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ABSTRACT

Fair treatment of individuals in a scheduling task is essential. Unfairness can cause dissatisfaction
among workers, faster obsolescence of work tools and underutilization of others. The literature’s def-
initions vary, and there is no clear definition of general scheduling tasks.

This article explores fair scheduling through the lens of final exams, aiming to extend decision
support system methodologies. It proposes a method based on Lipschitz mapping to measure fairness
and presents a pseudo-algorithm for estimating optimal trend lines.

The model and the algorithm are demonstrated using the example of final exam schedules. In this
way, two feasible solutions can be measured and compared in terms of fairness.
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1. INTRODUCTION

The concept of fairness is becoming increasingly important in many areas of life, in decision
support systems, legal and economic issues, and optimization. However, the idea of fairness is
not quantifiable, and it can be challenging to define what is meant by it. According to
Cambridge Dictionary, fairness is defined as the quality of treating people equally or in a way
that is right or reasonable [1]. The aim is to translate this mathematically.

In scheduling tasks, especially when the assignment of people is to determine, this aspect also
comes to the foreground. An example of a real-life problem dealing with the scheduling of people
is the scheduling of final exams, which is a special sub-task of scheduling problems where specific
requirements constrain the state space. For schedules, there is usually a state space and re-
quirements that a schedule must meet. Based on these, an objective function is settled, containing
the schedule conditions. In the case of a final exam schedule, the constraints are separated into
hard and soft requirements. If a hard requirement is violated, the assignment is not considered
acceptable, while the soft requirements aim to meet as many of them as possible. These are built
in the objective function as a weighted sum. The fairness requirement, however, is a constraint
that cannot be embedded into the other constraints because it cannot be quantified explicitly. It
cannot be included in the objective function but must be considered in a separate dimension. This
is because one cannot say precisely what makes a final exam distribution fair. It could consider,
for example, that for examiners, all examiners should be allocated to the same number of exams.
Still, some examiners are teachers in 6–7 subjects, while others may only be allocated to 1 subject.
Should there be an even distribution per subject? This may not give good results either, as some
subjects require 1-2 students to be examined, while others require several hundred students to be
examined individually. However, the aim is to treat instructors of similar competence similarly
and fairly (as it is quoted in [1]), and none of the intuitive formulations can explain this.
However, if one looks at the notions of fairness found in literature, it can be found that there is no
general method or convention for dealing with fairness in the context of scheduling.
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In other optimization tasks, however, the need for a
general definition of fairness has been raised, for example, in
decision support systems Grgic-Hlaca et al. [2]. The input
information of the task is similar since a decision must be
made from a given set of input properties. A typical example
is lending, where the input information is the customer’s data
and income circumstances, which should be used to decide
whether he/she can get a loan. In this case, similar input
characteristics (e.g., whether a person can be a chairperson or
secretary in a final exam, how many subjects they can sit for,
etc.) should be used to determine how many exams it would
be fair for them to sit for in the final schedule. In both cases,
an essential factor is to never look at fairness as an individual
but to define it by comparing candidates to each other.

In this paper, an attempt is made to extend the meth-
odologies used in decision support systems for complex
scheduling tasks, and an example is provided of how it can
be used through the task of final exam scheduling.

2. BACKGROUND

The following section discusses the context in which the
definition of fairness has been used in literature for sched-
uling tasks and how fairness has been successfully defined
for other optimization tasks, which can also help to create a
general definition in scheduling.

2.1. Fairness definitions in scheduling problems

In many scheduling challenges, the concept of fairness is not
taken into account at all in any sense (e.g., in articles of
Neelakantan et al. [3] and Seyyed et al. [4]) instead, a set of
requirements to be satisfied is given in the objective func-
tion. However, many articles use the word “fair”, and their
interpretation can be divided into two categories.

In many scheduling problems, the task is to allocate a
resource in which the definition of fairness is straightfor-
ward. In this case, a given resource is allocated equally or
according to some given objective function weighting
scheme. Some examples are presented below.

The processor utilization of computers is an example
where the aim is to distribute the tasks or memory equally. A
fair resource scheduler was presented by Shen et al. [5] for
flash-based solid-state drives. There are also many recent
kinds of research for scheduling algorithms for persistent
memory, e.g., the article by Zhao et al. [6]. Even neural
network-based control mechanisms were examined by
Budhiraja et al. [7]. Fair queuing is also considered in the
problem of allocating networks’ bandwidth. For example,
adaptive bandwidth binning is considered by Hong et al. [8],
and weighted fair queues by Pan et al. [9].

