From the simulation data, the
annual heating energy demand as output parameter and
some input parameters were selected for further in-
vestigations. Based on the results of the simulations, the
most influential parameters and their dependencies were
identified.

2. SENSITIVITY ANALYSIS

Generally, sensitivity analysis is used to identify the
important parameters together with their relations, i.e., the
individual importance of the selected design variables as well
as their joint-effect is measured and evaluated. In other
words, it is the study of how uncertainty in the output of a
model can be apportioned to different sources of uncertainty
in the model input. A sensitivity analysis determines the
contribution of the individual design variable to the total
performance of the design solution. As a result the dynamics
of the variables can be investigated. Note that the effects may
vary widely, therefore the order of importance is also sig-
nificant. Further, individual, as well as aggregate influence
occurs. For building design it is of importance, since ar-
chitects will understand the underlying coherence between
the input parameters of a building and its output annual
energy demand. Therefore, already in the first building
shape and layout design step expert decisions can be made
that has direct significant influence on energy consumption
sustainability.

Sensitivity Analysis (SA) methods can be classified for
example in the following way:

(i) global sensitivity methods consider multiple design
parameters;

(ii) local sensitivity methods evaluate the output variability
based on the variation of a single design parameter; and

(iii) screening methods consider usually two extreme values
on both sides of the standard value for selected design
parameters to evaluate, which design parameters the
building performance is significantly sensitive to.

Some local SA applications consider model parameters as
varying inputs, and aim at assessing how their uncertainty
impacts model performance [4]. Applications often apply
One-At-a-Time (OAT) approach where the sample is con-
structed in a way that between two sampling points the

influence of only one input variable is considered while all
other variables remain constant; individual influences of the
output variable are examined. In other words OAT design is
called when only one parameter changes values between
consecutive simulations, i.e., how the output value changes
in case only one input variable changed and the other var-
iables remained or considered to be constant. On the other
hand, SA applications often consider interactions between
the input variables also when examining the influence of the
input variables on the output. In general, global SA sampling
is more often performed by All-At-a-Time (AAT) approach,
where all the input factors are varied simultaneously. As a
consequence, the sensitivity to each input variable considers
the direct influence of that factor as well as their joint
influence.

It is one of the most important elements of the models to
consider the distribution of the input variables. Frequently,
well-known distributions describe the input variables, for
example uniform, normal, lognormal, or Weibull distribu-
tion. However, in practice many variables describing the
models are not continuous and their distribution cannot be
described in this manner.

Here, Morris Elementary Effect (MEE) method is used
[5], when the effect of the change along the adequately scale
of OAT randomly selected variable is measured. This can
be well applied with a larger number of variables also as a
sampling based method.

If yðx1; x2;…; xkÞ is an output parameter, depending on
the x1; x2;…; xk input parameters, then elementary effect
corresponding to the i-th variable can be defined as Eq. (1).
Note that Morris suggested p ¼ 6 and Δ ¼ p=ð2$ðp− 1ÞÞ
where the number of levels within the grid is denoted by p.
However, this Δ is suitable, where the variables are contin-
uous, and the sampling can be based on the discretization of
the continuous variables. The sensitivity measure can be
defined as Eq. (2), and further instead of mean μi, the mean
of the absolute value of the elementary effects μ*i , introduced
by [6], can be defined as given in Eq. (3). Note that r is the
number of trajectories,

diðxÞ ¼ yðx1; x2;…; xi−1; xi þ Δ; xiþ1;…; xnÞ � yðx1; x2;…; xi−1; xi; xiþ1;…; xnÞ
Δ

;

(1)

μi ¼
Pr

s¼1d
ðiÞ
s ðxÞ

r
; (2)

μ*i ¼
Pr

s¼1

�
�
�d

ðiÞ
s ðxÞ

�
�
�

r
: (3)

High result of the absolute expected value shows great
influence of the input variable to the output. A low standard
deviation means that effects are constant, namely the output
is linear on this variable. High result of its standard devia-
tion shows that there is a non-linear effect, or the interaction
between the input variable and other input variables is sig-
nificant. Therefore, significant parameters are depicted in
the section of the μ* − σ diagram, where both sensitivity
measures are high. Further, if the distribution of elementary
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effects contains both positive and negative elements, some
effects may cancel each other out, thus producing a low
μ value even for an important variable. In this case the model
is considered to be non-monotonic [7].

3. APPLIED METHOD

The selection of the right type of the input variables is
crucial from the sampling point of view. Morris method
requires uniform distribution on the [0,1] interval, never-
theless in practice this cannot be fulfilled. In many cases, the
variables are discrete and their distribution cannot be
known. To overcome this problem, some special sampling
methods are applied, and the selected method serves as the
heart of the sensitivity analysis afterwards.

For example, some processes are based on the Latin
hypercube sampling techniques; other are based on distance
measure and uniformity. A potential solution can be the
following: the levels of the parameters are given by quantiles,
then in the samples the even distribution of the variables is
reached; for example [8]. There the sampling is not directly
done, but based on the quantile values and thus the levels
of the trajectories of the Morris method appear as equal
distances.

There are other processes to reach uniformity also. For
example [9], which is called sampling for uniformity
method, or [10], which is known as the enhanced Sampling
for Uniformity method, eSU in short. This latter is used
hereinafter. Note that this is a key point, since here some
variables cannot be considered as continuous and in case of
eSU, the sampling method defines grids that correspond to
the values of the variables.

4. MODEL INPUT PARAMETERS

The following total of 15 buildings’ design variables was
considered. As building design parameters structure, wall
window ratio, and orientation were selected. Further, a set of
input parameters related to the various building configura-
tions was selected: roof surface (r), surface connected to the
ground (g), balcony (b), external walls (w); together with
specific edges and vertices. Further, a complex descriptor
selected by the architects, namely envelope surface/Area/net
floor Surface (A/S) ratio, was also considered as input
variable.

