ORTOGONÁLISAN ANIZOTROP SZERKEZETI ANYAGÚ HENGERES HÉJAK HAJLÍTÁSELMÉLETÉNEK TÁRGYALÁSA AZ ELTOLÓDÁSFÜGGVÉNY BEVEZETÉSÉVEL

VARGA LÁSZLÓ* A MŰSZAKI TUDOMÁNYOK KANDIDÁTUSA

[Beérkezett 1971. április 16-án]

A dolgozat ortogonálisan anizotrop szerkezeti anyagú (pl.: üvegszállal erősített műanyag) hengeres héjak általános hajlításelméletét tárgyalja, a héjfelületre merőleges élterhelések eseteiben. Előszőr a belső erők és az alakváltozások közötti összefüggéseket ismerteti, majd a hajlítás differenciálegyenleteit közli. A homogén differenciálegyenletrendszert az eltolódásfüggvény bevezetésével oldja meg. Részletesen ismerteti az eltolódásfüggvény és a hajlítási feszültségállapot meghatározását, az alkotó és a főkör mentén ható – periodikusan változó élterhelések eseteiben. A levezetett összefüggések alapján tetszőleges – Fourier sorral leírható – függvény szerint változó élterhelés okozta hajlítási feszültségállapot is meghatározható. Szerző végül egy a karakterisztikus egyenlet gyökeinek alakulását szemléltető számpéldát közöl.

Jelölések

m	alkotóirányú hullámszám
n	kerületirányú hullámszám
\$	héivastagság [cm]
<i>u</i>	alkotóirányú eltolódás Jem]
*	kerületirányú eltolódás [em]
<i>u</i>	sugárirányú altolódás [cm]
r	alkatóirányú koordináta [em]
~1 *	karölatirányú koordináta [cm]
	sugárirányú koordináta [cin]
$\frac{x_3}{z} = \frac{1}{2} \sqrt{P}$	alkotáirányra vonatkorá márstnálküli koordináta
$\overline{x}_1 = x_1/\Lambda$ $\overline{x}_1 = x_1/R$	koröletiványra vonatkozó méretnélküli koordináta
$\lambda_2 = \lambda_2/\Lambda$	allestóirónna vonatkoró heilítórearanón flar an l
$\frac{D_1}{p}$	kovilativányra vonatkozó hajlítómerevseg [kp cm]
	keruletiranyra vonatkozo najitomerevseg [kp cm]
D_3	usavaromerevseg [kp cm]
D_{1}	aikotoiranyra vonatkozo nyulasmerevseg [kp/cm]
D_2	keruletiranyra vonatkozo nyulasmerevseg [kp/cm]
D^3	nyiromerevseg [kp/cm]
E_1	alkotoiranyra vonatkozo rugaimassagi modulus [kp/cm ²]
E_2	kerületirányra vonatkozó rugalmassági modulus [kp/cm ²]
E_3	nyiro rugalmassagi modulus [kp/cm ²]
M_1	alkotóirányú fajlagos nyomaték [cmkp/cm]
M_2	kerületirányú fajlagos nyomaték [cmkp/cm]
M_3	csavaró fajlagos nyomaték [cmkp/cm]
N_1	alkotóirányú metszeterő [kp/cm]
N_2	kerületirányú metszeterő [kp/cm]
N_3	héj síkjában működő nyíró metszeterő [kp/cm]
$P_1(\bar{x}_1)$	alkotó mentén ható – héjfelületre merőleges – élterhelés [kp/cm]
$P_{2}(\bar{x}_{2})$	kerület mentén ható – héjfelületre merőleges – élterhelés [kp/cm]

* Dr. Varga László, Budapest II., Gábor Áron u. 42.

176	VARGA LASZLO
$R Q_1 Q_2 \beta_1 \beta_2 \epsilon_1 \epsilon_2 \epsilon_3 \eta v_{12}, v_{21} \Phi_m \psi_n \sigma_1 \sigma_2 \sigma_2$	a középfelület görbületi sugara [cm] alkotóirányra vonatkozó középfelületre merőleges metszeterő [kp/cm] kerületirányra vonatkozó héjállandó alkotóirányra vonatkozó héjállandó alkotóirányú fajlagos nyúlás kerületirányra vonatkozó héjállandó alkotóirányú fajlagos nyúlás fajlagos szögelfordulás deriválást jelző szám Poisson tényezők (az első index az alakváltozás irányát, a második az erő irányát jelzi) kerületirányra vonatkozó csillapodásfüggvény alkotóirányra vonatkozó csillapodásfüggvény alkotóirányra vonatkozó csillapodásfüggvény alkotóirányra normálfeszültség [kp/cm ²] kerületirányú normálfeszültség [kp/cm ²]

További jelölések értelme a szöveg között található.

1. Bevezetés

A szokásos szerkezeti anyagú (izotrop) héjak általános hajlításelméletének tárgyalása a szakirodalomban több helyen is: például FLÜGGE [1] és WLASSOW [2] munkájában megtalálható. Ugyancsak fellelhetők az anizotrop héjak vizsgálatával foglalkozó szakdolgozatok is, amelyekről AMBARTSUMIAN [3] nyújt rövid áttekintést. Ezek közül különös figyelmet érdemelnek AMBART-SUMIAN [4] és [5] cikkei, amelyek az anizotrop, illetve az ortotrop héjak hajlításának részletes tárgyalását tartalmazzák.

A hivatkozott dolgozatok többségükben a feszültségállapot meghatározására szolgáló alapösszefüggéseket és általános módszereket ismertetnek. Gyakorlati számítások során mindig a közölt alapösszefüggések képezik a vizsgálatok gerincét, az ismertetett módszerek azonban nem zárják ki a további megfontolások lehetőségét, illetve célravezetőbb számítási módszerek kidolgozását.

Az ortotrop héjakra levezetett alapösszefüggések felhasználásával vizsgálhatók az üvegszállal erősített műanyag héjak (nyomástartó edények, tartályok, csövek stb.) is, amelyek jó korrózióállóságuk, viszonylag nagy szilárdságuk és kis fajsúlyuk eredményeként mind gyakrabban kerülnek felhasználásra. Szilárdsági tulajdonságaik következtében ugyanis ortotrop anyagként kezelhetők. Rugalmassági jellemzőik mérhetők, vagy — az üvegszál és a műanyag rugalmas tulajdonságainak, az összetevők részarányának és az erősítés irányának ismeretében — számíthatók (lásd pl. [6]-ban). Ezek meghatározásával a jelen dolgozatban nem foglalkozunk, hanem az ortotropia főirányaira vonatkozó rugalmassági jellemzőket ismertnek vesszük.

A vizsgálatok tárgyát ortotrop hengeres héjak képezik. Az ortotropia főirányai azonosak a héj alkotó- és kerületirányával.

A vizsgálatok során homogén anizotropiával számolunk és feltételezzük, hogy a húzó- vagy nyomóigénybevételek hatására fellépő fajlagos alakváltozások abszolút értékei egyenlőek és Hooke törvényét követik.

A közölt feltételeket kielégítő hengeren helyi jellegű — a héjfelületre merőleges — élterhelések hatását vizsgáljuk. Feltevésünk szerint a külső terhelés változását leíró függvény Fourier sorba fejthető. Az áttekinthetőség biztosítása és a leírás egyszerűsítése érdekében csak a függvénysor egy (m vagy *n*-edik) tagját vesszük figyelembe, mivel a számítások a többi tagra vonatkozólag ugyanúgy végezhetők.

Az ortotrop hengeres héjban ébredő hajlítási feszültségállapot meghatározására szolgáló számítási módszer kidolgozása az eltolódásfüggvény bevezetésével történik.