Sometimes, the shift scheduling problem could be
considered the same problem when the employees should be
scheduled for equal timeslots. In his article, Ikeda et al. [10]
worked on the same problem.

Another set of definitions of fairness in the literature
deals with defining fairness in a concrete problem-specific

case. In these cases, the notion of fairness is complex, it is
not just the distribution of a resource, but fairness is
formulated in terms specific to a given problem.

Woumans et al. [11] article considers timetabling fair if
students have sufficient study time between exams.

According to Mansini et al. [12], fairness is accomplished
when all doctors are assigned to all kinds of tasks in a
hospital.

In his theory, Uhde et al. [13] considered collaboration
with stakeholders as the key to achieving fair scheduling.
Before assignment, interviews are conducted with hospital
staff, and fairness is measured against their criteria.

In his paper Vetschera et al. [14] discusses how partial
information in group decisions impacts fairness. He claims
that fairness depends on how many different individual’s
interests are reflected fairly.

In his article, Jütte et al. [15] defined fairness as a soft
constraint where the goal was an even distribution of the
unpopular duties among depots. While according to Breu-
gem et al. [16], fairness relates to the distribution of work
among the roster groups, and he modeled fairness via hard
and soft constraints in his context.

These cases have in common that they all gave a prob-
lem-specific definition and translated the problem of fair-
ness into a specific task requirement, which thus can neither
give a general definition nor measure actual fairness.

2.2. Fairness in decision support systems

The question of fairness can also be found in many other
areas of life, e.g., social, ethical and legal issues. There is even
a conference [17], where all areas of fairness are covered.

One of the most significant areas of optimization is the
decision support systems to focus on fairness. Most of these
efforts are in this area, so the following discusses the most
relevant concepts.

The article of Verma et al. [18] on definitions of fairness
summarizes what is considered fair in a credit decision
support system (examines racial and gender discrimination
in banking systems). He discusses different ethical issues and
provides mathematical formulations of definitions. One of
the most significant of these models is Dwork et al. [19]
article, which uses the Lipschitz mapping.

Dwork applies the Lipschitz continuity property of
functions to probability distributions in the following
way, which he calls the Lipschitz mapping. Here, the map-
ping M is interpreted for each input V, on outputs ΔðAÞ,
with distance definitions d and D. (He considers different
distance metrics.) This relation is shown in in Eq. (1).

Fairness is interpreted as a linear programming problem
to optimize a given loss function considering d and D
distances,

If M : V→ΔðAÞ and d
: V3V→R; then D MðxÞ;MðyÞð Þ≤ d x; yð Þ∀x; y∈V:

(1)

In previous research, Erdős et al. [20] examined the model
for scheduling tasks based on Dwork’s article. So far, only
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the challenges have been interpreted; the actual model and
algorithm are presented in the following.

3. PROPOSED METHOD

The task is to apply the concepts of fairness for planning
schedules so that the fairness of individual schedules can be
measured. Based on Lipschitz mapping, the goal is to ensure
that Eq. (1) is applied to the individuals to be scheduled.

The scope of the study is scheduling tasks where the
resources are not homogeneous, so either different types of
resources have to be assigned or each resource has different
capabilities, i.e. not all individuals can perform all tasks.

Formally, a criterion taken from decision support sys-
tems (see Dwork et al. [19]) is that the distance between the
distributions of the outputs of any two individuals is always
less than or equal to the distance between the input prop-
erties of the same individuals. If the concept of Lipschitz
mapping is defined in this way, it can also be interpreted for
scheduling tasks. On this basis, it can be seen that the task is
to schedule individuals with similar properties in a similar
way, i.e., the closer two individuals are to each other in terms
of properties (e.g., abilities), the more critical it is for their
final scheduling (e.g., load number) to be close to each other.
In this case, this means that the input information (e.g., how
many and what tasks each individual can perform, how
many of the tasks to be performed) determines what the
ideal number of tasks to be taken on in the fair assignment
would be. However, this can never be given individually; this
information needs to be interpreted by comparing in-
dividuals in relation to each other.

The aim of this research is not to produce fair schedules
but to find out how fair a completed schedule is. However, to
interpret this, the definition of a fair schedule is needed
based on the concept described by Dwork et al. [19].

