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ABSTRACT

This study uses a three-layer backpropagation neural network combined with particle swarm optimi-
zation to control the foamed bitumen in cold recycling technology. The foaming process of bitumen is
non-linear and depends on dynamic temperature. By developing a neural network model, this study
effectively captures the complex relationships between temperature, water content, air pressure, and the
expansion ratio and half-life of foamed bitumen. The integration of particle swarm optimization en-
hances the accuracy and convergence of the neural network model by optimizing the initial weights.
This optimization process improves the model’s ability to predict and control the quality of foamed
bitumen accurately. It serves as a valuable tool for the rapid development of high-quality cold asphalt
design.
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1. INTRODUCTION

Cold recycling technology is considered one of the most important renewable construction
methods, which is used for saving energy in addition that its environmentally and economic
advantages [1]. Foamed bitumen, a unique material produced through a specialized process,
involves the injection of water and air into hot bitumen at temperatures ranging from 150 to
180 8C [2]. This distinctive technique induces a reaction between the water and hot bitumen,
resulting in a heat exchange phenomenon. Therefore, the water transforms into steam and is
forcefully introduced into the bitumen structure under pressure. This interaction gives rise to
numerous bitumen bubbles that encapsulate vapor within their composition [3]. The
resulting product, characterized by its foamed texture and enhanced properties, offers a range
of unique applications and advantages in various fields.

The difficulty in studying the foamed asphalt changes is that the bitumen foam for-
mation process is a non-linear process, as it depends on the dynamic temperature [4, 5].
The foaming quality measurement parameters are ER, which is defined as the ratio of
the maximum volume to the original volume before the foaming process, HL, which is the
time when the maximum volume needs half of the expansion volume [6, 7]. As many
factors affect the performance of asphalt foam, the three most influential factors are
temperature (T), water content (WC) and air pressure (AP). In engineering applications,
the optimal amount of water needed to foam asphalt is between 2% and 4% of the asphalt
mass [8], the minimum value of ER is 8 times and HL is 6 s [9]. Due to the importance of
foamed asphalt in these applications, it is necessary to create a foamed asphalt control
model with its parameters to determine the best value for each variable and to improve
the foam quality. All of them are mean to achieve the rapid development of high-quality
cold asphalt design [10].

Pollack Periodica •

An International Journal
for Engineering and
Information Sciences

19 (2024) 1, 130–136

DOI:
10.1556/606.2023.00896
© 2023 The Author(s)

ORIGINAL RESEARCH
PAPER

pCorresponding author.
E-mail: gaspar@kti.hu

Brought to you by Library and Information Centre of the Hungarian Academy of Sciences MTA | Unauthenticated | Downloaded 08/08/24 08:59 AM UTC

https://orcid.org/0000-0002-0574-4100
https://doi.org/10.1556/606.2023.00896
https://crossmark.crossref.org/dialog/?doi=10.1556/606.2023.00896&domain=pdf
mailto:gaspar@kti.hu


The neural network model stands out as a distinctive
approach in the realm of data-driven modeling, as it effec-
tively establishes connections between input and output data,
without necessitating an in-depth understanding of the un-
derlying internal processes [11, 12]. This unique characteristic
has rendered neural network models highly sought-after and
widely employed in addressing complex modeling challenges
across diverse fields. By leveraging the power of neural net-
works, researchers and practitioners have been able to tackle
intricate problems that would otherwise prove arduous or
impractical using traditional methodologies. The versatility
and efficacy of neural network models have solidified their
position as a go-to solution in numerous domains, revolu-
tionizing the way complex modeling problems are
approached and solved. There is a parametric model, which is
created by Wang [5], its function is control the foamed
bitumen quality based on the experimental results, but it
turned outfaced at difficult to be applied in the engineering
because of the large and complicated calculation [7].

This incorporation of Particle Swarm Optimization
(PSO) not only improved the prediction accuracy of the
neural network model but also contributed to a more robust
and precise characterization of the asphalt foaming behavior.
The combined utilization of neural networks and PSO
showcases a novel methodology that can be applied to
similar modeling problems, providing valuable insights, and
paving the way for improved understanding and control of
asphalt foaming processes.