2. A belső erők és az alakváltozások közötti összefüggések

Az ortotrop anyagban ébredő feszültségek és a fellépő fajlagos alakváltozások közötti összefüggések Hooke törvénye alapján a merevségi főirányokban (síkbeli feszültségállapot feltételezésével) a következő alakban írhatók:

$$\sigma_{1} = \frac{E_{1}}{1 - v_{12} v_{21}} (\varepsilon_{1} + v_{12} \varepsilon_{2}),$$

$$\sigma_{2} = \frac{E_{2}}{1 - v_{12} v_{21}} (\varepsilon_{2} + v_{21} \varepsilon_{1}),$$

$$\sigma_{3} = E_{3} \varepsilon_{3}.$$
(la-c)

A fajlagos alakváltozások — mint ismeretes — kifejezhetők a középfelület eltolódásaival, az alábbiak szerint [1]:

$$\varepsilon_{1} = \frac{u'}{R} - x_{3} \frac{w''}{R^{2}},$$

$$\varepsilon_{2} = \frac{v}{R} - \frac{x_{3}}{R} \frac{w'}{R+x_{3}} + \frac{w}{R+x_{3}},$$

$$\varepsilon_{3} = \frac{u}{R+x_{3}} + \frac{R+x_{3}}{R^{2}}v' - \frac{w'}{R} \left(\frac{x_{3}}{R} + \frac{x_{3}}{R+x_{3}}\right).$$
(2a-c)

A közölt összefüggésekben a deriválást jelentő jelölések értelme a következő:

$$\frac{\partial(\)}{\partial x_1/R} = \frac{\partial(\)}{\partial \overline{x}_1} = (\)'$$
$$\frac{\partial(\)}{\partial x_2/R} = \frac{\partial(\)}{\partial \overline{x}_2} = (\)'$$

A középfelületre helyezett koordinátarendszert és a belső erőket az 1. ábra szemlélteti.

Az (1a—c) és (2a—c) összefüggések birtokában már előállíthatók a metszeterők, fajlagos nyomatékok és az eltolódások közötti kapcsolatot leíró függvények is, amelyek — a vékony héjak eseteiben megengedhető elhanyagolá-

sokkal élve - a következő alakban írhatók (1. ábra):

$$\begin{split} N_{1} &= \int_{-s/2}^{s/2} \sigma_{1} \left(1 + \frac{x_{3}}{R} \right) dx_{3} \approx \frac{D_{1}}{R} \left[u' + v_{12}(v' + w) \right], \\ N_{2} &= \int_{-s/2}^{s/2} \sigma_{2} \, dx_{3} \approx \frac{D_{2}}{R} \left(v_{21} \, u' + v' + w \right), \end{split}$$
(3a-d)
$$N_{3} &= \int_{-s/2}^{s/2} \sigma_{3} \left(1 + \frac{x_{3}}{R} \right) dx_{3} \approx \int_{-s/2}^{s/2} \sigma_{3} \, dx_{3} \approx \frac{D_{3}}{R} \left(u' + v' \right), \end{aligned} \\ M_{1} &= -\int_{-s/2}^{s/2} \sigma_{1} \left(1 + \frac{x_{3}}{R} \right) x_{3} \, dx_{3} \approx \frac{B_{1}}{R^{2}} \left(w'' + v_{12} \, w'' \right). \end{aligned} \\ M_{2} &= -\int_{-s/2}^{s/2} \sigma_{2} \, x_{3} \, dx_{3} \approx \frac{B_{2}}{R^{2}} \left(w'' + v_{21} \, w'' \right), \end{aligned}$$
(3e-f)
$$M_{3} &= -\int_{-s/2}^{s/2} \sigma_{3} \left(1 + \frac{x_{3}}{R} \right) x_{3} \, dx_{3} \approx -\int_{-s/2}^{s/2} \sigma_{3} \, x_{3} \, dx_{3} \approx 2 \, \frac{B_{3}}{R^{2}} \, w'', \end{split}$$

ahol

$$\begin{split} D_1 &= \frac{E_1 s}{1 - v_{12} v_{21}}, \qquad B_1 &= \frac{E_1 s^3}{12(1 - v_{12} v_{21})}, \\ D_2 &= \frac{E_2 s}{1 - v_{12} v_{21}} \qquad B_2 &= \frac{E_2 s^3}{12(1 - v_{12} v_{21})}, \qquad (4a-f) \\ D_3 &= E_3 s, \qquad B_3 &= \frac{E_3 s^3}{12}. \end{split}$$

ORTOGONÁLISAN ANIZOTROP SZERKEZETI ANYAGÚ HENGERES HÉJAK SZÁMÍTÁSELMÉLETE 179

A (3a—f) alatti összefüggések levezetése során az élerők pontos kifejezésében szereplő B_i -vel szorzott tagokat figyelmen kívül hagytuk [1]. Az elhanyagolásból származó hiba alakulása a

$$k = \frac{B_i}{R^2 D_i} = \frac{s^2}{12R^2}$$

tényező függvénye, amely vékony héjak eseteiben ($R/s \ge 100$) rendkívül kis érték, így az egység mellett jogosan elhagyható. További elhanyagolást jelent, hogy a fajlagos nyomatékok kifejezésében az eltolódások magasabb rendű deriváltjai mellett az alacsonyabb rendűeket elhagytuk [1].

A vizsgálat tárgyát képező vékony héjak eseteiben — a közölt elhanyagolások után — a gyakorlat számára elfogadható pontosságú, könnyen kezelhető összefüggések birtokába jutunk.

3. A hajlítás differenciálegyenletei

A hengeres héj feszültségállapotát leíró differenciálegyenletek felírása a (3a—f) összefüggések felhasználásával és az egyensúlyi egyenletek birtokában lehetséges. A héjelem egyensúlyi egyenletei — mint ismeretes — jó közelítéssel az alábbi alakban írhatók [1]:

$$N_{1} + N_{3} = 0$$
,
 $N_{2} + N_{3} \approx 0$,
 $Q_{1} + Q_{2} + N_{2} = 0$, (5a-e)
 $M_{2} + M_{3} - RQ_{2} = 0$,
 $M_{1} + M_{3} - RQ_{1} = 0$.

A felírt egyensúlyi egyenletekkel kapcsolatban megkívánjuk jegyezni, hogy az erők egyensúlyát leíró (5b) kifejezésben a viszonylag kicsiny Q_2 metszeterő még kisebb kerületirányú komponensét elhagytuk, továbbá hiányzik az x_3 tengely körüli nyomatéki egyensúlyt kifejező összefüggés, amelytől — mint érdektelentől — továbbiakban eltekintettünk [1].

A feszültségi állapotot meghatározó differenciálegyenletek felírásához az (5c) egyensúlyi egyenletet — az (5d—e) összefüggések felhasználásával célszerű a következő alakra hozni:

$$RN_2 + M_1'' + M_2'' + 2M_3' = 0.$$
 (5c)

Műszaki Tudomány 45, 1972

12*

A metszeterők és fajlagos nyomatékok (3a—f) alatti kifejezéseit az (5a—c) egyensúlyi egyenletekbe helyettesítve rendezés után a keresett differenciálegyenletekhez jutunk:

$$u^{"} + \frac{E_3}{E_1^*} u^{"} + \left(\frac{E_3}{E_1^*} + v_{12}\right) v^{"} + v_{12} w^{"} = 0,$$

$$\left(\frac{E_3}{E_2^*} + v_{21}\right) u^{"} + v^{"} + \frac{E_3}{E_2^*} v^{"} + w^{"} = 0,$$

$$v_{21} u^{"} + v + w + k \left[\frac{E_1}{E_2} w^{""} + 2\left(2\frac{E_3}{E_2^*} + v_{21}\right) w^{""} + \ddot{w}^{"}\right] = 0,$$
(6a-c)

ahol

$$k = rac{1}{12} rac{s^2}{R^2}; \qquad E_i^* = rac{E_i}{1 - v_{12}v_{21}}.$$

A feszültségállapot meghatározásához a (6a-c) homogén differenciálegyenletrendszer megoldása útján juthatunk.

4. A differenciálegyenletek megoldása az eltolódásfüggvény bevezetésével

A helyi jellegű élterhelések okozta hajlítófeszültségi állapotot leíró (6a--c) homogén differenciálegyenletrendszer viszonylag egyszerű megoldásához az

$$\mathscr{F} = \mathscr{F}(\bar{x}_1, \bar{x}_2) \tag{7}$$

eltolódásfüggvény bevezetésével juthatunk. Ehhez először is fejezzük ki a középfelület eltolódásait az eltolódásfüggvény segítségével. Előzőleg megjegyezzük, hogy ez a függvénykapcsolat — *izotrop* szerkezeti anyagok eseteiben — WLASSOW [2] művében megtalálható. Ezt a következőkben *ortotrop* anyagokra fogjuk általánosítani az alábbiak szerint:

$$u = \mathcal{F}^{\dots} - \nu_{21} \mathcal{F}^{\dots},$$

$$v = -\mathcal{F}^{\dots} - \left(\frac{E_1}{E_3} - \nu_{21}\right) \mathcal{F}^{\dots},$$

$$w = \frac{E_1}{E_2} \mathcal{F}^{\dots} + \left(\frac{E_1}{E_3} - 2\nu_{21}\right) \mathcal{F}^{\dots} + \mathcal{F}^{\dots}.$$
(8a - c)

Az eltolódások (8a-c) alatti kifejezéseit a (6a-c) egyenletrendszerbe helyettesítve, az első két egyenletnél azonosságra jutunk, a harmadikból pedig a következő differenciálegyenletet kapjuk:

$$\mathfrak{F}^{\mathsf{VIII}} + 4n_1 \mathfrak{F}^{\mathsf{VI..}} + 6n_2 \mathfrak{F}^{\mathsf{I}\,\mathsf{V}\,::} + 4n_3 \mathfrak{F}^{\mathsf{II}\,:::} + n_4 \mathfrak{F}^{::::} + 4\beta_2^4 \mathfrak{F}^{\mathsf{I}\,\mathsf{V}} = 0.$$
(9)

(Az eltolódásfüggvény fölé rajzolt római számok az \overline{x}_1 szerinti deriválások számát jelentik.)

