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Higher moments of convolutions

By

Tomasz Schoen∗ and Ilya D. Shkredov†

Abstract

We study higher moments of convolutions of the characteristic function of a set, which generalize

a classical notion of the additive energy. Such quantities appear in many problems of additive combi-

natorics as well as in number theory. In our investigation we use different approaches including basic

combinatorics, Fourier analysis and eigenvalues method to establish basic properties of higher energies.

We provide also a sequence of applications of higher energies additive combinatorics.

1 Introduction

Let G be an abelian group, and A ⊆ G be an arbitrary finite set. The additive energy of the set
A is defined by

E2(A) = |{a1 − a2 = a3 − a4 : a1, a2, a3, a4 ∈ A}| .
This quantity plays an important role in many problems of additive combinatorics as well as in
number theory (see e.g. [39]). In the article we study, basically, the following generalization of
the additive energy

Ek(A) = |{a1 − a2 = a3 − a4 = · · · = a2k−1 − a2k : a1, . . . , a2k ∈ A}| , k > 2 .

Geometrically, Ek(A) is the number of k–tuples of Cartesian product Ak, which belong to the
same line from the system of lines of the form y = x + c, c ∈ A − A. An analog of E3(A) for
general systems of lines and points has applications in combinatorial geometry and in sum–
product problems (see [39], chapter 8). Ek(A) can be also expressed as the kth moment of the
convolution of the characteristic function of the set A (see [35]).

Higher energies have already found some applications (see [29, 30, 35]). Here we collect
further properties and applications of Ek(A). To prove them we use different approaches including
basic combinatorics, Fourier analysis and eigenvalues method.

The paper is organized as follows. We start with definitions and notations used in the paper.
In the next section we consider some basic properties of higher energies. We prove, in particular,
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2 Higher moments of convolutions

that the smallness of energy Ek implies a non–trivial upper bound for the cardinality of the set
of large Fourier coefficients and vice versa. These sets play an important role in every problem
of additive combinatorics where Fourier analysis is used (see [39]).

Quantities Ek(A) can be expressed in terms of higher convolutions of the set A (see [35]).
We continue to study supports of these convolutions in section 3. We establish a generalization
of Rusza’s triangle inequality, which allows us to introduce a hierarchy of bases of abelian groups
(that is sets B with B ±B = G) and prove some its properties.

In section 5 we show that the knowledge of energies Ek allows to refine Croot–Sisask almost
periodicity lemma (see [10]). Further, we prove in section 6, that for any A with |A−A| = K|A|
and E3(A) = M |A|4/K2, for a relatively small M, there is a large subset A′ ⊆ A such that A′

has almost no growth under addition. To show this result, we use a technique introduced in [29],
where among other things Katz–Koester transform [16] is applied. Series of results contained in
sections 5–9 can be considered as statements on structure of sets with small E3(A) (results on
structure of sets with small proportion of two another generalizations of the additive energy can
be found in [5, 6]).

In section 7 we prove some results related to sum–product problem in R. Solymosi [31]
showed an upper bound for multiplicative energy in terms of the size of the sumset A + A.
Improving a theorem of Li [20], we prove an upper estimate of Ek(A) in terms of |A · A|. Our
approach is based on Szemerédi–Trotter theorem and develops some ideas introduced in [30] and
[20].

In the next section we use so–called eigenvalue method to study Ek(A). Using this approach,
we show that the magnification ratio of a set A (see [39] and also [21]) is closely related with the
behavior of Ek(A). Actually, it turns out that the method allows to prove lower bounds for the

cardinality of restricted sumsets A
G
+B, where G is a subgraph of the complete bipartite graph

with bipartition A,B (see Theorem 42). As an application, we obtain some results concerning
sumsets of sets with small Ek (another application will be also given in the section 9). The results
are particularly powerful in the case of multiplicative subgroups of the field Fq.

In section 9 we prove two versions of the well–known Balog–Szemerédi–Gowers [2, 4, 11].
Assuming E2(A) = |A|3/K and E3(A) 6 M |A|4/K2 we obtain an improvement of Balog–
Szemerédi–Gowers theorem, and with the assumptions E2(A) = |A|3/K and E4(A) 6M |A|5/K3

we show an optimal version of Balog–Szemerédi–Gowers theorem .

Finally, in the last section we prove some results, which connects higher energies and higher
moments of the Fourier transform of A.

I.D.S. is grateful to A.V. Akopyan and F. Petrov for useful discussions. Both authors are
grateful to N.G. Moshchevitin and V.F. Lev. I.D.S. thanks Institute IITP RAN for excellent
working conditions.

2 Notation

Let G be an abelian group. If G is finite then denote by N the cardinality of G. It is well–
known [22] that the dual group Ĝ is isomorphic to G in the case. Let f be a function from G
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to C. We denote the Fourier transform of f by f̂ ,

f̂(ξ) =
∑

x∈G

f(x)e(−ξ · x) , (1)

where e(x) = e2πix. We rely on the following basic identities

∑

x∈G

|f(x)|2 = 1

N

∑

ξ∈Ĝ

∣∣f̂(ξ)
∣∣2 . (2)

∑

y∈G

∣∣∣
∑

x∈G

f(x)g(y − x)
∣∣∣
2
=

1

N

∑

ξ∈Ĝ

∣∣f̂(ξ)
∣∣2∣∣ĝ(ξ)

∣∣2 . (3)

If

(f ∗ g)(x) :=
∑

y∈G

f(y)g(x− y) and (f ◦ g)(x) :=
∑

y∈G

f(y)g(y + x)

then

f̂ ∗ g = f̂ ĝ and f̂ ◦ g = f̂ ĝ . (4)

For a function f : G → C put f c(x) := f(−x). Clearly, (f ∗ g)(x) = (g ∗ f)(x), x ∈ G. The
k-fold convolution, k ∈ N we denote by ∗k, so ∗k := ∗(∗k−1).

Write E(A,B) for additive energy of two sets A,B ⊆ G (see e.g. [39]), that is

E(A,B) = |{a1 + b1 = a2 + b2 : a1, a2 ∈ A, b1, b2 ∈ B}| .

We use in the paper the same letter to denote a set S ⊆ G and its characteristic function
S : G → {0, 1}.

If A = B we simply write E(A) instead of E(A,A). Clearly,

E(A,B) =
∑

x

(A ∗B)(x)2 =
∑

x

(A ◦B)(x)2 =
∑

x

(A ◦ A)(x)(B ◦B)(x) , (5)

and by (3),

E(A,B) =
1

N

∑

ξ

|Â(ξ)|2|B̂(ξ)|2 . (6)

Let

Tk(A) := |{a1 + · · ·+ ak = a′1 + · · · + a′k : a1, . . . , ak, a
′
1, . . . , a

′
k ∈ A}| .

Generally, for every function f : G → C set Tk(f) =
∑

x |(f ∗k−1 f)(x)|2. Clearly, Tk(A) =
1
N

∑
ξ |Â(ξ)|2k. Let also

σk(A) := (A ∗k A)(0) = |{a1 + · · ·+ ak = 0 : a1, . . . , ak ∈ A}| .

Notice that for a symmetric set A that is A = −A one has σ2(A) = |A| and σ2k(A) = Tk(A).
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For a sequence s = (s1, . . . , sk−1) put As = A ∩ (A− s1) · · · ∩ (A− sk−1). Let

Ek(A) =
∑

x∈G

(A ◦ A)(x)k =
∑

s1,...,sk−1∈G

|As|2 (7)

and

Ek(A,B) =
∑

x∈G

(A ◦A)(x)(B ◦B)(x)k−1 . (8)

Similarly, we write Ek(f, g) for any complex functions f and g. Putting E1(A) = |A|2.
We shall write

∑
x and

∑
ξ instead of

∑
x∈G and

∑
ξ∈Ĝ for simplicity.