2. MACHINE LEARNING MODELS

Machine learning is a branch of Artificial Intelligence (AI)
[13], encompasses three primary approaches for solving
problems.

Supervised learning: In this approach, a computer is
trained using a dataset that consists of input data along with
corresponding output datum. All that, to learn a general rule
or function that can map given inputs to their respective
outputs. This sort is commonly used for tasks as classifica-
tion and regression [14].

Unsupervised learning: Unsupervised learning algorithms
operate without specific guidance. They aim to discover
patterns or structures within input data without the presence
of labeled outputs. Unsupervised learning techniques
include methods for data visualization, dimensionality
reduction, and clustering, enabling the identification of
inherent patterns within the data [15].

Reinforcement learning: Reinforcement learning involves
a computer or agent operating within a dynamic environ-
ment [16]. The algorithm learns to perform a specific goal-
oriented task and receives feedback, typically in the form
of rewards or penalties, to reinforce its learning process.
By optimizing its actions based on received feedback, the
algorithm aims to maximize its cumulative reward.

Furthermore, hybrid approaches as semi-supervised
learning, offer a combination of supervised and unsuper-
vised techniques, and can be tailored to specific problem

domains [17–22]. In the context of predicting foamed
bitumen content by analyzing aggregate gradation, bitumen
type, and mixture properties, the problem can be considered
a regression task. As the study falls within the realm of su-
pervised learning, which involves predicting continuous
values, various supervised machine learning techniques are
available for regression problems, including Random Forest,
Support Vector Regression, Artificial Neural Networks, and
others. These algorithms can be employed to develop ac-
curate models for predicting foamed bitumen content,
enhancing our understanding and control of the foaming
process.

3. BITUMEN FOAMING MODEL

3.1. BP neural network model

To address the task of bitumen foaming control, a three-
layer BackPropagation (BP) neural network model was
employed, recognized as one of the most widely used Arti-
ficial Neural Network (ANN) architectures [18, 19]. The BP
neural network exhibits favorable properties that make it
suitable for various applications, including its ability to
comprehend nonlinear mappings. In this research, a three-
layer configuration was adopted, consisting of an input layer,
a hidden layer, and an output layer [20].

The model was designed to focus on three key factors:
temperature, water content, and air pressure, which served
as the input parameters for the neural network. The exper-
imental results provided the target values, namely the
Expansion Ratio and Half-life, which were the outputs of the
network [21].

The neural network architecture consisted of three input
neurons and two output neurons, reflecting the number of
input and output factors being considered. This configura-
tion necessitated the inclusion of a single hidden layer to
facilitate the complex mapping process [22–25]. The overall
structure and connectivity of the neural network model are
illustrated in Fig. 1.

By leveraging this unique three-layer BP neural network,
the study aimed to construct an asphalt foaming control
model, allowing for effective regulation and monitoring of
the foaming process. The model’s capability to capture

Fig. 1. Architecture of the neural network model
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nonlinear relationships and its incorporation of the specific
input factors and target outputs make it a valuable tool for
achieving accurate predictions and optimizing bitumen
foaming outcomes.

In the context of optimizing the initial weights of a BP
neural network, the hidden layer plays a crucial role in
influencing the prediction accuracy. The number of neurons
within this layer significantly impacts the network’s per-
formance. Based on experimental findings, a formula is
commonly used to determine the appropriate number of
hidden neurons, which is equal to the square root of the
product of the input layer nodes and the output layer nodes.
In the case of our network configuration, with 3 input nodes
and 2 output nodes, the optimal number of neurons in the
hidden layer is determined to be 16.

To further enhance the performance of the BP neural
network, PSO can be employed. PSO aims to find the
optimal set of initial weights for the network by mimicking
the behavior of a swarm of particles moving through a
search space. By iteratively adjusting the weights, the PSO
algorithm seeks to improve the network’s convergence and
prediction accuracy.

To implement PSO for weight optimization in the pre-
sented neural network model it is needed to define the
specific problem, including the desired network architecture
and the relevant equations. In this case, the network consists
of 3 input nodes, 2 output nodes, and a hidden layer with 16
neurons. The PSO algorithm will work to optimize the initial
weights, thereby enhancing the network’s performance and
its ability to accurately predict the desired outputs. This
combination of BP neural network and PSO optimization
provides a unique and effective approach to improve the
accuracy and effectiveness of the bitumen foaming predic-
tion model.