Az együtthatók az

$$n_{1} = \frac{E_{2}}{E_{1}} \left(\frac{E_{3}}{E_{2}^{*}} + \frac{1}{4} \frac{E_{1}}{E_{3}} \right),$$

$$n_{2} = \frac{E_{2}}{E_{1}} \left(1 + \frac{1}{3} \frac{E_{2}}{E_{3}} v_{21} - \frac{4}{3} \frac{E_{3}}{E_{2}^{*}} v_{12} - \frac{4}{3} v_{12} v_{21} \right),$$

$$n_{3} = \frac{E_{2}}{E_{1}} n_{1},$$

$$n_{4} = \left(\frac{E_{2}}{E_{1}} \right)^{2},$$

$$\beta_{2} = \sqrt[4]{3(1 - v_{12}v_{21})} \frac{E_{2}}{E_{1}} \left(\frac{R}{s} \right)^{2}$$
(10a)

összefüggésekből számíthatók.

Természetesen a metszeterők és a fajlagos nyomatékok is kifejezhetők az eltolódásfüggvénnyel. Az eltolódások (8a-c) alatti kifejezéseit a (3a-f) összefüggésekbe helyettesítve, és az (5d-e) egyensúlyi egyenleteket figyelembe véve, a következő képletekhez jutunk:

$$\begin{split} N_{1} &= \frac{D_{1}}{R} \left(1 - v_{12} v_{21} \right) \mathscr{F}^{11^{\cdots}}, \\ N_{2} &= \frac{D_{1}}{R} \left(1 - v_{12} v_{21} \right) \mathscr{F}^{1V}, \end{split} \tag{11a-c} \\ N_{3} &= -\frac{D_{1}}{R} \left(1 - v_{12} v_{21} \right) \mathscr{F}^{111^{\cdots}}, \\ M_{1} &= \frac{B_{1}}{R^{2}} \left[\frac{E_{1}}{E_{2}} \mathscr{F}^{V1} + \left(\frac{E_{1}}{E_{3}} - v_{21} \right) \mathscr{F}^{1V^{\cdots}} + \\ &+ \left(1 + v_{12} \frac{E_{1}}{E_{3}} - 2v_{12} v_{21} \right) \mathscr{F}^{11^{\cdots}} + v_{12} \mathscr{F}^{\cdots} \right], \\ M_{2} &= \frac{B_{1}}{R^{2}} \left[v_{21} \mathscr{F}^{V1} + \left(1 + v_{21} \frac{E_{2}}{E_{3}} - 2v_{12} v_{21} \right) \mathscr{F}^{1V^{\cdots}} + \\ &+ \left(\frac{E_{2}}{E_{3}} - v_{12} \right) \mathscr{F}^{11^{\cdots}} + \frac{E_{2}}{E_{1}} \mathscr{F}^{\cdots} \right], \end{split}$$

VARGA LÁSZLÓ

$$\begin{split} M_{3} &= 2 \, \frac{B_{1}}{R^{2}} \, (1 - v_{12} \, v_{21}) \Big[\frac{E_{3}}{E_{2}} \, \mathscr{F}^{\vee} + \Big(1 - 2 v_{21} \frac{E_{3}}{E_{1}} \Big) \, \mathscr{F}^{\Pi\Pi \cdots} + \frac{E_{3}}{E_{1}} \, \mathscr{F}^{\Pi \cdots} \Big], \\ Q_{1} &= \frac{B_{1}}{R^{3}} \Big[\frac{E_{1}}{E_{2}} \, \mathscr{F}^{\vee\Pi} + \Big[2 \, \frac{E_{3}}{E_{2}^{*}} + \frac{E_{1}}{E_{3}} - v_{21} \Big] \, \mathscr{F}^{\vee \cdots} + \\ &+ \Big(3 + v_{12} \frac{E_{1}}{E_{3}} - 4 v_{21} \frac{E_{3}}{E_{1}^{*}} - 4 v_{12} v_{21} \Big) \, \mathscr{F}^{\Pi\Pi \cdots} + \Big(2 \, \frac{E_{3}}{E_{1}^{*}} + v_{12} \Big) \, \mathscr{F}^{\Pi \cdots} \Big], \end{split}$$
(11d-h)

$$\begin{split} Q_2 &= \frac{B_1}{R^3} \bigg[\bigg(2 \, \frac{E_3}{E_2^*} + \mathfrak{v}_{21} \bigg) \, \mathscr{F}^{\mathsf{VI}^{\circ}} \, + \, \bigg(3 + \mathfrak{v}_{21} \, \frac{E_2}{E_3} - \, 4 \mathfrak{v}_{21} \, \frac{E_3}{E_1^*} - \, 4 \mathfrak{v}_{12} \, \mathfrak{v}_{21} \bigg) \, \mathscr{F}^{\mathsf{IV}^{\circ}} \, + \\ &+ \, \bigg(2 \, \frac{E_3}{E_1^*} + \frac{E_2}{E_3} - \mathfrak{v}_{12} \bigg) \, \mathscr{F}^{\mathsf{II}^{\circ\circ\circ}} \, + \, \frac{E_2}{E_1} \, \mathscr{F}^{\circ\circ\circ\circ} \, \bigg] \, . \end{split}$$

Az eltolódások, valamint a metszeterők és fajlagos nyomatékok kifejezésében szereplő eltolódásfüggvény tényleges alakját — a külső terhelés ismeretében — a (9) differenciálegyenlet megoldása útján határozhatjuk meg. A megoldás módját, illetve az eltolódásfüggvény tényleges alakjának és a feszültségi állapotnak a meghatározását két terhelési alapesetre a következő fejezetekben ismertetjük.

5. Az alkotó mentén ($\bar{x}_2 =$ állandó) ható élterhelés okozta hajlítási feszültségállapot meghatározása

Vizsgálatainkhoz — az áttekinthetőség érdekében — tételezzük fel, hogy a héjfelületre merőleges külső élterhet

$$P_1(\bar{x}_1) = P_m \cos\left(m\bar{x}_1\right) \tag{12}$$

összefüggés írja le (2. ábra).

Az eltolódásfüggvény a terheléshez hasonló alakú:

$$\mathscr{F} = \mathscr{F}_1 = \varPhi_m \cos\left(m\overline{x}_1\right). \tag{13}$$

A (13) összefüggésben szereplő:

$$\Phi_m = \Phi_m(\bar{\mathbf{x}}_2) \tag{14}$$

"csillapodásfüggvény" tényleges alakjához a (9) differenciálegyenlet megoldása

útján juthatunk el, amely a (13) összefüggés behelyettesítése és a műveletek elvégzése után a következő alakot ölti:

$$[\Phi_{m}^{\text{iii}} - 4m_{1} m^{2} \Phi_{m}^{\text{iii}} + 6m_{2} m^{4} \Phi_{m}^{\text{iii}} - 4m_{3} m^{6} \Phi_{m}^{\text{ii}} + m_{4} m^{8} \Phi_{m} + 4\beta_{1}^{4} m^{4} \Phi_{m}] \cos(m\bar{x}_{1}) = 0.$$
(15)