5. RESULTS

The purpose of the sensitivity analysis here was to determine
the contribution of the selected individual building design
variables to the total energy performance. In other words,
the order of the variables with the most influence on the
annual energy demand is to be determined to support effi-
cient or optimal building design.

Table 1. Order of the variables

# Parameters
μ*i

(kWh/a)
μi

(kWh/a)
σ

(kWh/a)

1 structure 3,982 �3,982 424
2 orientation 725 312 841
3 b 668 452 694
4 a_negative_edge 643 599 588
5 g 541 532 389
6 r 473 460 410
7 g_edge 460 457 313
8 window_rate 378 �69 475
9 r_positive_edge 374 366 312
10 a_positive_air_positive_vertex 334 318 261
11 r_negative_edge 254 33 344
12 g_positive_positive_vertex 220 203 251
13 a_positive_edge 200 4 269
14 a_per_s 107 103 131
15 w 98 12 146

Table 2. Order of the variables for structure 1

# Parameters
μ*i

(kWh/a)
μi

(kWh/a)
σ

(kWh/a)

1 orientation 834 322 1,005
2 b 715 515 715
3 a_negative_edge 663 609 622
4 g 558 556 391
5 r 462 454 395
6 g_edge 458 446 333
7 window_rate 412 �371 390
8 r_positive_edge 403 388 342
9 a_positive_air_positive_vertex 343 324 267
10 r_negative_edge 286 98 359
11 g_positive_positive_vertex 221 201 260
12 a_positive_edge 203 80 267
13 a_per_s 113 108 144
14 w 98 16 144

Table 3. Order of the variables for structure 2

# Parameters
μ*i

(kWh/a)
μi

(kWh/a)
σ

(kWh/a)

1 orientation 708 290 844
2 a_negative_edge 639 603 557
3 b 638 410 655
4 g 583 582 435
5 r 491 483 422
6 g_edge 445 445 326
7 r_positive_edge 352 345 286
8 window_rate 319 258 293
9 a_positive_air_positive_vertex 298 274 230
10 r_negative_edge 272 26 361
11 g_positive_positive_vertex 207 197 212
12 a_positive_edge 190 �39 257
13 a_per_s 93 90 113
14 w 84 �26 120
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Here, Morris method was considered with a level of 6,
i.e., for the variable models the trajectories were moved on
six levels. Note that in the literature the minimum level is 4.
The calculations were based on 30 trajectories.

Table 1 demonstrates the sensitivity analysis results of
the full input data; i.e., the order of the considered input
variables is given according to Eq. (3). Note that the table
shows clearly the difference in the interpretation of the
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Fig. 1. Dominant variables
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Fig. 2. μ* − σ relation of the variables
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sensitivity measures discussed earlier. The corresponding
unit of the investigated annual heating energy demand is
kWh/a, and therefore the unit of the sensitivity measures
μ and μ* as well as the standard deviation σ have the same
unit within the tables detailed below, i.e., kWh/a.

Table 2 demonstrates the sensitivity analysis results of
the input data related to structure 1, where the minimum
standards were considered as the necessary building prop-
erties, while in Table 3 is demonstrated the sensitivity
analysis results of the input data related to structure 2, close
to a passive house’ properties. The order of the considered
input variables is given according to Eq. (3) in both cases.
It is important to mention that there is only a slight dif-
ference in the order as well as in the data of the results,
which can be considered as not significant and may be a
result of the random generation steps. Obviously, the
structure and orientation are the most important parame-
ters. Then, variables describing the various building con-
figurations follow for every separate study.

The μ ¼ ±2σ=
ffiffi
r

p
lines were proposed originally by

Morris to identify factors with dominant non-additive
and/or non-linear effects; these lines are also depicted in
Fig. 1. Factors, i.e., variables, above the lines in both plots are
considered to have dominant interactions, while the factors
under the line are almost monotonic. Similarly, the μ* − σ
relation is depicted in Fig. 2. Note that the small standard
deviation (see the corresponding tables) indicates mono-
tonicity in a way that the elementary effect values are almost
constants. High standard deviation indicates that the rela-
tionship of the output variable, namely the annual energy
demand, and the factor, namely the considered input

variable, is not linear. In other words, the value of the
elementary effect can be smaller or greater depending on the
value of the input variable and/or the change is greatly
influenced by other input variables’ changes, i.e. there is an
interaction between the input variables. Reference [7] sug-
gested the following boundaries of the standard deviation
per mean: 0.1, 0.5 and 1; note that 1 is depicted in Fig. 2.

Figure 3 corresponds to monotonicity, the variables on
the μ* ¼ jμj line are monotone, and the variables close to the
line can be considered to be almost monotone. It is also
worth mentioning that in both cases the indicators define
the same monotonicity and non-linearity as well as inter-
action between the variables.

6. CONCLUSIONS

The sensitivity measures μ and μ* of the study presented
show that the structure is inevitable the most influential
parameter, when considering the energy performance.
When considering this parameter the μ* ¼ jμj equality
holds, this means that its relationship to the output variable
is monotone. Moreover, due to its minimal standard devi-
ation this relationship can be considered as linear. Note
that the method discussed in the paper applies a technique
where in general the samples are randomly selected.
Therefore, those input parameters that have the most
influence on the output are identified; moreover, these
parameters remain with multiple runs. In other words, the
model is robust. The model screens the most important
and the negligible variables in the considered building
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Fig. 3. Monotonicity of the variables
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annual heating energy model. For more than half of the
variables, the model showed a monotonic or close to
monotonic effect on the annual heating energy demand
input variable, which may be important information during
design.
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