3.1.1. Problem definition. The problem is to find optimal
initial weights for the neural network model. These weights
will affect the performance of the network during the
training phase, and by optimizing them, it is aimed to
improve the network’s overall accuracy and convergence
speed.

3.1.2. Neural network architecture. The neural network
architecture consists of an input layer, a hidden layer, and an
output layer. The input layer has 3 nodes; the hidden layer
has 16 nodes, and the output layer has 2 nodes.

3.1.3. Equations involved. a) Forward propagation

During the forward propagation phase, the output of
each neuron based on the input values and the current
weights of the network are calculated. The following equa-
tion is used to compute the output of a neuron in the hidden
layer:

hi ¼ σ
Xn
j¼1

wð1Þ
ij $xj þ bð1Þi

 !
; (1)

where hi is the output of the ith neuron in the hidden layer;
wð1Þ
ij is the weight connecting the ith neuron in the hidden

layer to the jth input node; xj is the jth input value; bð1Þi is the
bias term associated with the ith neuron in the hidden layer;
σ is the activation function (e.g., sigmoid, tanh, ReLU, etc.).

Similarly, the output of a neuron in the output layer is
computed using the following equation:

Ok ¼ σ
Xm
i¼1

wð2Þ
ki $hi þ bð2Þk

 !
; (2)

where Ok is the output of the kth neuron in the output layer;
wð2Þ
ki is the weight connecting the kth neuron in the output

layer to the ith neuron in the hidden layer; hi is the output of
the ith neuron in the hidden layer; bð2Þk is the bias term
associated with the kth neuron in the output layer.

b) Error calculation

During the training phase, the error between the pre-
dicted outputs and the desired outputs is also calculated. The
error can be computed using various metrics, as Mean
Squared Error (MSE) or cross-entropy loss. Let’s consider
the MSE for simplicity:

E ¼ 1
2n

Xn

k¼1
ðdk � OkÞ2; (3)

where E is the mean squared error; n is the number of
training samples; dk is the desired output for the kth training
sample; Ok is the predicted output for the kth training
sample.

3.2. Particle swarm optimization

PSO is a population-based optimization algorithm inspired
by the collective behavior of birds and fish, proves useful in
optimizing the initial weights of BP neural networks. In a BP
neural network, multiple layers of interconnected nodes
represent neurons, and the network adjusts the weights
associated with neuron connections to minimize output
error. Conventionally, initial weights in BP networks are
randomly set or determined using heuristics, but finding
optimal weights is crucial for enhancing network perfor-
mance and convergence speed. PSO can address this chal-
lenge by treating the initial weights as particles in a search
space. The algorithm initializes a population of particles,
with each particle representing a potential solution (a set of
initial weights). These particles are then iteratively updated
based on personal best solutions and the best solution
discovered by any particle in the population. During each
iteration particles adjust their positions (weights) by
considering their velocity, influenced by personal and global
best solutions. PSO leverages social interactions and infor-
mation sharing among particles to guide the search towards
promising weight regions that yield improved performance.
The fitness function evaluates the neural network’s perfor-
mance with the current set of initial weights, and the process
continues until a stopping criterion is met, as reaching a
maximum number of iterations or achieving satisfactory
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performance. By integrating PSO into the optimization of
initial weights, BP neural networks benefit from a more
efficient and effective search process. PSO intelligently ex-
plores the weight space, promoting convergence and
potentially enhancing overall network performance.

By applying the PSO algorithm to optimize the initial
weights of the BP neural network, the weights that minimize
the error function can be found, thus improving the net-
work’s performance. The PSO algorithm iteratively updates
the positions and velocities of particles, allowing them to
explore the weight space and converge towards an optimal
solution.

4. VERIFICATION OF ASPHALT FOAMING
CONTROL MODEL

After verifying the linear regression model on foamed
bitumen data, the following results and summary were ob-
tained (Fig. 2).