Itt

$$m_{1} = \frac{E_{3}}{E_{2}^{*}} + \frac{1}{4} \frac{E_{1}}{E_{3}},$$

$$m_{2} = \frac{E_{1}}{E_{2}} \left(1 + \frac{1}{3} \frac{E_{2}}{E_{3}} v_{21} - \frac{4}{2} \frac{E_{3}}{E_{2}^{*}} v_{12} - \frac{4}{3} v_{12} v_{21} \right),$$

$$m_{3} = \frac{E_{1}}{E_{2}} m_{1},$$

$$m_{4} = \left(\frac{E_{1}}{E_{2}}\right)^{2},$$

$$\beta_{1} = \sqrt[4]{3(1 - v_{12}v_{21})} \frac{E_{1}}{E_{2}} \left(\frac{R}{s}\right)^{2}.$$
(16a)

Megoldásul a

$$\Phi_m = C_m e^{\lambda_m \overline{\lambda}_2} \tag{17}$$

függvényt vesszük fel; a benne előforduló együtthatók a

$$\lambda_m^8 - 4m_1 m^2 \lambda_m^6 + 6m_2 m^4 \lambda_m^4 - 4m_3 m^6 \lambda_m^2 + m_4 m^8 = -4\beta_1^4 m^4 \qquad (18)$$

karakterisztikus egyenletből számíthatók. A megoldást jelentő konjugált komplex gyökök kifejezései a következők:

$$\lambda_{m1} = -\alpha_{m1} + \beta_{m1} i, \qquad \lambda_{m5} = \alpha_{m1} + \beta_{m1} i, \lambda_{m2} = -\alpha_{m1} - \beta_{m1} i, \qquad \lambda_{m6} = \alpha_{m1} - \beta_{m1} i, \lambda_{m3} = -\alpha_{m2} + \beta_{m2} i, \qquad \lambda_{m7} = \alpha_{m2} + \beta_{m2} i, \lambda_{m4} = -\alpha_{m2} - \beta_{m2} i, \qquad \lambda_{m8} = \alpha_{m2} - \beta_{m2} i.$$
(19a-h)

Viszonylag hosszú hengeres héjak eseteiben — mint ismeretes [1] -elegendő csak a (19a-d) alatti gyökök figyelembevétele.

Így a csillapodásfüggvény a

$$\Phi_m = C_{m1}\,\bar{\Phi}_{m1} + C_{m2}\,\bar{\Phi}_{m2} + C_{m3}\,\bar{\Phi}_{m3} + C_{m4}\,\bar{\Phi}_{m4} = \sum_{j=1}^4 C_{mj}\,\bar{\Phi}_{mj} \qquad (20)$$

alakban írható, amelyben szereplő $\bar{\varPhi}_{mj}$ függvények a

$$\begin{split} \bar{\Phi}_{m1} &= e^{-\alpha_{m1}\bar{x}_{2}} \cos\left(\beta_{m1}\bar{x}_{2}\right), \quad (21a) \\ \bar{\Phi}_{m2} &= e^{-\alpha_{m1}\bar{x}_{2}} \sin\left(\beta_{m1}\bar{x}_{2}\right), \\ \bar{\Phi}_{m3} &= e^{-\alpha_{m1}\bar{x}_{2}} \cos\left(\beta_{m2}\bar{x}_{2}\right), \quad (21b-d) \\ \bar{\Phi}_{m4} &= e^{-\alpha_{m2}\bar{x}_{2}} \sin\left(\beta_{m2}\bar{x}_{2}\right) \end{split}$$

összefüggésekből számíthatók.

Az eltolódásfüggvény tényleges alakja a vizsgált élterhelés esetén tehát:

$$\mathscr{F}_{1} = \sum_{j=1}^{4} C_{mj} \bar{\varPhi}_{mj} \cos(m\bar{x}_{1}).$$
(22)

A C_{mj} integrálási állandókat a peremfeltételek figyelembevételével lehet meghatározni. Ehhez először az eltolódásokat fejezzük ki, valamint a metszeterőket és fajlagos nyomatékokat a (22) alatti eltolódásfüggvény segítségével.

A (8a-c) összefüggések értelmében:

$$u_{m} = \sum_{j=1}^{4} - C_{mj} \left(m \, \bar{\Phi}_{mj}^{..} + v_{21} \, m^{3} \, \bar{\Phi}_{mj} \right) \sin \left(m \bar{x}_{1} \right),$$

$$v_{m} = \sum_{j=1}^{4} C_{mj} \left[\left(\frac{E_{1}}{E_{3}} - v_{21} \right) m^{2} \, \bar{\Phi}_{mj}^{..} - \bar{\Phi}_{mj}^{..} \right] \cos \left(m \bar{x}_{1} \right), \qquad (24a-c)$$

$$w_{m} = \sum_{j=1} C_{mj} \left[\frac{E_{1}}{E_{2}} m^{4} \, \bar{\Phi}_{mj} - \left(\frac{E_{1}}{E_{3}} - 2v_{21} \right) m^{2} \, \bar{\Phi}_{mj}^{..} + \bar{\Phi}_{mj}^{..} \right] \cos \left(m \bar{x}_{1} \right).$$

Továbbá a (11a-h) kifejezések szerint:

$$N_{1m} = \frac{D_1}{R} (1 - \nu_{12} \nu_{21}) \sum_{j=1}^4 - C_{mj} m^2 \bar{\varPhi}_{mj}^{\cdots} \cos(m\bar{x}_1),$$

$$N_{2m} = \frac{D_1}{R} (1 - \nu_{12} \nu_{21}) \sum_{j=1}^4 C_{mj} m^4 \bar{\varPhi}_{mj} \cos(m\bar{x}_1),$$
(24a-h)

$$\begin{split} N_{3m} &= \frac{D_1}{R} \left(1 - v_{12} \, v_{21} \right) \sum_{j=1}^4 \, C_{mj} \, m^3 \, \bar{\varPhi}_{mj}^{\cdot} \sin \left(m \bar{x}_1 \right), \\ M_{1m} &= \frac{B_1}{R^2} \sum_{j=1}^4 \, C_{mj} \left[v_{12} \, \bar{\varPhi}_{mj}^{:::} - \left(1 + v_{12} \frac{E_1}{E_3} - 2 v_{12} \, v_{21} \right) m^2 \, \bar{\varPhi}_{mj}^{::} + \\ &+ \left(\frac{E_1}{E_3} - v_{21} \right) m^4 \, \bar{\varPhi}_{mj}^{\cdot\cdot} - \frac{E_1}{E_2} \, m^6 \, \bar{\varPhi}_{mj} \right] \cos \left(m \bar{x}_1 \right), \end{split}$$

$$\begin{split} M_{2m} &= \frac{B_1}{R^2} \sum_{j=1}^4 C_{mj} \bigg[\frac{E_2}{E_1} \, \bar{\varPhi}_{mj}^{::::} - \Big(\frac{E_2}{E_3} - v_{12} \Big) \, m^2 \, \bar{\varPhi}_{mj}^{:::} + \\ &+ \Big(1 + v_{21} \frac{E_2}{E_3} - 2v_{12} \, v_{21} \Big) \, m^4 \, \bar{\varPhi}_{mj}^{:.} - v_{21} \, m^6 \, \bar{\varPhi}_{mj} \, \bigg] \cos (m\bar{x}_1), \\ M_{3m} &= 2 \, \frac{B_1}{R^2} \left(1 - v_{12} \, v_{21} \right) \sum_{j=1}^4 C_{mj} \bigg[- \frac{E_3}{E_1} \, m \bar{\varPhi}_{mj}^{:::} + \\ &+ \left(1 - 2v_{21} \frac{E_3}{E_1} \right) m^3 \, \bar{\varPhi}_{mj}^{::} - \frac{E_3}{E_2} \, m^5 \, \bar{\varPhi}_{mj}^{:} \bigg] \sin (m\bar{x}_1), \\ Q_{1m} &= \frac{B_1}{R^3} \sum_{j=1}^4 C_{mj} \bigg[- \left(2 \, \frac{E_3}{E_1^*} + v_{12} \right) m \bar{\varPhi}_{mj}^{:::} + \\ &+ \left(3 + v_{12} \frac{E_1}{E_3} - 4v_{21} \frac{E_3}{E_1^*} - 4v_{12} \, v_{21} \right) m^3 \, \bar{\varPhi}_{mj}^{::} - \\ &- \left(2 \, \frac{E_3}{E_2^*} + \frac{E_1}{E_3} - v_{21} \right) m^5 \, \bar{\varPhi}_{mj}^{::} + \frac{E_1}{E_2} \, m^7 \, \bar{\varPhi}_{mj} \bigg] \sin (m\bar{x}_1), \\ Q_{2m} &= \frac{B_1}{R^3} \sum_{j=1}^4 C_{mj} \bigg[\frac{E_2}{E_1} \, \bar{\varPhi}_{mj}^{::::} - \left(2 \, \frac{E_3}{E_1^*} + \frac{E_2}{E_3} - v_{12} \right) m^2 \, \bar{\varPhi}_{mj}^{:::} + \\ &+ \left(3 + v_{21} \frac{E_2}{E_3} - 4v_{21} \frac{E_3}{E_1^*} - 4v_{12} \, v_{21} \right) m^4 \, \bar{\varPhi}_{mj}^{::} - \\ &- \left(2 \, \frac{E_3}{E_2^*} + \frac{E_1}{E_3} - 4v_{21} \frac{E_3}{E_1^*} - 4v_{12} \, v_{21} \right) m^4 \, \bar{\varPhi}_{mj}^{:::} - \\ &- \left(2 \, \frac{E_3}{E_2^*} + v_{21} \right) m^6 \, \bar{\varPhi}_{mj}^{:::} \bigg] \cos (m\bar{x}_1). \end{split}$$