For a positive integer n, we set [n] = {1, . . . , n}. All logarithms used in the paper are to
base 2. By ≪ and ≫ we denote the usual Vinogradov’s symbols.

3 Basic properties of higher energies

Here we collect basic properties of Ek(A), where A is a finite subset of an abelian group G. If
|A−A| = K|A| then

Ek(A) >
|A|k+1

Kk−1
.

The first very useful property of higher energy was proved in [29] and [35]. The next lemma is
a special case of Lemma 2.8 from [35].

Lemma 1 Let A be a subset of an abelian group. Then for every k, l ∈ N

∑

s,t:
‖s‖=k−1, ‖t‖=l−1

E(As, At) = Ek+l(A) ,

where ‖x‖ denote the number of components of vector x.

Lemma 2 Let A be a subset of an abelian group. Then for every α ∈ R

∑

‖s‖=1

E1+α(As, A) = E2+α(A) .

Lemma 3 Let A be a subset of an abelian group. Then for every k ∈ N, we have

|A|2k 6 Ek(A) · σk(A−A) , |A|4k 6 E2k(A) · Tk(A+A) , (9)

and

|A|2k+4
6 Ek+2(A) · Ek(A−A) , |A|2k+4

6 Ek+2(A) · Ek(A+A) . (10)

P r o o f. Let us prove the first inequality from (9). The formula is trivial for k = 1, so suppose
that k > 2. Consider the map

ϕ : Ak → (A−A)k
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defined by

ϕ(a1, . . . , ak) = (a1 − a2, a2 − a3, . . . , ak−1 − ak, ak − a1) = (x1, . . . , xk) .

Clearly, x1 + · · ·+ xk = 0. Thus σk(A−A) > |Im(ϕ)|. By Cauchy–Schwarz inequality

|A|2k 6 |Im(ϕ)| · |{z, w ∈ Ak : ϕ(z) = ϕ(w)}|
6 σk(A−A) · |{z, w ∈ Ak : ϕ(z) = ϕ(w)}| .

To finish the proof it is enough to observe that

|{z, w ∈ Ak : ϕ(z) = ϕ(w)}| = Ek(A) .

To obtain the second inequality from (9), consider

ϕ′(a1, . . . , a2k) = (a1 + a2, a2 + a3, . . . , a2k−1 + a2k, a2k + a1) = (x1, . . . , x2k) .

instead of ϕ. Because of x1 − x2 + x3 − x4 + · · · + x2k−1 − x2k = 0 and

|{z, w ∈ Ak : ϕ′(z) = ϕ′(w)}| = Ek(A) .

we can use the previous arguments.

To obtain the first inequality in (10) consider the map

ψ : Ak+2 → (A−A)2k

defined by

ψ(b1, b2, a1, . . . , ak) = (b1 − a1, b2 − a1, . . . , b1 − ak, b2 − ak) = (x1, y1, . . . , xk, yk)

and similar with pluses. It is easy to check that

|{z, w ∈ Ak+2 : ψ(z) = ψ(w)}| = Ek+2(A)

and Ek(A−A) > |Im(ψ)| because of

x1 − y1 = · · · = xk − yk .

Thus, we obtain (10) by the arguments above. ✷

It turns out that Ek(A) is also closely related with higher dimensional sumsets. Observe
that

Ek+1(A,B) =
∑

x

(A ◦ A)(x)(B ◦B)(x)k

=
∑

x1,...,xk−1

(∑

y

A(y)B(y + x1) . . . B(y + xk)
)2

= E(∆(A), Bk) (11)
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and

∑

x∈X

(A ◦B)(x)k =
∑

x∈X

|{(a1, b1), . . . , (ak, bk) ∈ A×B : b1 − a1 = · · · = bk − ak = x}|

=
∑

y∈Ak

(∆(X) ◦Bk)(y) ,

where

∆(A) = ∆k(A) := {(a, a, . . . , a) ∈ Ak} .
We also put ∆(x) = ∆({x}), x ∈ G. The formula above gives a motivation to study the sumsets
Ak −∆(A), where Ak,∆(A) ⊆ Gk. Another motivation to study such sets was discussed in [35].
It turns out that these sets appear naturally as supports of higher convolutions of the set A.

Clearly

Ak −∆(A) =
⋃

a∈A

(A− a)k and Ak +∆(A) =
⋃

a∈A

(A+ a)k .

By Cauchy-Schwarz inequality we have

|Ak −∆(A)| > |A|2k+2

E(Ak,∆(A))
=

|A|2k+2

Ek+1(A)
. (12)

Trivially for every A1, . . . Ak ⊆ G

|A1 × . . . ×Ak−1 −∆(Ak)| 6 min
( k∏

i=1

|Ai| ,
k−1∏

j=1

|Aj −Ak|
)
. (13)

Now assume that G is a finite abelian group and A ⊆ G. For any α ∈ (0, 1] put

Rα = Rα(A) = {r ∈ Ĝ : |Â(r)| > α|A|} .

Thus, Rα(A) is the set of large Fourier coefficients of the set A. We show that the size and
the structure of Rα is highly related to Ek(A). We make use of the following lemma, which was
proved in [32, 33].

Lemma 4 Let α ∈ (0, 1] be a real number. Let also A be a subset of a finite abelian group G,
|A| = δN , and let Λ ⊆ Rα \ {0}. Then

Tk(Λ) > δα2k |Λ|2k .

Theorem 5 Let α ∈ (0, 1] be a real number. Suppose that A is a subset of an abelian group G

of order N and |A| = δN. Suppose that Ek(A) = κk|A|k+1. Then

|Rα| 6 α−3δ−1(κ2k − δ2k−1)1/2k , (14)
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and

max
r 6=0

|Â(r)| > k−1/2(κk − δk−1)1/2|A| . (15)

Moreover, κk > κ
k−1
k−2

k−1 > δκk−1, and

max
r 6=0

|Â(r)| > (κk − δκk−1)
1/2|A| . (16)

P r o o f. By Fourier inversion formula

E2k(A) =
∑

t

(A ◦ A)(t)2k =
∑

t

(
N−1

∑

r

|Â(r)|2e(tr)
)2k

= N1−2k
∑

∑
ri=0

|Â(r1)|2 . . . |Â(r2k)|2 .

(17)
Lemma 4 implies that

κ2k|A|2k+1
> δ2k−1|A|2k+1 +N1−2kδα2k |Rα|2k(α|A|)4k ,

which gives the first inequality.

Next, notice that

κk|A|k+1
6 δk−1|A|k+1+kmax

r 6=0
|Â(r)|2N1−k(

∑

r

|Â(r)|2)k−1 = δk−1|A|k+1+kmax
r 6=0

|Â(r)|2|A|k−1 ,

and we have proved (15).

Finally, let us show (16). Hölder inequality gives κk > κ
k−1
k−2

k−1 , so that κk > δκk−1. For k > 2

put ϕ(x) = (A ◦A)k−1(x). Again, by the inverse formula

Ek(A) = κk|A|k+1 =
1

N

∑

r

|Â(x)|2ϕ̂(x) 6 κk−1δ|A|k+1 +max
r 6=0

|Â(r)|2|A|k−1

and the assertion follows. ✷

Clearly, the inequality (14) is better than trivial bound |Rα| 6 α−2δ−1, provided that

α > (κ2k − δ2k−1)1/2k .

Next, we show that A ± A contains long arithmetic progressions and even more general
configurations. The first part of the proof of the corollary below uses an idea of Vsevolod Lev
the second part is rather similar to the method introduced in [9].