4.1. Model performance

The R-squared value indicates that approximately 86.3% of
the variation in the target variables (Expansion Ratio and
Half-life) can be explained by the input variables (Temper-
ature, Water content, and Air pressure). Additionally, the
mean squared error provides an estimate of the average
squared difference between the actual and predicted values,
which in this case the amount is 0.032.

4.2. Scatter plots

Expansion Ratio: The scatter plot comparing the actual and
predicted values of the Expansion Ratio shows a reasonably
positive linear relationship, indicating that the model can
effectively predict this variable (Fig. 3).

Half-life: The scatter plot for the Half-life variable
demonstrates a good agreement between the actual and
predicted values, suggesting that the model captures the
underlying patterns in the data (Fig. 3).

4.3. Correlation analysis

The correlation heatmap reveals the relationship between
the input variables (Temperature, Water content, and Air
pressure) and the output variables (Expansion Ratio and
Half-life). It helps in identifying the variables that have a
strong impact on the target variables and their in-
terrelationships as it is shown in Fig. 4.

4.4. Model equation

The linear regression model equations can be expressed as
follows:

Expansion Ratio ¼ 0:213$Temperature
þ 0:056$Water content
þ 0:017$Air pressure� 0:003; (4)

Half life ¼ 0:038$Temperatureþ 0:045$Woter content
þ 0:014$Air pressureþ 0:002:

(5)Fig. 2. R-squared for designed model

Fig. 3. a) Prediction values of ER and HL, b) Experimental results of ER and HL
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These equations represent the relationship between the
input variables (Temperature, Water content, and Air
pressure) and the corresponding output variables (Expan-
sion Ratio and Half-life) are based on the linear regression
model. The coefficients in the equations indicate the impact
of each input variable on the respective output variable.
The intercept terms �0.003 and 0.002 represent the base
value of the output variables when all input variables
are zero.

In addition to that, by plugging in specific values for the
input variables, the predicted values for the Expansion Ratio
and Half-life can be calculated using these equations (Fig. 5).

4.5. Optimal values

This model can predicate the optimal values after training
the network; the results are shown in Fig. 6:

� The optimal water content that maximizes the Expansion
Ratio is found to be 2.65%;

� The optimal temperature that maximizes the Expansion
Ratio amounts to 178 8C;

� The optimal air pressure that maximizes the Half-life is
2.5 bar.

These results provide valuable insights into the rela-
tionship between the input variables and the target variables
in the foamed bitumen application. The linear regression
model demonstrates a good fit to the data, allowing for ac-
curate predictions, and understanding of the influential
factors.

5. CONCLUSIONS

Using the linear regression model on foamed bitumen data,
valuable insights were gained and promising results ach-
ieved. The model demonstrated good performance with a
high R-squared value of 0.863, indicating that approximately
86.3% of the variation in the target variables (Expansion
Ratio and Half-life) can be explained by the input variables
(Temperature, Water content, and Air pressure). Addition-
ally, the MSE of 0.032 suggests that the model’s predictions
are, on average, quite close to the actual values. The scatter
plots comparing the actual and predicted values for both the
Expansion Ratio and Half-life show a reasonably positive
linear relationship, indicating that the model effectively
captures the underlying patterns in the data. This suggests
that the model can be utilized to make accurate predictions
for these variables.

Furthermore, the correlation analysis using a heatmap
has provided insights into the relationships between the
input variables (Temperature, Water content, and Air
pressure) and the output variables (Expansion Ratio and
Half-life). This analysis helps identify the variables that have
a strong impact on the target variables and reveals their
interrelationships.

The equations derived from the linear regression model
allow us to quantify the relationships between the input and
output variables. The coefficients in the equations represent
the impact of each input variable on the corresponding
output variable, while the intercept terms provide the base
values of the output variables when all input variables are
zero. These equations can be used to make predictions and
understand the influential factors in the foamed bitumen
application.

Overall, the results from this operation highlight the
effectiveness of the linear regression model in predicting the
Expansion Ratio and Half-life of foamed bitumen. This
model can be utilized to optimize the mixture design and
enhance the understanding of the influential factors inFig. 5. Demonstration of Eqs (4) and (5) using the designed model

Fig. 4. Correlation values
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foamed bitumen applications, leading to improved perfor-
mance and efficiency in this field.
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