Az eltolódások, valamint a metszeterők és fajlagos nyomatékok kifejezésében szereplő csillapodásfüggvény deriváltjai a következő képletekből számíthatók:

$$\begin{split} \bar{\varPhi}_{m1}^{(\eta)} &= e^{-\alpha_{m1}\bar{\mathbf{x}}_{1}} \left[A_{1\eta} \cos \left(\beta_{m1} \bar{\mathbf{x}}_{2}\right) + A_{2\eta} \sin \left(\beta_{m1} \bar{\mathbf{x}}_{2}\right) \right], \\ \bar{\varPhi}_{m2}^{(\eta)} &= e^{-\alpha_{m1}\bar{\mathbf{x}}_{1}} \left[A_{1\eta} \sin \left(\beta_{m1} \bar{\mathbf{x}}_{2}\right) - A_{2\eta} \cos \left(\beta_{m1} \bar{\mathbf{x}}_{2}\right) \right], \\ \bar{\varPhi}_{m3}^{(\eta)} &= e^{-\alpha_{m2}\bar{\mathbf{x}}_{1}} \left[A_{3\eta} \cos \left(\beta_{m2} \bar{\mathbf{x}}_{2}\right) + A_{4\eta} \sin \left(\beta_{m2} \bar{\mathbf{x}}_{2}\right) \right], \\ \bar{\varPhi}_{m4}^{(\eta)} &= e^{-\alpha_{m1}\bar{\mathbf{x}}_{1}} \left[A_{3\eta} \sin \left(\beta_{m2} \bar{\mathbf{x}}_{2}\right) - A_{4\eta} \cos \left(\beta_{m2} \bar{\mathbf{x}}_{2}\right) \right]. \end{split}$$
(25a-d)

Az $A_{j\eta}$ együtthatók pedig az alábbi összefüggéseket jelentik:

$$A_{1\eta} = -\alpha_{m1} A_{1(\eta-1)} + \beta_{m1} A_{2(\eta-1)},$$

$$A_{2\eta} = -\alpha_{m1} A_{2(\eta-1)} - \beta_{m1} A_{1(\eta-1)},$$

$$A_{3\eta} = -\alpha_{m2} A_{3(\eta-1)} + \beta_{m2} A_{4(\eta-2)},$$

$$A_{4\eta} = -\alpha_{m2} A_{4(\eta-1)} - \beta_{m2} A_{3(\eta-1)},$$
(26a-d)

VARGA LÁSZLÓ

ahol

186

$$A_{10} = A_{30} = 1$$
,
 $A_{20} = A_{40} = 0$. (27a-b)

A C_{mj} integrálási állandókat — az alkotó mentén ($\bar{x}_2 = 0$) ható élterhelések esetén — a következő illesztési feltételek szabják meg:

$$v_m(\bar{x}_1, 0) = 0,$$

 $w_m(\bar{x}_1, 0) = 0,$
 $N_{3m}(\bar{x}_1, 0) = 0,$
 $Q_{2m}(\bar{x}_1, 0) = 1/2 P_1(\bar{x}_1).$
(28a d)

Az illesztési feltételeket az eltolódásfüggvény segítségével kifejezve az alábbiak adódnak:

$$\sum_{j=1}^{4} (-1)^{j+1} C_{mj} A_{j1} = 0,$$

$$\sum_{j=1}^{4} (-1)^{j+1} C_{mj} A_{j3} = 0,$$

$$\sum_{j=1}^{4} (-1)^{j+1} C_{mj} A_{j5} = 0,$$

$$\sum_{j=1}^{4} (-1)^{j+1} C_{mj} A_{j7} = 2\beta_1^4 \frac{R}{s} \frac{P_m}{E_1}.$$
(29a--d)

Az integrálási állandók meghatározása után már felírható — a vizsgált külső terhelésre vonatkozó — eltolódásfüggvény tényleges alakja. Ennek ismeretében a hajlítás feszültségállapotát képviselő alakváltozások, metszeterők és fajlagos nyomatékok (tehát a feszültségek is) további nehézség nélkül számíthatók.

6. A főkör mentén ($\bar{\mathbf{x}}_1 =$ állandó) ható élterhelés okozta hajlítási feszültségállapot meghatározása

Az alkotóirányú élteher esetéhez hasonlóan feltételezzük, hogy a héjfelületre merőleges külső élterhelés a

$$P_2(\bar{x}_2) = P_n \cos\left(n\bar{x}_2\right) \tag{30}$$

összefüggés szerint változik (3. ábra).

Az eltolódásfüggvény a terhelés jellegének megfelelően

$$\mathscr{F} \equiv \mathscr{F}_2 = \mathscr{\Psi}_n \cos\left(n\bar{x}_2\right) \tag{31}$$

ORTOGONÁLISAN ANIZOTROP SZERKEZETI ANYAGÚ HENGERES HÉJAK SZÁMÍTÁSELMÉLETE 187

alakba írható. A (31) összefüggésben előforduló:

$$\Psi_n = \Psi_n(\bar{\mathbf{x}}_1) \tag{32}$$

"csillapodásfüggvény" tényleges alakja szintén a (9) differenciálegyenlet megoldása útján adódik, amely a (31) összefüggés behelyettesítése és a műveletek elvégzése után a következő alakra hozható:

$$[\Psi_n^{\text{VIII}} - 4n_1 n^2 \Psi_n^{\text{VI}} + 6n_2 n^4 \Psi_n^{\text{IV}} - 4n_3 n^6 \Psi_n^{\text{II}} + n_4 n^8 \Psi_n + 4\beta_2^4 \Psi_n^{\text{IV}}] \cos(n\bar{x}_2) = 0.$$
(33)

A differenciálegyenlet megoldásai jelen esetben is

$$\Psi_n = C_n e^{\lambda_n \overline{\mathbf{x}}_1} \tag{34}$$

alakban írhatók fel és a λ_n együtthatók a

$$\lambda_n^8 - 4n_1 n^2 \lambda_n^6 + 6n_2 n^4 \lambda_n^4 - 4n_3 n^6 \lambda_n^2 + n_4 n^8 = -4\beta_2^4 \lambda_n^4$$
(35)

karakterisztikus egyenletből számíthatók. A megoldást jelentő konjugált komplex gyökök kifejezései a következők:

$$egin{aligned} \lambda_{n1} &= & lpha_{n1} + eta_{n1} \, i \,, & \lambda_{n5} &= & lpha_{n1} + eta_{n1} \, i \,, \ \lambda_{n2} &= & lpha_{n1} - eta_{n1} \, i \,, & \lambda_{n6} &= & lpha_{n1} - eta_{n1} \, i \,, \ \lambda_{n3} &= & lpha_{n2} + eta_{n2} \, i \,, & \lambda_{n7} &= & lpha_{n2} + eta_{n2} \, i \,, \ \lambda_{n4} &= & - & lpha_{n2} - & eta_{n2} \, i \,, & \lambda_{n8} &= & lpha_{n2} - & eta_{n2} \, i \,. \end{aligned}$$

A (36a—d) alatti négy gyök figyelembevétele után (viszonylag hosszú hengeres héjakat vizsgálva) a csillapodásfüggvény

$$\Psi_n = C_{n1} \overline{\Psi}_{n1} + C_{n2} \overline{\Psi}_{n2} + C_{n3} \overline{\Psi}_{n3} + C_{n4} \overline{\Psi}_{n4} = \sum_{j=1}^{4} C_{nj} \overline{\Psi}_{nj} \qquad (37)$$

VARGA LÁSZLÓ

alakban írható, amelyben szereplő $\overline{\Psi}_{n_j}$ függvények a

$$\begin{split} \overline{\Psi}_{n1} &= e^{-\alpha_{n1}\bar{x}_{1}} \cos\left(\beta_{n1}\bar{x}_{1}\right), \\ \overline{\Psi}_{n2} &= e^{-\alpha_{n1}\bar{x}_{1}} \sin\left(\beta_{n1}\bar{x}_{1}\right), \\ \overline{\Psi}_{n3} &= e^{-\alpha_{n2}\bar{x}_{1}} \cos\left(\beta_{n2}\bar{x}_{1}\right), \\ \overline{\Psi}_{n4} &= e^{-\alpha_{n2}\bar{x}_{1}} \sin\left(\beta_{n2}\bar{x}_{1}\right) \end{split}$$
(38a-d)

összefüggésekből számíthatók.