Corollary 6 Let A ⊆ G be a set, |A| = δN . Let also k ≫ logN/ log(1/δ) and c1, . . . , ck are any
numbers not all equals zero. Then A±A contains a configuration of the form x+c1d, . . . , x+ckd
with d 6= 0.
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P r o o f. We find a tuple x+ c1d, . . . , x+ ckd in A−A because the case A+A follows from the
additional observation that there is s ∈ G such that |A ∩ (s − A)| > δ2N and A ∩ (s − A) −
A ∩ (s− A) ⊆ A+A− s. Let ~1 = (1, . . . , 1), ~c = (c1, . . . , ck), and ~u = (u1, . . . , uk). Assume the
contrary and apply analog of formula (17), we get

|A|k+1
> Ek(A) =

∑

x,d

(A ◦A)(x+ c1d) . . . (A ◦ A)(x+ ckd)

=
1

Nk−2

∑

〈~u,~1〉=〈~u,~c〉=0

|Â(u1)|2 . . . |Â(uk)|2 > δ2kNk+2

and the result follows.
Now we give a non–abelian variant of the proof in the case A − A. Suppose that |Ak| >

Nk−1. Then the sets Ak + (dc1, . . . , dck), d ∈ G cannot be disjoint. It means that for some
different d′, d′′ we have (Ak + (d′c1, . . . , d

′ck)) ∩ (Ak + (d′′c1, . . . , d
′′ck)) 6= ∅. In other words

((d′ − d′′)c1, . . . , (d
′ − d′′)ck) ∈ (A−A)k. Thus, |Ak| 6 Nk−1 and the result follows. ✷

4 Ruzsa’s triangle inequality and bases of higher depth

Next results provide basic relations between sizes of higher dimensional sumsets. The following
theorem generalizes the well–known Ruzsa’s triangle inequality [24].

Theorem 7 Let k > 1 be a positive integer, and let A1, . . . , Ak, B be finite subsets of an abelian
group G. Further, let W,Y ⊆ Gk, and X,Z ⊆ G. Then

|W ×X||Y −∆(Z)| 6 |Y ×W × Z −∆(X)| , (18)

|A1 × . . .×Ak −∆(B)| 6 |A1 × . . .×Am −∆(Am+1)||Am+1 × . . .×Ak −∆(B)| (19)

for any m ∈ [k]. Furthermore, we have

|Y × Z −∆(X)| = |Y ×X −∆(Z)| . (20)

P r o o f. To show the first inequality we apply Ruzsa’s argument. For every a ∈ Y −∆(Z) choose
the smallest element (in any linear order of Z) z ∈ Z such that a = (y1− z, . . . , yk− z) for some
(y1, . . . , yk) ∈ Y . Next, observe that the function

(a,w, x) 7→ (y1 − x, . . . , yk − x, z − x,w1 − x, . . . , wk − x) ,

where w = (w1, . . . , wk) ∈W from (Y −∆(Z))×W ×X to Y ×W × Z −∆(X) is injective.
To obtain the second inequality consider the following matrix

M =




1 0 . . . 0 0 −1
0 1 0 . . . 0 −1
0 0 1 . . . 0 −1
. . . . . . . . . . . . . . .
0 . . . 0 0 1 −1
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Clearly, A1 × . . .×Ak −∆(B) = Im(M|A1×...×Ak×B). Further, non–degenerate transformations
of lines does not change the cardinality of the image. Thus, subtracting the (m+ 1)th line, we
obtain vectors of the form

(a1 − am+1, . . . , am − am+1, am+1 − b, . . . , ak − b) ,

which belong to (A1 × . . .×Am −∆(Am+1))× (Am+1 × . . .×Ak −∆(B)) .

To obtain (20) it is sufficient to show that

|Y × Z −∆(X)| 6 |Y ×X −∆(Z)| .

But the map

(y1 − x, . . . , yk − x, z − x) 7→ (y1 − z, . . . , yk − z, x− z) ,

where (y1, . . . , yk) ∈ Y , x ∈ X, z ∈ Z is an injection. This completes the proof. ✷

Remark 8 The proof of the theorem above gives another way to obtain formula (9) of Lemma
3. Indeed for any k > 2 by (12) the following holds

|A|2k 6 Ek(A) · |Ak−1 −∆(A)|

and we just need to estimate |Ak−1 −∆(A)| in terms of the set D := A−A. Such bounds were
obtained in [35] (see Lemma 2.6) but here we use another arguments. The cardinality of the set
Ak−1 −∆(A) equals the number of tuples

(a1 − a2, a2 − a3, . . . , ak−1 − ak) = (x1, . . . , xk−1) ∈ Dk−1 ,

where aj ∈ A, j ∈ [k]. Thus

|Ak−1 −∆(A)| 6
∑

x1,...,xk−1

k−1∏

j=1

k−1−j∏

l=0

D(xj + xj+1 + · · ·+ xj+l) 6

6
∑

x1,...,xk−1

D(x1) . . . D(xk−1)D(x1 + · · · + xk−1) = σk(D)

and the result follows.

As an immediate consequence of (18), (19) we get

|Ak −∆(A)||A| 6 |Ak+1 +∆(A)| , (21)

and

|Ak +∆(A)||A| 6 |Ak −∆(A)||A+A| .

In view of (12) we can formulate the following.
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Corollary 9 Let A and B be finite subsets of an abelian group. Then

|A+B| > |A|2|B|1/k
Ek(A)1/k

.

Let us also remark that the proof of Theorem 7 prompt to consider different matrices not
necessary the matrix M. The type of matrices we used appears naturally in studying Ek.

There is another way to prove estimate (19) in spirit of Lemma 2.4 and Corollary 2.5 from
[35]. We recall this result.

Proposition 10 Let k > 2, m ∈ [k] be positive integers, and let A1, . . . , Ak, B be finite subsets
of an abelian group. Then

A1 × . . .×Ak −∆(B) = {(x1, . . . , xk) : B ∩ (A1 − x1) ∩ · · · ∩ (Ak − xk) 6= ∅} (22)

and
A1 × . . .×Ak −∆(B) = (23)

⋃

(x1,...,xm)∈A1×...×Am−∆(B)

{(x1, . . . , xm)}× (Am+1× . . .×Ak−∆(B∩ (A1−x1)∩· · ·∩ (Am−xm)) .

From (22) one can deduce another characterization of the set Ak −∆(B).

Ak −∆(B) = {X ⊆ G : |X| = k, B 6⊆ ((G \ A)−X) } .

Here we used X to denote a multiset and a corresponding sequence created from X. Using the
characterization it is easy to prove, that if A is a subset of finite abelian group G then there is
X, |X| ∼ N

|A| · logN such that A+X = G. Indeed, let Ac = G \A, and k ∼ N
|A| · logN . Consider

|(Ac)k −∆(Ac)| 6 |Ac|k+1 = Nk+1(1− |A|/N)k+1 < Nk .

Thus, there is a multiset X, |X| = k such that Ac ⊆ A−X. Whence the set −X ∪ {0} has the
required property.

Let Dk(A), Sk(A) stand for the cardinalities of Ak −∆(A), Ak +∆(A), respectively. Next
result describes dependencies between Dk(A), Sk(A) for different k.

Proposition 11 Let n,m > 1 be positive integers, and A ⊆ G be a finite set. Then

Dn(A)|A|m 6 Dn+m(A) 6 Dn(A)Dm(A) , (24)

and
Sn(A)|A|m 6 Sn+m(A) 6 Sn(A) ·min{Sm(A),Dm(A)} . (25)

Finally, for m > 2, we have
Dn(A)|A|m 6 Sn+m(A) , (26)

and for m = 1, n > 2, we get
Dn−1(A)|A|2 6 Sn+1(A) . (27)



T. Schoen and I. D. Shkredov 11

P r o o f. The first inequality of (24) follows from (18). The second one is a consequence of (19)
or Proposition 10. The first inequality of (25) follows from (18) and (20). To establish the second
inequality of (25) we use Proposition 10. We have

Sn+m(A) =
∑

(x1,...,xm)∈Am+∆(A)

|An +∆(A ∩ (x1 −A) ∩ · · · ∩ (xm −A))| . (28)

Trivially,
|An +∆(A ∩ (x1 −A) ∩ · · · ∩ (xm −A))| 6 min{Sn(A),Dn(A)} .