Introduce the following definitions and notations: Let V
denote the set of individuals, N the number of individuals,
and n the number of input attributes, i.e., all the information
is taken as a basis for the computation of the fairness to be
interpreted on it (this means all the influencing factors). The
xi ∈Rn vector aggregates the input properties of an indi-
vidual i. Given these, V is defined as it can be seen in (2):

V ¼ fxij xi ∈Rn; i∈Ng: (2)

The sðxÞ gives the output information that is considered in
terms of fairness, SðVÞ denotes the same for the whole
schedule, i.e., SðVÞ : ¼ s x1ð Þ; s x2ð Þ;⋯f g. It is important to
interpret this for a schedule S that satisfies all the basic re-
quirements of the scheduling task, i.e., only feasible solutions
are considered (S gives the feasible solution to the given
scheduling task).

Definition: TðxÞ trend-line tells us what the output of an
individual would be in the ideal case, i.e., in the optimal
case, sðxÞ ¼ TðxÞ.

Definition: A distributed scheduling is K-fair, if and only
if for x∈V, sðxÞ is the element of the hyperspace bounded

by TðxÞ± K, K ∈R. In this case, SkðVÞ denotes a K-fair
scheduling.

Notion: KT denotes K value of a K-fair scheduling, which
belongs to TðxÞ.

Definition: Fair-optimal scheduling is a K-fair sched-
uling, for which it is true that the value K is the smallest for
all other schedules. This means that the schedule Sk0 is fair-
optimal, where k0 ≤ k; ∀SkðVÞ:

However, finding the trend line TðxÞ is not trivial.
Finding the optimal value of TðxÞ is an iterative process in
which the goal is to estimate the optimal value of TðxÞ in a
reverse algorithm.

The steps of the pseudo algorithm are the following.

1. S schedule is given, looking for TðxÞ, the corresponding
KT;

2. Denote T* the polynomial curve that best approximates
TðxÞ, V0 : ¼ V;

3. Normalize the data, so the distance calculation between
dimensions of different orders of magnitude does not
cause distortion or numerical error;

4. Detect outliers and remove them from the data set.
V0 : ¼ V0n xoutlierf g. Practical algorithms for very out-
liers would significantly distort the expected results.
Furthermore, i: ¼ 1 and V* : ¼ V0;

5. Fit a polynomial to V0 based on a heuristic; this trend line
will be Ti. Calculate the K-fairness of Ti. T0: ¼ Ti;

6. V*: ¼ V* n fxjg, where xj element is the “furthest” from
the trend curve. The most significant improvement in the
error function can be achieved by removing this element.
(The furthest element causes the most significant devia-
tion in absolute value in the error function).

7. Fit a new polynomial (Tiþ1) to the new V*. Calculate K-
fairness of Tiþ1 for V*;

8. If KTiþ1 < KTi −ℇ, (ℇ >0;ℇ∈R is an arbitrary small
number), then i: ¼ iþ 1 and GOTO 5;

9. T* ¼ T0, to obtain the curve of the fair-optimal sched-
uling trend, which is KT0-fair over V0.

4. CASE STUDY

The example of the final exam scheduling illustrates the
practical application of the methodology described above.
This study is based on a real data set, the final exam
schedules of the Department of Automation and Applied
Informatics, Budapest University of Technology and Eco-
nomics. The schedule is an oral exam session, where stu-
dents take the exam individually in front of a board of 5–6
members in parallel rooms. Up to 300 students may sit the
exam in a semester, which must be completed in two weeks.
The schedule has to comply with several rules described in
the examination regulations. In addition, several human
factors must be considered, e.g., considering availability or
assigning instructors in blocks if possible. Another impor-
tant aspect was to try to distribute the instructors’ workload
as fairly as possible. But as this should be interpreted as a
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separate dimension, for the reasons explained earlier, the
model presented below will be used to test the fairness of
previous years’ manual final exam distributions.

Since only schedules are considered that satisfy all re-
quirements except fairness, (and are therefore outside the

scope of this present analysis), they can be taken as the
default. Thus, it is possible to examine only the fairness
conditions, filtering out the irrelevant factors.

For the purpose of the present case study, let us take the
examiners as a basis, one or two of whom must sit on each
committee, depending on whether the student who is taking
his final examination is required to take one or two courses.
The set of optional examination courses is given, as well as
the instructors who can examine a course. Only an
instructor who is also an instructor of a course can be an
examiner for a subject. It is also important to note that some
instructors may be examiners for more than one subject,
depending on the number of subjects they teach. In most
cases, an instructor is expected to be an examiner for more
than one subject, but the distribution of this is quite variable,
as it is shown in Fig. 1, where every course belongs to a dot.