Az előzőek értelmében az eltolódásfüggvény tényleges alakja a vizsgált élterhelés esetén

$$\mathscr{F}_2 = \sum_{j=1}^4 C_{nj} \,\overline{\Psi}_{nj} \cos\left(n\bar{x}_2\right). \tag{39}$$

Az eltolódások, valamint az erők és nyomatékok kifejezései a (39) összefüggés helyettesítése után az alábbiak szerint határozhatók meg.

A (8a-c) összefüggések szerint

$$u_{n} = \sum_{j=1}^{4} - C_{nj} (n^{2} \overline{\Psi}_{nj}^{1} + v_{21} \overline{\Psi}_{nj}^{111}) \cos(n\overline{x}_{2}),$$

$$v_{n} = \sum_{j=1}^{4} C_{nj} \left[\left(\frac{E_{1}}{E_{3}} - v_{21} \right) n \overline{\Psi}_{nj}^{11} - n^{3} \overline{\Psi}_{nj} \right] \sin(n\overline{x}_{2}), \qquad (40a-c)$$

$$w_{n} = \sum_{j=1}^{4} C_{nj} \left[\frac{E_{1}}{E_{2}} \overline{\Psi}_{nj}^{1V} - \left(\frac{E_{1}}{E_{3}} - 2v_{21} \right) n^{2} \overline{\Psi}_{nj}^{11} + n^{4} \overline{\Psi}_{nj} \right] \cos(n\overline{x}_{2}).$$

Továbbá a (11a-h) képletek értelmében

$$\begin{split} N_{1n} &= \frac{D_1}{R} \left(1 - v_{12} v_{21} \right) \sum_{j=1}^4 - C_{nj} n^2 \, \overline{\Psi}_{nj}^{11} \cos \left(n \overline{x}_2 \right), \\ N_{2n} &= \frac{D_1}{R} \left(1 - v_{12} v_{21} \right) \sum_{j=1}^4 C_{nj} \, \overline{\Psi}_{nj}^{1V} \cos \left(n \overline{x}_2 \right), \end{split} \tag{41a-h} \\ N_{3n} &= \frac{D_1}{R} \left(1 - v_{12} v_{21} \right) \sum_{j=1}^4 C_{nj} n \overline{\Psi}_{nj}^{111} \sin \left(n \overline{x}_2 \right), \\ M_{1n} &= \frac{B_1}{R^2} \sum_{j=1}^4 C_{nj} \left[\frac{E_1}{E_2} \, \overline{\Psi}_{nj}^{V1} - \left(\frac{E_1}{E_3} - v_{21} \right) n^2 \, \overline{\Psi}_{nj}^{1V} + \\ &+ \left(1 + v_{12} \, \frac{E_1}{E_3} - 2 v_{12} v_{21} \right) n^4 \, \overline{\Psi}_{nj}^{11} - v_{12} n^6 \, \overline{\Psi}_{nj} \right] \cos \left(n \overline{x}_2 \right), \end{split}$$

Műszaki Tud omány 45, 1972

188

$$\begin{split} M_{2n} &= \frac{B_1}{R^2} \sum_{j=1}^4 C_{nj} \bigg[v_{21} \, \overline{\Psi}_{nj}^{\text{VI}} - \left(1 + v_{21} \frac{E_2}{E_3} - 2v_{12} \, v_{21} \right) n^2 \, \overline{\Psi}_{nj}^{\text{IV}} + \\ &+ \left(\frac{E_2}{E_3} - v_{12} \right) n^4 \, \overline{\Psi}_{nj}^{\text{II}} - \frac{E_2}{E_1} \, n^6 \, \overline{\Psi}_{nj} \bigg] \cos \left(n \overline{x}_2 \right), \\ M_{3n} &= 2 \, \frac{B_1}{R^2} \left(1 - v_{12} \, v_{21} \right) \sum_{j=1}^4 C_{nj} \bigg[-\frac{E_3}{E_2} \, n \overline{\Psi}_{nj}^{\text{V}} + \\ &+ \left(1 - 2v_{21} \, \frac{E_3}{E_1} \right) n^3 \, \overline{\Psi}_{nj}^{\text{III}} - \frac{E_3}{E_1} \, n^5 \, \overline{\Psi}_{nj}^{\text{II}} \bigg] \sin \left(n \overline{x}_2 \right), \\ Q_{1n} &= \frac{B_1}{R^3} \sum_{j=1}^4 C_{nj} \bigg[\frac{E_1}{E_2} \, \overline{\Psi}_{nj}^{\text{VII}} - \left(2 \, \frac{E_3}{E_2^*} + \frac{E_1}{E_3} - v_{21} \right) n^2 \, \overline{\Psi}_{nj}^{\text{V}} + \\ &+ \left(3 + v_{12} \frac{E_1}{E_3} - 4v_{21} \frac{E_3}{E_1^*} - 4v_{12} \, v_{21} \right) n^4 \, \overline{\Psi}_{nj}^{\text{III}} - \\ &- \left(2 \, \frac{E_3}{E_1^*} + v_{12} \right) n^6 \, \overline{\Psi}_{nj}^{\text{I}} \bigg] \cos \left(n \overline{x}_2 \right), \\ Q_{2n} &= \frac{B_1}{R^3} \sum_{j=1}^4 C_{nj} \bigg[- \bigg[2 \, \frac{E_3}{E_2^*} + v_{21} \bigg] n \, \overline{\Psi}_{nj}^{\text{VI}} + \\ &+ \left(3 + v_{21} \frac{E_2}{E_3} - 4v_{21} \frac{E_3}{E_1^*} - 4v_{12} \, v_{21} \right) n^4 \, \overline{\Psi}_{nj}^{\text{III}} - \\ &- \left(2 \, \frac{E_3}{E_1^*} + v_{12} \right) n^6 \, \overline{\Psi}_{nj}^{\text{II}} \bigg] \cos \left(n \overline{x}_2 \right), \\ Q_{2n} &= \frac{B_1}{R^3} \sum_{j=1}^4 C_{nj} \bigg[- \bigg[2 \, \frac{E_3}{E_2^*} + v_{21} \bigg] n \, \overline{\Psi}_{nj}^{\text{VI}} + \\ &+ \bigg(3 + v_{21} \frac{E_2}{E_3} - 4v_{21} \frac{E_3}{E_1^*} - 4v_{12} \, v_{21} \bigg) n^3 \, \Psi_{nj}^{\text{III}} - \\ &- \bigg(2 \, \frac{E_3}{E_1^*} + \frac{E_2}{E_3} - 4v_{21} \frac{E_3}{E_1^*} - 4v_{12} \, v_{21} \bigg) n^3 \, \Psi_{nj}^{\text{IV}} - \\ &- \bigg(2 \, \frac{E_3}{E_1^*} + \frac{E_2}{E_3} - v_{12} \bigg) n^5 \, \overline{\Psi}_{nj}^{\text{III}} + \frac{E_2}{E_1} \, n^7 \, \overline{\Psi}_{nj} \bigg] \sin \left(n \overline{x}_2 \right). \end{split}$$