It remains to prove (26), (27). By (18) we have |An+1 − ∆(B)| > Dn(A)|B| for every set
B. Thus, using (28) once again, we get

Sn+m(A) > Dn(A) ·
∑

(x1,...,xm−1)∈Am−1+∆(A)

|A ∩ (x1 −A) ∩ · · · ∩ (xm−1 −A)| = Dn(A)|A|m ,

provided that m > 2. Similarly, if m = 1, n > 2 then

Sn+1(A) > Dn−1(A) ·
∑

x∈A+A

|A ∩ (x−A)| = Dn−1(A)|A|2 .

This completes the proof. ✷

Remark 12 It is easy to see that all inequalities in Proposition 11 are sharp up to constant
factors. For example, if n,m > 2 then one can consider A to be a multiplicative subgroup of Fp or
a convex subset of R. In this case Dk, Sk ∼ |A|k+1, for k > 3 and |A|3 ≫ D2, S2 ≫ |A|3/ log |A|
(see [29, 30, 35]) and the lower bounds of Proposition 11 attained for large n. If m,n are
arbitrary then let A be an arithmetic progression in Z or a subspace of Znp . We know by (13)

that |A|k 6 Dk 6 |A−A|k, |A|k 6 Sk 6 |A+A|k hence all bounds in Proposition 11 are sharp.
Nevertheless, if A ⊆ Z, we have always Dk, Sk > (k+1)|A|k−Ok(|A|k−1), which is a consequence
of the trivial inequality |P +Q| > |P |+ |Q| − 1, where P,Q ⊆ Z are arbitrary sets.

Proposition 11 allows us to introduce a hierarchy of basis of abelian groups, i.e. of sets B such
that B ±B = G. For simplicity, if B is a basis let us write B ⊕k B and B ⊖k B for Bk +∆(B)
and Bk −∆(B), respectively.

Definition 13 Let k > 1 be a positive integer. A subset B of an abelian group G is called basis
of depth k if B ⊖k B = Gk.

It follows from Theorem 7 that if B is a basis of depth k of finite abelian group G, then
for every set A ⊆ G

|B +A| > |A| 1
k+1 |G| k

k+1 . (29)

An analogous inequality for sum bases will be given in section 8.

Inequality (29) is trivial if |B| > |A| 1
k+1 |G| k

k+1 . In this situation one can use (24) of Propo-
sition 11, which for any m > k gives the following

|B +A| > |B|
m−k
m+1 |A| 1

m+1 |G| k
m+1 . (30)
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Taking any one–element A in formula (29) we obtain, in particular, that |B| > |G| k
k+1

for any basis of depth k. It is easy to see, using Proposition 10 that every set with B, |B| >
(1−1/(k+1))|G| is a basis of depth k and this inequality is sharp. If S1, . . . , Sk are any sets such
that S1 + · · ·+Sk = G then the set

⋃k
j=1(

∑
i 6=j(Si−Si)) is a basis of depth k (see Corollary 16

below, the construction can be found in [19]). Let us give another example. Using Weil’s bounds
for exponential sums we show that quadratic residuals in Z/pZ, for a prime p, is a basis of depth
(12 + o(1)) log p. Clearly, the bound is the best possible up to constants for subsets of Z/pZ of
the cardinality less than p/2.

Proposition 14 Let p be a prime number, and let R be the set of quadratic residuals. Then R
is the bases of depth k, where k2k <

√
p.

P r o o f. Clearly,

R(x) =
1

2

(
1 +

(
x

p

))
,

where
(x
p

)
is the Legendre symbol. Put α0 = 0. For all distinct non–zero α1, . . . , αk, we have

|R ∩ (R − α1) ∩ · · · ∩ (R− αk)| =
1

2k

∑

x

k∏

j=0

(
1 +

(
x+ αj
p

))
>

1

2k


p−√

p ·
k∑

j=2

jCjk




>
1

2k

(
p−√

p · k2k
)
> 0 .

We used the well–known Weil bound for exponential sums with multiplicative characters (see
e.g. [15]). By (22) in Proposition 10 we see that R⊖k R = Zkp. ✷

Another consequence of Proposition 14 is that quadratic non–residuals Q (and, hence,
quadratic residuals) have no completion of size smaller then (12 +o(1)) log p, that is a set X such
that X +Q = Z/pZ.

The next proposition is due to N.G. Moshchevitin.

Proposition 15 Let k1, k2 be positive integers, and X1, . . . ,Xk1 , Y , Z1, . . . , Zk2 ,W be finite
subsets of an abelian group. Then we have a bound

|X1 × . . .×Xk1 −∆(Y )||Z1 × . . .× Zk2 −∆(W )| 6

6 |(X1 −W )× . . . × (Xk1 −W )× (Y − Z1)× . . .× (Y − Zk2)−∆(Y −W )| .

P r o o f. It is enough to observe that the map

(x1 − y, . . . , xk1 − y, z1 − w, . . . , zk2 − w) 7→

7→ (x1 − w − (y − w), . . . , xk1 − w − (y − w), y − z1 − (y −w), . . . , y − zk2 − (y − w))

where xj ∈ Xj , j ∈ [k1], y ∈ Y , zj ∈ Zj, j ∈ [k2], w ∈W is injective. ✷

In particular, the difference and the sum of two bases of depths k1 and k2 is a basis of depth
k1 + k2. Let us also formulate a simple identity, which is a consequence of Theorem 7.
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Corollary 16 Let k > 2 be a positive integer, and let A1, . . . , Ak be a subsets of a finite abelian
group G. Then

|A1 × . . .×Ak −∆(G)| = |G||A1 × . . .×Ak−1 −∆(Ak)| . (31)

Thus, B is a basis of depth k iff B is (k + 1)–universal set (see [1]), i.e. a set that is for any
x1, . . . , xk+1 ∈ G there is z ∈ G such that z + x1, . . . , z + xk+1 ∈ B. A series of very interesting
examples of universal sets can be found in [19].

Finally, we also formulate an interesting consequence of the inequality (25).

Corollary 17 Let k > m > 1 be integers and let B ⊆ G be a set such that B⊕k B = Gk. Then
B is a basis of depth m, that is B ⊖m B = Gm.

An inverse theorem to Corollary 17 is related to a known problem: does there exist an
integer n such that if A−A = G then nA = G? It was answer in the negative in [13]. However,
it is easy to see that such a constant exists provided A is a basis of sufficiently high depth.

Proposition 18 Let B be a basis of depth k of a finite abelian group G of density δ. Then
nB = G for every

n > 3 +
2

log(k + 1)
log

(
log(1/δ)

log((k + 1)/2)

)
.

P r o o f. We will use an elementary fact that if X,Y ⊆ G then there exists x such that

|(X + x) ∩ Y | 6 |X||Y |/N. (32)

Now prove that for every set A ⊆ G we have |A+B| > min((k+1)|A|/2, N/2). Indeed, applying
iteratively (32), there exists a set S of size k such that |A + S| > min((k + 1)|A|/2, N/2).
Since B ⊖k B = Gk it follows that there is a ∈ B such that S + a ⊆ B, so that |B + A| >
min((k + 1)|A|/2, N/2). Therefore, for every s > 1

|sB| > min(((k + 1)/2)s|B|, N/2) (33)

On the other hand, using (29) iteratively, we get

|lB| > δ
1

(k+1)lN (34)

for all positive integers l. Combining, (33), (34) and optimizing over s, l, we have for

t >
1

ln(k + 1)
+

log ln(k + 1)

log(k + 1)
+

1

log(k + 1)
log

(
log(1/δ)

log((k + 1)/2)

)

that 2tA = G. ✷
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5 Croot-Sisask Lemma

Croot and Sisask [10] proved the following remarkable result, which found many deep applica-
tions, see [25], [26]. We formulate their result in a simple form.