The fairness of a given schedule S is determined as follows,
based on the algorithm presented in the previous section.

Initially, V0 5 V, i.e., the entire set of individuals, in this
case all examiners in the final exam schedule.

In the final examination schedule, three attributes
determine the input data of an examiner (how many courses
he/she can examine, how many students are examined in
each course, and how many additional instructors can
examine each course). These data compose the x attribute
vector of an examiner. In the following example, x is
normalized and then the mean value is calculated from these
data as the input property of each examiner, which is xp.

In this example, the function s(x) gives the number of
times in the final assignment that instructor with x attribute
was scheduled. These can also be normalized and reduced to
two dimensions to plot s(xp), as it is shown in Fig. 2.

The next step is to filter out outliers. To do this, the
distribution of the above data is examined and shown
in Fig. 3.

Fig. 1. Statistical information about courses

Fig. 2. The normalized input and output data of instructors

Fig. 3. Distribution and locals
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These also show that there are both xp and s(xp) that fall
outside the Q3þ 1:5$IQR, which is used for outlier detec-
tion Schwertman et al. [21].

Let us take these from V0 and, after filtering them out, fit
the first polynomial to the data of the set V0, this will be T1(x).
The value of the error of T1(x) in this example is calculated as
R2, the square of the Pearson correlation coefficient, and is
denoted by Err. From the possible polynomials, polynomial Pk
of degree k is chosen, where ErrðPkþ 1Þ< ¼ ErrðPkÞ∙1:03,
i.e., the error function would not improve by more than 3% for
a degree higher than this, thus eliminating overfitting. The R2

values and improvements for each polynomial are it is shown
in Table 1. It shows that the polynomial of degree 3 will be
chosen since an improvement of less than 3% can be achieved
at degree 4. After 1st iteration R2 ¼ 0:44, T1ðx*Þ ¼
−0:32x*3 þ 1:88x*2 − 2:45x* þ 2:96, and KT ¼ 1:54.

In the 2nd iteration the individual causing the largest
deviation in the error function is removed from V*, as R2 can
then be improved to 0.4895 and K-fairness reduced to 1.43
in the new V*. Since this improvement is significant, the 2nd
iteration is on hold.

Table 2 shows the T(x) curve fitted after each iteration,
the R2 value obtained, the K value obtained, and the
improvement over the previous iteration.

In the 4th iteration, no improvement is achieved, and
there is degradation, so at the end of iteration 3, the algo-
rithm stops, and the Tðx*Þ obtained in iteration 3 becomes
the best approximation searched by the algorithm. Resetting
V0, it can be obtained that the scheduling S is 1.63-fair. The
final trend fit on the aggregate xp is shown in Fig. 4.

Of course, this data alone does not provide much infor-
mation, but the method itself is essential, as the determination
of fairness can be achieved. By doing this, a fairness value is
assigned to schedule S, and several different schedules can be
compared to each other in terms of fairness.

5. CONCLUSION

Previously, there was no uniform approach or definition of
fairness in the literature for scheduling tasks. The possibility
of creating a general mathematical concept is explored for
evaluating and comparing the fairness of heterogeneous-
resource allocating scheduling algorithms independently of
the specific problem.

A model was created based on the Lipschitz mapping used
in decision theory. The basic idea and the mathematical
background of this model were interpreted for general sched-
uling problems, and an algorithm was constructed to compute
the fairness of scheduling independent of the properties of the
specific scheduling. With this algorithm, an approximation was
also provided of what ideally expected output information
would be for an individual with specific input data. The algo-
rithm’s operation on a real data set was also derived using a
concrete example. Namely, this method was used to measure
the inter-examiner fairness of a final exam assignment. This
algorithm helps to compare how several different scheduling
algorithms perform in terms of fairness.

Table 1. Performances of the trend-polynomials in 1st iteration

Table 2. Iterations of the proposed algorithm

Fig. 4. Fitting T(xp) curve for s(xp)
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All this could measure actual fairness because it was not
just defined as a concrete requirement in the scheduling
process but as general information handled in addition to it.
For example, in the case of final exams, it is not just the
workload number alone that provides information. How-
ever, all the available information is aggregated to determine
how fair a person’s assignment is compared to the others.
After that, the aggregation of all this information is used to
measure the fairness of the schedule.

Thus in the future, if this algorithm is included along
with the scheduling process, it will be possible to select the
one from several different schedules that are the fairest to
individuals.
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