A csillapodásfüggvény deriváltjai – az előző fejezetben közöltekhez hasonlóan – a következő képletekből számíthatók:

$$\begin{split} \bar{\Psi}_{n1}^{(\eta)} &= e^{-\alpha_{n1}\,\bar{x}_{1}} \left[B_{1\eta}\,\cos\,(\beta_{n1}\,\bar{x}_{1}) + B_{2\eta}\,\sin\,(\beta_{n1}\,\bar{x}_{1}) \right], \\ \bar{\Psi}_{n2}^{(\eta)} &= e^{-\alpha_{n1}\,\bar{x}_{1}} \left[B_{1\eta}\,\sin\,(\beta_{n1}\,\bar{x}_{1}) - B_{2\eta}\,\cos\,(\beta_{n1}\,\bar{x}_{1}) \right], \\ \bar{\Psi}_{n3}^{(\eta)} &= e^{-\alpha_{n2}\,\bar{x}_{1}} \left[B_{3\eta}\,\cos\,(\beta_{n2}\,\bar{x}_{1}) + B_{4\eta}\,\sin\,(\beta_{n2}\,\bar{x}_{1}) \right], \\ \bar{\Psi}_{n4}^{(\eta)} &= e^{-\alpha_{n2}\,\bar{x}_{1}} \left[B_{3\eta}\,\sin\,(\beta_{n2}\,\bar{x}_{1}) - B_{4\eta}\,\cos\,(\beta_{n2}\,\bar{x}_{1}) \right]. \end{split}$$
(42a-d)

A $B_{j\eta}$ együtthatók meghatározására szolgáló összefüggések:

$$B_{1\eta} = -\alpha_{n1} B_{1(\eta-1)} + \beta_{n1} B_{2(\eta-1)},$$

$$B_{2\eta} = -\alpha_{n1} B_{2(\eta-1)} - \beta_{n1} B_{1(\eta-1)},$$

$$B_{3\eta} = -\alpha_{n2} B_{3(\eta-1)} + \beta_{n2} B_{4(\eta-1)},$$

$$B_{4\eta} = -\alpha_{n2} B_{4(\eta-1)} - \beta_{n2} B_{3(\eta-1)},$$

(43a-d)

VARGA LÁSZLÓ

ahol

$$B_{10} = B_{30} = 1 ,$$

$$B_{20} = B_{40} = 0 .$$
 (44a-b)

A C_{nj} integrálási állandókat — a henger végeitől távol eső főkör mentén $(\bar{x}_1 = 0)$ ható élterhelés esetén — az alábbi illesztési feltételek kielégítése útján határozzuk meg:

$$u_n(0, \bar{x}_2) = 0,$$

$$w_n'(0, \bar{x}_2) = 0,$$

$$N_{3n}(0, \bar{x}_2) = 0,$$

$$Q_{1n}(0, \bar{x}) = 1/2P_2(\bar{x}_2).$$

(45a-d)

Az eltolódásfüggvény bevezetése után az illesztési feltételek a következő egyszerűbb alakra hozhatók:

$$\sum_{j=1}^{4} (-1)^{j+1} C_{nj} B_{j1} = 0,$$

$$\sum_{j=1}^{4} (-1)^{j+1} C_{nj} B_{j3} = 0,$$

$$\sum_{j=1}^{4} (-1)^{j+1} C_{nj} B_{j5} = 0,$$

$$\sum_{j=1}^{4} (-1)^{j+1} C_{nj} B_{j7} = 2\beta_2^4 \frac{R}{s} \frac{P_n}{E_1}.$$
(46a-d)

(Megjegyezni kívánjuk, hogy a hengert végtelen hosszúnak tekintjük, így megtámasztási peremfeltételek nincsenek.)

Az integrálási állandók meghatározásával lényegében a problémát is megoldottuk. A C_{nj} állandók számszerű értékeit az eltolódások, továbbá az élerők és élnyomatékok kifejezéseibe helyettesítve a főkör mentén ható héjfelületre merőleges — élterhelés okozta hajlítófeszültségi állapothoz jutunk.

Számpélda

A hajlítási feszültségállapot meghatározása során a legnagyobb nehézséget a (18) és (35) alatti karakterisztikus egyenletek gyökeinek a kiszámítása jelenti. Számszerű vizsgálataink ezért a gyökök együtthatóinak a meghatározására összpontosulnak.

Műszaki Tudomány 45, 1972

190

ORTOGONÁLISAN ANIZOTROP SZERKEZETI ANYAGÚ HENGERES HÉJAK SZÁMÍTÁSELMÉLETE 191

A számításokat üvegszállal erősített poliészter csőre végeztük, főkör mentén ható élterhelés feltételezésével.

Az alkotók közül a poliészter rugalmas jellemzői a következők:

$$E_M = 40\ 000\ \mathrm{kp/cm^2},$$

 $u_M = 0.35,$
 $G_M = rac{E_M}{2(1 +
u_M)} = 14\,814\ \mathrm{kp/cm^2};$

az üvegszálaké pedig:

$$E_{\mathcal{O}} = 730\ 000\ \text{kp/cm}^2$$
,
 $\nu_{\mathcal{O}} = 0.22$,
 $G_{\mathcal{O}} = \frac{E_{\mathcal{O}}}{2(1 + \nu_{\mathcal{O}})} = 299\ 180\ \text{kp/cm}^2$.

Az ortotropia főirányaira vonatkozó rugalmas jellemzőket — $\omega = 54^{\circ}45'$ tekercselési szög és 65%-os üvegszáltartalom feltételezésével — számítottuk [6] és a következő értékeket kaptuk:

$$E_1 = 102 526 \text{ kp/cm}^2$$
,
 $E_2 = 195 904 \text{ kp/cm}^2$,
 $E_3 = 125 487 \text{ kp/cm}^2$,
 $v_{12} = 0,7708$,
 $v_{21} = 0,4034$.

A közölt jellemzőket, továbbá az R/s = 100 értéket számításba véve a (10a-e) összefüggések szerint a (35) alatti karakterisztikus egyenlet a következő alakot ölti:

$$\begin{split} \lambda_n^8 &= 4,934732 n^2 \lambda_n^6 + 3,717818 n^4 \lambda_n^4 - 9,429139 n^6 \lambda_n^2 + \\ &+ 3,651041 n^8 = -157999,9 \lambda_n^4. \end{split}$$

A gyökök, illetve az α_{n_1} , α_{n_2} , β_{n_1} és β_{n_2} együtthatók meghatározása viszonylag bonyolult program kidolgozása után ICT 1905 tip. számítógépen történt, $n = 4, 8, \ldots 200$ hullámszámok eseteire. A kapott eredmények az I. táblázatban találhatók.

I. táblázat

Ortotrop anyagra vonatkozó együtthatók

n	α _{n1}	α _{n2}	β _{n1}	β_{n_2}
4	14 7989	0.8210	13 4034	0 7439
8	16 7565	3 6098	11 3062	2 4550
19	17 0197	9,0090	6 8028	3 6889
16	10 7004	16 8050	4,8084	4 9341
20	94 3577	21 3051	6.0155	5 9839
20	29,0538	21,3931	7 1909	6 3499
29	33 8071	30 2445	8 9730	7 4010
20	38 5868	34,6148	0,2109	8 460
36	43 3803	38 0713	10 5967	0,400
40	49,0000	43 3909	11,7569	10 578
40	52 0868	47 6640	12 0357	11 636
44	57 7050	59 0060	14 1075	19 604
59	69 5061	56 3460	15 2903	12,074
56	67 4165	60,6956	16 45 26	14 010
50 60	79 9904	65 0920	17,4000	14,010
64	77.0400	60 2615	10 0011	16,000
60	01 05409	72 6006	10,0011	10,920
08	81,8540	70,0980	19,9752	17,984
76	80,0073	10,0004	21,1495	19,042
10	91,4809	82,3719	22,3239	20,100
80	90,2948	80,7082	23,4984	21,158
84	101,1085	91,0448	24,0728	22,210
88	105,9225	95,3808	25,8474	23,274
92	110,7364	99,7171	27,0119	24,332
90	115,5506	104,0530	28,1966	25,390
100	120,3649	108,3889	29,3713	26,448
104	125,1792	112,7247	30,5460	27,506
108	129,9934	117,0606	31,7207	28,564
112	134,8082	121,3960	32,8957	29,622
116	139,6222	125,7322	34,0702	30,680
120	144,4366	130,0679	35,2450	31,738
124	149,2508	134,4038	36,4197	32,796
128	154,0651	138,7394	37,5944	33,854
132	158,8597	143,0753	38,7692	34,912
136	163,6941	147,4110	39,9440	35,970
140	168,5085	151,7468	41,1188	37,028
144	173,3230	156,0824	42,2936	38,086
148	178,1374	160,4182	43,4683	39,144
152	182,9520	164,7538	44,6432	40,202
156	187,7661	169,0897	45,8178	41,260
160	192,5812	173,4249	46,9929	42,318
164	197,3955	177,7607	48,1676	43,376
168	202,2093	182,0970	49,3421	44,434
172	207,0242	186,4322	50,5171	45,491
176	211,8386	190,7681	51,6919	46,549
180	216,6534	195,1034	52,8668	47,607
184	221,4671	199,4398	54,0413	48,665
188	226,2819	203,7752	55,2162	49,723
192	231,0962	208,1110	56,3909	50,781
196	235,9112	212,4462	57,5660	51,839
900	940 7954	01(5001		50.005