Theorem 19 (Croot–Sisask) Let A,B be subsets of a group and k ∈ N. Suppose that |A−A| 6
K|A|. Then there exists T ⊆ A such that |T | > |A|/(2K)k and

‖(A ∗B)(x)− (A ∗B)(x+ t)‖22 6 8|A|2|B|/k

for every t ∈ T.

We prove that if the energy Ek(A) is not much larger than |A|k+1/Kk−1 then one can sub-
stantially improve the lower bound on size of the set of almost–periods T (provided that G is
abelian).

Theorem 20 Let A,B be subsets of an abelian group and k ∈ N. Suppose that |A−A| 6 K|A|
and E2k+2(A) = M |A|2k+3/K2k+1. Then there exists T ⊆ A − A such that |T | > K|A|/(16M)
and

‖(A ∗B)(x)− (A ∗B)(x+ t)‖22 6 32|A|2|B|/k
for every t belonging to a shift of T.

P r o o f. We choose uniformly at random a k–element sequence X = (x1, . . . , xk), xi ∈ A. As in
the proof Croot–Sisask theorem we say that X approximates A if

‖(µX ∗B)(x)− (A ∗B)(x)‖22 6 2|A|2|B|/k ,

where µX(x) = X(x) · |A|/k (by X we mean the characteristic function of the set {x1, . . . , xk}).
Following Croot-Sisask argument we have

P(X approximates A) > 1/2. (35)

For s ∈ Ak − ∆(A) let A′
s be the set of all a ∈ A such that s + ∆(a) ⊆ Ak and s + ∆(a)

approximates A. Then

‖(µ∆(a)+s ∗B)(x)− (A ∗B)(x)‖22 6 2|A|2|B|/k

for every s and a ∈ A′
s. Therefore, by the triangle inequality we have

‖(A ∗B)(x)− (A ∗B)(x+ a)‖22 6 8|A|2|B|/k (36)

for every a belonging to a shift of A′
s. By the Cauchy-Schwarz inequality

|A′
s||A′

t| 6 E(A′
s, A

′
t)
1/2|A′

s −A′
t|1/2 .

Again using the Cauchy-Schwarz inequality and Lemma 1 we get

( ∑

s,t∈Ak−∆(A)

|A′
s||A′

t|
)2

6 E2k+2(A)
∑

s,t∈Ak−∆(A)

|A′
s −A′

t| .
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By (35) ∑

s∈Ak−∆(A)

|A′
s| > (1/2)|A|k+1 ,

so that

(1/16)K2k+1M−1|A|2k+1
6

∑

s,t∈Ak−∆(A)

|A′
s −A′

t| 6 |Ak −∆(A)|2 max |A′
s −A′

t| .

Thus, there exist s0 and t0 such that |A′
s0 −A′

t0 | > K|A|/(16M). To finish the proof it is enough
to use (36) for s0 and t0 and apply the triangle inequality. The assertion is satisfied for a shift
of A′

s0 −A′
t0 . ✷

6 Small higher energies and the structure of sets

The aim of this section is to prove that small E3(A) implies the existence of a large very structured
subset of A. We make use of the following lemma (see [30]).

Lemma 21 Let A be a subset of an abelian group, P∗ ⊆ A − A and
∑

s∈P∗
|As| = η|A|2,

η ∈ (0, 1]. Then ∑

s∈P∗

|A±As| > η2|A|6E−1
3 (A) .

The next lemma is the well–known Balog–Szemerédi–Gowers theorem.

Lemma 22 Let A and B be finite sets of an abelian group, and |A| > |B|. If E(A,B) = α|A|3,
then there exist sets A′ ⊆ A and B′ ⊆ B such that |A′|, |B′| ≫ α|A| and

|A′ +B′| ≪ α−5|A| .

For a set A denote by P = P (A) the set of all elements in A−A that have at least |A|2/(2|A−A|)
representations.

Theorem 23 Let A be a subset of an abelian group. Suppose that |A−A| = K|A| and E3(A) =
M |A|4/K2. Then there exists A′ ⊆ A such that |A′| ≫ |A|/M5/2 and

|nA′ −mA′| ≪M12(n+m)+5/2K|A′|

for every n,m ∈ N.

P r o o f. Put D = A−A and let P = P (A). Clearly, M > 1. Then

∑

s∈P

(A ◦A)(s) > 1

2
|A|2 and

∑

s∈P

(A ◦ A)(s)3 > 1

2
E3(A) .

By the Hölder inequality
|A|2 ≪ E3(A)

1/3|P |2/3 ,
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so that |P | ≫ |D|/M1/2.

By the Katz–Koester transform (see [16]), we have A − As ⊆ D ∩ (D + s). Using the
Cauchy–Schwarz inequality and Lemma 21, we obtain

E(D,P ) =
∑

s,s′∈P

|(D + s) ∩ (D + s′)| > |D|−1
(∑

s∈P

|D ∩ (D + s)|
)2

(37)

> |D|−1
(∑

s∈P

|A−As|
)2

≫ |D|3/M2 . (38)

Hence by Lemma 22 there are sets D′ ⊆ D, P ′ ⊆ P such that |D′| ≫M−2|D|, |P ′| ≫M−2|P |
and

|D′ + P ′| ≪M12|D′| .
Plünnecke–Ruzsa inequality (see e.g. [39]) yields

|nP ′ −mP ′| ≪M12(n+m)|D′| ≪M12(n+m)+5/2|P ′|, (39)

for every n,m ∈ N. By pigeonhole principle there is x such that

|(A− x) ∩ P ′| ≫ |P ′|/(2K) ≫ |A|/M5/2 .

Put A′ = A ∩ (P ′ − x). Thus, by (39) and the previous inequality, we get

|nA′ −mA′| ≪M12(n+m)+5/2|P ′| ≪M12(n+m)+5/2K|A′|

for every n,m ∈ N. ✷

Observe that if A′ is a set given by Theorem 23 then

M |A|4
K2

= E3(A) > E3(A
′) >

|A′|6
|A′ −A′|2 ,

hence

|A′ −A′| ≫M−O(1)K|A′| .
Therefore, by Theorem 23, we obtain

|(A′ −A′) + (A′ −A′)| 6MO(1)|A′ −A′| .

Applying Sanders theorem [25] for A′−A′, we obtain that A′−A′ is contained in an generalized

arithmetic progression of dimensionMO(1) and sizeKeM
O(1)|A′|. In particular, 4A′−4A′ contains

an arithmetic progressions of length |A′|(logM)−O(1)
.

Recall that a subset Λ = {λ1, . . . , λt} of a finite Abelian group G is called dissociated if∑t
j=1 εjλj = 0, where εj ∈ {0,−1, 1} implies εj = 0, j ∈ [t]. For a set Q ⊆ G let dim(Q) denote

the size of the largest dissociated subset of Q.

In [36] the following result was proved.



T. Schoen and I. D. Shkredov 17

Theorem 24 Let G be a finite Abelian group, A,B ⊆ G be two sets, and c ∈ (0, 1]. Suppose
E(A,B) > c|A||B|2; then there exist a set B1 ⊆ B such that dim(B1) ≪ c−1 log |A| and

E(A,B1) > 2−5
E(A,B). (40)

In particular, |B1| > 2−3c1/2|B|. If B = A then E(B1) > 2−10
E(A) and, consequently, |B1| >

2−4c1/3|A|.

We supplement Theorem 23 with the following statement.

Corollary 25 Let A be a subset of an abelian group. Suppose that |A−A| = K|A| and E3(A) =
M |A|4/K2. Then there exists A∗ ⊆ A such that |A∗| ≫ |A|/M and

dim(A∗) ≪M2(log |A|+ logK) .