II. táblázat

n	<i>a</i> _{n1}	α _{n2}	β _{n1}	β_{n2}
4	13.5033	0.6492	12,2643	0,5897
8	15.6059	2,7518	10,9272	1,9268
12	18.8772	6.0231	9,7447	3.1092
16	22,6288	9.7748	8,9765	3,8775
20	26.5322	13.6782	8,4815	4,3725
24	30,4883	17.6342	8,1437	4,7103
28	34.4657	21.6116	7,9002	4,9538
32	38,4530	25,5989	7,7168	5,1372
36	42,4452	29,5912	7,5738	5,2802
40	46,4403	33,5862	7,4593	5,3947
44	50,4370	37,5829	7,3656	5,4884
48	54,4347	41,5806	7,2874	5,5666
52	58,4331	45,5790	7,2213	5,6327
56	62,4318	49,5778	7,1645	5,6894
60	66.4309	53,5769	7,1154	5,7386
64	70,4302	57,5762	7,0724	5,7816
68	74,4297	61,5756	7,0344	5,8196
72	78,4293	65,5752	7,0007	5,8533
76	82,4289	69.5749	6,9705	5,8835
80	86,4287	73,5746	6,9433	5,9107
84	90,4284	77,5744	6,9187	5,9352
88	94,4282	81,5742	6,8964	5,9576
92	98.4281	85,5740	6,8760	5,9780
96	102.4279	89.5739	6,8573	5,9967
100	106,4278	93,5738	6,8400	6,0130
104	110,4277	97,5737	6,8242	6,0298
108	114,4277	101,5736	6,8095	6,0445
112	118,4276	105,5736	6,7958	6,0582
116	122,4275	109,5735	6,7831	6,0709
120	126,4275	113,5743	6,7712	6,0828
124	130,4274	117,5734	6,7601	6,0939
128	134,4274	121,5733	6,7497	6,1043
132	138.4274	125,5733	6,7399	6,1141
136	142,4273	129,5733	6,7307	6,1233
140	146,4273	133,5732	6,7220	6,1319
144	150,4273	137,5732	6,7138	6,1401
148	154,4272	141,5732	6,7061	6,1479
152	158,4272	145,5732	6,6981	6,1552
156	162,4275	149,5731	6,6918	6,1622
160	166,4272	153,5731	6,6852	6,1688
164	170,4272	157,5731	6,6789	6,1751
168	174,4272	161,5731	6,6729	6,1811
172	178,4272	165,5731	6,6671	6,1868
176	182,4271	169,5731	6,6617	6,1923
180	186,4271	173,5731	6,6565	6,1975
184	190,4271	177,5731	6,6515	6,2025
188	194,4271	181,5730	6,6467	2,2073
192	198,4271	185,5730	6,6421	6,2118
196	202,4271	189,5730	6,6377	6,2162
200	206,4271	193,5730	6,6335	6,2205
			1	

Izotrop anyagra vonatkozó együtthatók

.

Összehasonlítás céljából ugyancsak kiszámítottuk az izotrop szerkezeti anyagra vonatkozó együtthatókat az

$$E_{1} = E_{2} = E ,$$

$$v_{12} = v_{21} = v = 0,3,$$

$$E_{3} = \frac{E}{2(1 + v)}$$

rugalmas jellemzők figyelembevételével.

A karakterisztikus egyenlet ez esetben másodfokúra redukálható, így a gyökök meghatározása lényegesen egyszerűsödik [7]. A számított együtthatókat a II. táblázat tartalmazza.

Az I. és II. táblázat tanúsága szerint nincs lényeges különbség az ortotrop és az izotrop héjra kiszámított együtthatók, ezzel együtt a gyökök alakulásában. Így a közölt módszer alkalmazhatóságára az izotrop héjra végzett számszerű vizsgálatok alapján következtethetünk. Ilyen jellegű számítások a szakirodalomban [7] találhatók. Ezek szerint például az egységnyi ívhosszon ható állandó jellegű élterhelés okozta legnagyobb feszültségek is viszonylag egyszerűen — a Fourier sor kb. 25 tagjának figyelembevételével — már elfogadható pontossággal számíthatók. Az előzőek értelmében tehát az eltolódásfüggvény bevezetése az ortotrop héjak vizsgálatát is egyszerűvé teszi.

IRODALOM

- 1. FLÜGGE, W.: Stresses in Shells. Berlin, Springer Verlag 1960.
- 2. WLASSOW, S.: Allgemeine Schalentheorie und ihre Anwendung in der Technik. Berlin, Akademia Verlag 1958.
- 3. AMBARTSUMIAN, S.: Some Current Aspects of the Theory of Anisotropic Layered Shells. Applied Mechanics Surveys, Washington D. C., 1966.
- 4. AMBARTSUMIAN, S.: On the General Theory of Anisotropic Shells. Prikl. Mat. Mekh., 22. (1958.)
- 5. AMBARTSUMIAN, S.—PESHTMALDZHIAN, D.: On the Theory of Ortotropic Shells and Plates. Izv. Akad. Nauk Arm. SSR, Ser. Fiz.—Mat. Nauk 12, no. 1, 1959.
- 6. VARGA, L.: Üvegszállal erősített műanyagok rugalmas tulajdonságai. Műanyag és Gumi 8. (1971), 7. szám.
- 7. VARGA, L.: Bestimmung der durch Apparatpratzen geweckten Spannungen und Ausbildung der optimalen Pratzenkonstruktion, I und II. Periodica Polytechnica 12 (1968) und 12. (1969).

Discussion of the Bending Theory of Cylindrical Shells of Orthogonally Anisotropic Structural Material, by Introducing the Displacement Function. The general bending theory of cylindrical shells of orthogonally anisotropic structural material (e. g. glass reinforced plastic) in the case of edge loads normal to the shell surface is discussed. First the correlations between internal forces and deformation are explained, then the differential equations of bending are presented. This homogeneous differential equation system is solved by introducing the displacement function. Determination of the displacement function and bending

ortogonálisa n anizotrop szerkezeti anyagú hengeres héjak számításelmélete 195

stress state in the case of periodically changing edge loads acting along the generatrix and the great circle is dealt with in detail. On the basis of the relations thus derived, the bending stress state caused by an edge load varying according to an optional function, readily described by the Fourier series, can also be determined. Finally, a numerical example illustrating the root development of the characteristic equation is shown.

Behandlung der Biegetheorie von zylindrischen Schalen aus orthogonal anisotropischem Material mittels Einführung der Verschiebungsfunktion. Gegenstand der Arbeit ist die allgemeine Biegetheorie von zylindrischen Schalen aus orthogonal anisotropischem Werkstoff (z.B. glasfaserverstärktem Kunststoff) für den Fall von auf die Schalenoberfläche normalen Linienbelastungen. Zuerst werden die Zusammenhänge zwischen den inneren Kräften und den Formänderungen beschrieben und dann werden die Differentialgleichungen der Biegung vorgelegt. Das homogene Differentialgleichungssystem wird durch die Einführung der Verschiebungsfunktion gelöst. Eingehend werden die Berechnung der Verschiebungsfunktion und des Biegespannungszustandes vorgeführt, für den Fall von periodisch wechselnden Linienbelastungen entlang der Erzeugenden und des Leitkreises. Auf Grund der abgeleiteten Beziehungen kann auch ein solcher Biegespannungszustand berechnet werden, welcher von einer, gemäß einer beliebigen durch eine Fourierschen Reihe beschreibbaren — Funktion wechselnden Linienbelastung verursacht wird. Zum Schluß veröffentlicht der Verfasser ein Zahlenbeispiel welches den Verlauf der Wurzeln der charakteristischen Gleichung veranschaulicht.