P r o o f. By (37), we have

E(D,P ) ≫ K3|A|3
M2

and by Theorem 24 there exists P∗ ⊆ P with dim(P∗) ≪M2(log |A|+ logK) such that

|P∗|2|D| > E(D,P∗) ≫
K3|A|3
M2

Thus |P∗| ≫ K|A|/M . Again for some x we have |A∩ (P∗−x)| ≫ |P∗|/K ≫ |A|/M , so that the
assertion follows for A∗ = A ∩ (P∗ − x). ✷

7 Bounding energies in terms of |AA|
Let A ⊆ R and let AA = {ab : a, b ∈ A} and A/A = {a/b : a, b ∈ A, b 6= 0}. Denote by E

×
k (A)

the multiplicative energy of order k. Solymosi [37] using ingenious argument proved that

E
×(A) ≪ |A+A|2 log |A|

for every set of real numbers A.
In this section we prove some sum-product type estimates. Our basic tool is the following

Lemma 27, which is a generalization of Lemma 2.6 in [30] and an improvement of Lemma 4.1 in
[20]. We will make use of Szemerédi–Trotter theorem [38]. We call a set L of continuous plane
curve a pseudo-line system if any two members of L share at most one point in common.

Theorem 26 ([38]) Let P be a set of points and let L be a pseudo-line system. Then

I(P,L) = |{(p, l) ∈ P × L : p ∈ l}| ≪ |P|2/3|L|2/3 + |P|+ |L|.

Lemma 27 Let A,B,C be subsets of reals and let f be a strictly convex function. Suppose that
|A+B| 6M |B|. Then

|{x ∈ f(A) + C : (f(A) ∗ C)(x) > τ}| ≪ (M logM)2
|B||C|2
τ3

.
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P r o o f. Obviously, it is enough to prove the assertion for 1 ≪ τ 6 min{|A|, |C|}. For real
numbers α, β put lα,β = {(q, f(q)) : q ∈ A} + (α, β). We consider the pseudo-line system
L = {lα,β : α ∈ B, β ∈ C}, and the set of points P = (A+B)× (f(A) +C). Let Pτ be the set
of points of P belonging to at least τ curves from L. Clearly, |L| = |B||C| and I(Pτ ,L) > τ |Pτ |.

By Szemerédi-Trotter’s theorem we have

τ |Pτ | ≪ (|Pτ ||B|||C|)2/3 + |B||C|+ |Pτ |, (41)

so that |Pτ | ≪ |B|2|C|2/τ3.
Now suppose that (f(A) ∗ C)(x) > τ. Let X be the set of all a ∈ A such that there exists

c ∈ C with f(a) + c = x. Clearly |X| = (f(A) ∗ C)(x) and
∑

s∈X+B

(X ∗B)(s) = |X||B|,

so that there is 0 6 i = i(x) 6 logM such that

∑

2i−1τ/M6(X∗B)(s)62iτ/M

(X ∗B)(s) >
τ |B|

2 log(2M)
.

Hence each x with (f(A) ∗C)(x) > τ gives at least M |B|/2i(x)+1 log(2M) points p ∈ Pτ2i(x)−1/M

having the same ordinate. Furthermore, for at least |{x : (f(A)∗C)(x) > τ}|/ log(2M) elements
x we have the same choice for i(x) = i0. Thus, we have

M |B|
2i0 logM

|{x : (f(A) ∗ C)(x) > τ}|
logM

≪ |P2i0−1τ/M |.

In view of
|P2i0−1τ/M | ≪M3|B|2|C|2/23i0τ3,

we infer that

|{x : (f(A) ∗ C)(x) > τ}| ≪ (M logM)2
|B||C|2
τ3

. ✷

Order elements s ∈ A−A such that (A◦A)(s1) > (A◦A)(s2) > . . . > (A◦A)(st), t = |A−A|.
Taking in Lemma 27, A = B := logA (if necessary we consider A+ or (−A−)), C := A and
f = exp, we obtain the following bound.

Corollary 28 Suppose that A ⊆ R and |AA| 6M |A|. Then for every r > 1 we have

(A ◦ A)(sr) ≪ (M logM)2/3|A|/r1/3.

Thus, we have
E(A) ≪ |AA||A|3/2 log |A|

and
Ek(A) ≪ |AA|2k/3|A|k/3(log |A|)O(k)

for every k > 3. One can improve the above bounds for a dense subset of A provided that E×
3 (A)

is small.
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Corollary 29 Suppose that A ⊆ R and E
×
3 (A) 6M |A|6/|A/A|2. Then there exists a set A′ ⊆ A

such that |A′| > |A|/MO(1) and

E(A′) ≪MO(1)|AA|1/2|A|2,

and Ek(A
′) ≪MO(k)|AA|k/3|A|2k/3(log |A|)O(k) for every k > 3.

P r o o f. By Theorem 23 there is a set A′ ⊆ A such that |A′| > |A|/MO(1) and |A′A′A′| 6
MO(1)|A/A|. Furthermore,

MO(1) |A|4
|A/A| > E

×(A) > E
×(A′) >

|A′|4
|A′A′| ,

so that |A′A′| > |A/A|/MO(1) and |A′A′A′| 6MO(1)|A′A′|. We apply Lemma 27 with A = logA′

(if necessary we consider A′
+ or (−A′

−)) , B = logA′A′, C = A, f = exp . Thus

|{x : (A′ ∗A′)(x) > τ}| ≪ (M logM)O(1) |A′A′||A|2
τ3

,

and the assertion follows. ✷

We finish this section with some remarks concerning a sum–product kind result of Balog
[3]. He proved that for every finite sets A,B,C,D of reals we have

|AC +A||BC +B| ≫ |A||B||C|

and

|AC +AD||BC +BD| ≫ |B/A||C||D| ,

so, in particular, |AA+A| ≫ |A|3/2 and |AA+AA| ≫ |A||A/A|1/2. However, carefully following
his argument one can see that actually he obtained stronger inequalities

|(A×B) ·∆(C) +A×B| ≫ |A||B||C|

and

|(A×B) ·∆(C) + (A×B) ·∆(D)| ≫ |B/A||C||D| .

Assume for simplicity that A = B = C and put A×
q = A ∩Aq−1.

Theorem 30 Let A ⊆ R be a finite set and suppose that E×
3 (A) =M |A|6/|A/A|2. Then

|AA+A| ≫ |A||A/A|1/2M−1/2

and

|AA+AA| ≫ |A/A|3/2M−1 .
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P r o o f. We will closely follow Balog’s proof, so we only sketch the argument. Let li be the
line y = qix. Thus, (x, y) ∈ li ∩ A2 if and only if x ∈ A×

q . Let q1, . . . , qn ∈ A/A be such that

q1 < q2 < · · · < qn and |A×
qi | > |A|2/2|A/A|, so that

∑
i |A×

qi | > 1
2 |A|2. We multiply all points of

A2 lying on the line li by ∆(A), so we obtain |AA×
qi | points still belonging to the line li and then

we consider sumset of the resulting set with li+1 ∩ A2. Clearly, we obtain |AA×
qi ||A×

qi+1
| points

from the set (AA+A)2 lying between the lines li and li+1. Therefore, we have

|AA+A|2 >
n−1∑

i=1

|A×
qi ||AA×

qi+1
| ≫ |A|2

|A/A|

n−1∑

i=1

|AA×
qi+1

| ,

and by Lemma 21

|AA+A|2 ≫ |A|8
|A/A|E×

3 (A)
.

To prove the second assertion let q1, . . . , qn ∈ A/A be such that q1 < q2 < · · · < qn and
|AA×

qi | > |A/A|/2M. We multiply all points of li∩A2 and li+1∩A2 by ∆(A) and the we consider
their sumset. We obtain |AA×

qi+1
||AA×

qi | points that belong to (AA + AA)2. By Lemma 21 we
have ∑

q

|AA×
q | >

|A|6
E
×
3 (A)

=
|A/A|2
M

so that n≫ |A/A|/M. Therefore, it follows that

|AA+AA|2 >
∑

j

|AA×
qj ||AA×

qj+1
| ≫ |A/A|3

M2
,

which completes the proof. ✷

Remark 31 By Proposition 10, we have

∑

q∈A/A

|AA×
q | = |(A×A) ·∆∗(A)| ,

where ∆∗(A) = {(a, a−1) : a ∈ A}. Thus by the averaging argument, one gets

∑

q∈A/A : |AA×
q |>2−1|(A×A)·∆∗(A)|/|A/A|

|AA×
q | > 2−1|(A×A) ·∆∗(A)| , (42)

The proof of the Theorem 30 and formula (42) give another inequality on, namely

|AA+AA| ≫ |(A×A) ·∆∗(A)|
|A/A|1/2 .

We also formulate another consequence of Solymosi’s bound for multiplicative energy.
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Corollary 32 Let A ⊆ R be a finite set and suppose that E3(A) =M |A|6/|A−A|2. Then

|A(A+A)| ≫ |A|2
MO(1) log |A| .

P r o o f. By Theorem 23 there is a set A′ ⊆ A such that |A′| ≫ |A|/MO(1) and |4A′| ≪
MO(1)|A−A|. Moreover, observe that

|A′|4
|A′ +A′| 6 E(A′) 6 E(A) 6

M1/2|A|4
|A−A| ,

so that |A′ + A′| > |A − A|/MO(1) and |4A′| ≪ MO(1)|A′ + A′|. The required estimate follows
now from a general version of Solymosi’s result

E
×(A′, A′ +A′) 6 |A′ +A′||4A′| log |A|

and the trivial estimate E
×(A′, A′ +A′) ≫ |A′|2|A′ +A′|2/|A′(A′ +A′)|. ✷

8 Higher energies, eigenvalues and the magnification ratios

Let A,B ⊆ G be two finite sets. The magnification ratio RB [A] of the pair (A,B) (see e.g. [39])
is defined by

RB [A] = min
∅6=Z⊆A

|B + Z|
|Z| . (43)

We simply write R[A] for RA[A]. Petridis [21] obtained an amazingly short proof of the following
fundamental theorem.

Theorem 33 Let A ⊆ G be a finite set, and n,m be positive integers. Then

|nA−mA| 6 Rn+m[A] · |A| .

Another beautiful result (which implies Theorem 33) was proven also by Petridis [21].

Theorem 34 For any A,B,C, we have

|B + C +X| 6 RB [A] · |C +X| ,

where X ⊆ A and |B +X| = RB [A]|X|.

For a set B ⊆ Gk define

RB [A] = min
∅6=Z⊆A

|B +∆(Z)|
|Z| .

In the next two results we assume that X ⊆ A is such that |B+∆(X)| = RB [A]|X|. It is easy to
see that Petridis argument can be adopted to higher dimensional sumsets, giving a generalization
of Theorem 34.
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Theorem 35 Let A ⊆ G and B ⊆ Gk. Then for any C ⊆ G, we have

|B +∆(C +X)| 6 RB[A] · |C +X| .

A consequence of Theorem 35, we obtain a generalization of the sum version of the triangle
inequality (see, e.g. [8]).

Corollary 36 Let k be a positive integer, A,C ⊆ G and B ⊆ Gk be finite sets. Then

|A||B +∆(C)| 6 |B +∆(A)||A + C| .

P r o o f. Using Theorem 35, we have

|B +∆(C)| 6 |B +∆(C +X)| 6 RB [A] · |C +X| 6 |B +∆(A)|
|A| |A+ C|

and the result follows. ✷

Thus, we have the following sum–bases analog of inequality (29).

Corollary 37 Let k be a positive integer, and B⊕kB = Gk. Then for any set A ⊆ G, we have

|B +A| > |A| 1
k+1 |G| k

k+1 .

For an integer k > 1 define

R
(k)
B [A] = min

∅6=Z⊆A

|Bk +∆(Z)|
|Z| , (44)

where A,B ⊆ G. So, R
(1)
B [A] = RB [A]. The aim of this section is to obtain lower bounds for

R
(k)
B [A] in terms of the energies E2k+1(A,B). We make use of the singular–value decomposition

lemma (see e.g. [12]).

Lemma 38 Let n,m be two positive integers, n 6 m, and let X,Y be sets of cardinalities n
and m, respectively. Let also M = M(x, y) , x ∈ X, y ∈ Y, be n×m real matrix. Then there are
functions uj : X → R, vj : Y → R, and non–negative numbers λj such that

M(x, y) =

n∑

j=1

λjuj(x)vj(y) , (45)

where (uj), j ∈ [n], and (vj), j ∈ [n] form two orthonormal sequences, and

λ1 = max
w 6=0

‖Mw‖2
‖w‖2

, λ2 = max
w 6=0, w⊥u1

‖Mw‖2
‖w‖2

, . . . , λn = max
w 6=0, w⊥u1, ..., w⊥un−1

‖Mw‖2
‖w‖2

. (46)
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Next corollary collects further properties of singular values λj and vectors ui, vj, which we
shall use in the course of the proof of the main result.

Corollary 39 With the notation of the previous lemma, we have
• Muj = λjvj, j ∈ [n].
• The numbers λ2j and the vectors uj are all eigenvalues and eigenvectors of the matrix M∗M.

• The numbers λ2j and the vectors vj form n eigenvalues and eigenvectors of the matrix MM∗.
Another (m− n) eigenvalues of MM∗ equal zero.
• We have

∑n
j=1 λ

2
j =

∑
x,yM

2(x, y), and

n∑

j=1

λ4j =
∑

x,x′

∣∣∣
∑

y

M(x, y)M(x′, y)
∣∣∣
2
. (47)

P r o o f. The first and the last property follows directly from Lemma 38. To obtain the second
and the third statements let us note that

(M∗M)(x, y) =
n∑

j=1

λ2juj(x)uj(y)

and similarly forMM∗. Thus, by the first formula of the fourth statement, all another eigenvalues
of nonnegative definite matrix MM∗ equal zero. ✷

The quantity (47) is called the rectangular norm of M. We denote it by ‖M‖4
✷
. Further

properties of λj , ui, vj can be found in [12].
Let k > 1 be a positive integer, A,B ⊆ G be finite sets, and put X = Bk −∆(A), Y = A.

Clearly, |X| > |Y |. Define the matrix

M(x, y) = M
A,B
k (x, y) = A(y)B(y + x1) . . . B(y + xk) ,

where x = (x1, . . . , xk) ∈ X, y ∈ Y . If y ∈ Y is fixed then x = (x1, . . . , xk) runs over B
k −∆(y),

i.e. over the set of cardinality |B|k. If x = (x1, . . . , xk) ∈ X is fixed then y belongs to the set
A ∩ (B − x1) ∩ · · · ∩ (B − xk). Denote by λj = λj(A,B, k), j ∈ [|A|] the singular values of the
matrix M. By Corollary 39, we have

|A|∑

j=1

λ2j = |A||B|k , (48)

and
|A|∑

j=1

λ4j = E2k+1(A,B) (49)

because of

‖M‖4
✷
=
∑

y,y′

A(y)A(y′)
∑

x1,...,xk

∑

x′1,...,x
′
k

B(y + x1) . . . B(y + xk) · B(y + x′1) . . . B(y + x′k)×
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×B(y′ + x1) . . . B(y′ + xk) · B(y′ + x′1) . . . B(y′ + x′k) = E2k+1(A,B) .

We make use of some operators, which were introduced in [31].

Definition 40 Let ϕ,ψ be two complex functions. By Tϕψ denote the following operator on the

space of functions GC

(Tϕψf)(x) = ψ(x)(ϕ̂c ∗ f)(x) , (50)

where f is an arbitrary complex function on G.

Let E ⊆ G be a set. Denote by T
ϕ
E the restriction of operator TϕE onto the space of the

functions with supports on E. It was shown in [31], in particular, that operators TϕE and T
ϕ
E

have the same non–zero eigenvalues. If ϕ is a real function then the operator T
ϕ
E is symmetric.

If ϕ is a nonnegative function then the operator is nonnegative definite. The action of T
ϕ
E can

be written as

〈TϕEu, v〉 =
∑

x

(ϕ̂c ∗ u)(x)v(x) =
∑

x

ϕ(x)û(x)v̂(x) , (51)

where u, v are arbitrary functions such that suppu, supp v ⊆ E. Further properties of such
operators can be found in [31].

Using Lemma 38 and the definitions above we can give another characterization of singular
values λj. We express this in the next proposition.

Proposition 41 We have

λ21 = max
‖w‖2=1, suppw⊆A

∑

s

(w ◦ w)(s)(B ◦B)(s)k ,

λ22 = max
‖w‖2=1, suppw⊆A,

w⊥w1

∑

s

(w ◦ w)(s)(B ◦B)(s)k ,

. . . (52)

λ2|A| = max
‖w‖2=1, suppw⊆A,
w⊥w1, ..., w⊥w|A|−1

∑

s

(w ◦ w)(s)(B ◦B)(s)k ,

where w1, . . . , w|A| are eigenvectors of M∗M. In particular, λ2j (A,B, k) = λ2j (±A,±B, k), j ∈
[|A|]. Furthermore, if G is a finite group, then λ2j coincide with eigenvalues of the operator T

ϕ
A

with ϕ(x) = 1
|G|((B ◦B)k)̂ (x).

P r o o f. For x = (x1, . . . , xk) ∈ Bk and an arbitrary function w, suppw ⊆ A, we have

‖Mw‖22 =
∑

x1,...,xk

∣∣∣
∑

y

M(x, y)w(y)
∣∣∣
2

=
∑

x1,...,xk

∑

y,y′

w(y)w(y′)B(y + x1) . . . B(y + xk) · B(y′ + x1) . . . B(y′ + xk)

=
∑

s

(w ◦ w)(s)(B ◦B)(s)k ,
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which gives (52). Further, by the obtained formula and the fact (Cc ◦Cc)(x)k = (C ◦C)(x)k for
any set C ⊆ G, we get λ2j(A,B, k) = λ2j(±A,±B, k), j ∈ [|A|]. Finally, the last assertion easily
follows from (51). ✷

Thus, taking w(x) = A(x)/|A|1/2, we obtain

λ21 >
Ek+1(A,B)

|A| . (53)

Note also the function ϕ above satisfies ϕc(x) = ϕ(x) and the following holds ((B ◦B)k)c(x) =
(B ◦B)k(x).

We are in position to prove a lower bound for R
(k)
B [A] and even for more general quantities

(see estimate (56)) in terms of the energies E2k+1(A,B).

Theorem 42 Let A,B ⊆ G be sets, and k > 1 be a positive integer. Then

R
(k)
B [A] >

|B|2k
λ21(A,B, k)

, (54)

and

R
(k)
B [A] >

|B|2k

E
1/2
2k+1(A,B)

. (55)

Moreover, suppose that A1 ⊆ A is a set and B(y) ⊆ Bk, y ∈ A1 is an arbitrary family of sets.
Then

∣∣∣
⋃

y∈A1

(B(y) ±∆(y))
∣∣∣ >

(∑
y∈A1

|B(y)|
)2

Ek+1(A,B)
. (56)

P r o o f. By the definition of the matrix M, we see that for every nonempty Z ⊆ A we have

σ := 〈MZ,Bk −∆(Z)〉 =
∑

x,y

M(x, y)Z(y)(Bk −∆(Z))(x) = |Z||B|k . (57)

Using the extremal property of λ1, we get

σ 6 λ1|Z|1/2|Bk −∆(Z)|1/2 .

Thus
|B|2k
λ21

6
|Bk −∆(X)|

|X| = R
(k)
B [−A] ,

where X ⊆ A is a set that achieves the minimum in (44). By Proposition 41, λ2j(A,B, k) =

λ2j(±A,±B, k), for all j ∈ [|A|], which implies (54). Finally, (55) follows from (49).
To prove (56) it is enough to notice that by (11)

∣∣∣
⋃

y∈A1

(B(y) ±∆(y))
∣∣∣ >

(∑
y∈A1

|B(y)|
)2

E(∆(A), Bk)
=

(∑
y∈A1

|B(y)|
)2

Ek+1(A,B)
.
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This completes the proof. ✷

Observe that from (55) it follows that for every A1, A2 ⊆ A we have

|A1 ±A2| >
|A2|2/k|A1|2

E
1/k
k+1(A1, A2)

>
|A2|2/k|A1|2

E
1/k
k+1(A)

,

for every k > 1.
The theorem above implies some results for sets with small higher energy. For example,

multiplicative subgroups Z/pZ, convex subsets of R (i.e. sets A = {a1, . . . , an}< such that
ai − ai−1 < ai+1 − ai for every 2 6 i 6 n − 1.) Another examples are provided by subsets
of R with small product sets (see section 7). We consider here just the case of multiplicative
subgroups.

Corollary 43 Let p be a prime number. Suppose that Γ is a multiplicative subgroup of Z/pZ
with |Γ| = O(p2/3). Then for every set Γ′ ⊆ Γ, we have

|Γ + Γ′| ≫ |Γ′| ·
( |Γ|
log |Γ|

)1/2

. (58)

Furthermore, for every k > 2, we get

R
(k)
Γ [Γ] ≫ |Γ|k−1/2 .

P r o o f. Indeed, by Lemma 3.3 in [29], we have E3(Γ) = O(|Γ|3 log |Γ|), and El(Γ) = O(|Γ|l), for
l > 4. Now the assertion follows directly from (55). ✷

We show that the bounds in Corollary 43 can be improved for multiplicative subgroups. It
turns out that in this case we know all singular values λ2j as well as all eigenfunctions.

Let p be a prime number, q = ps for some integer s > 1. Let Fq be the field with q
elements, and let Γ ⊆ Fq be a multiplicative subgroup. Denote by t the cardinality of Γ, and
put n = (q − 1)/t. Let also g be a primitive root, then Γ = {gnl}l=0,1,...,t−1. Let χα(x), α ∈ [t]
be the orthogonal family of multiplicative characters on Γ, that is

χα(x) = Γ(x)e

(
αl

t

)
, x = gnl , 0 6 l < t .

Proposition 44 Let Γ ⊆ Fq be a multiplicative subgroup, and let ϕ be a Γ–invariant function.
Then the functions χα(x) are eigenfunctions of the operator T

ϕ
Γ. If ϕ has non–negative Fourier

transform then Ek+1(Γ, ϕ̂c)/(|Γ|q) is the maximal eigenvalue corresponding with the eigenfunc-
tion Γ(x). Furthermore, for any Γ–invariant function ψ, ψ(x) = ψ(−x), ψ̂(x) > 0 and an
arbitrary real function u with support on Γ, we have

∑

x

ψ(x)(u ◦ u)(x) > |Γ|−2
∣∣∣
∑

x∈Γ

u(x)
∣∣∣
2
·
∑

x

ψ(x)(Γ ◦ Γ)(x) . (59)
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P r o o f. We have to show that

µf(x) = Γ(x)(ϕ̂c ∗ f)(x) , µ ∈ R

for f(x) = χα(x). By the assumption ϕ(x) is a Γ–invariant function, whence so is ϕ̂c. Thus, for
every γ ∈ Γ, we have

(ϕ̂c ∗ f)(γ) =
∑

z

f(z)ϕ̂c(γ − z) =
∑

z

f(γz)ϕ̂c(γ − γz)

= f(γ) ·
∑

z

f(z)ϕ̂c(1− z) = f(γ) · (ϕ̂c ∗ f)(1) .

Further, for every α ∈ [|Γ|], Ek+1(Γ, ϕ̂c) > Ek+1(χα, ϕ̂c).
Next, we prove (59). Let ϕ be such that ψ = ϕ̂c. Since ψ(x) = ψ(−x), it follows that ϕ is a

real function and, consequently, the operator T
ϕ
Γ is symmetric. By assumption ψ̂(x) > 0, so T

ϕ
Γ

is nonnegative definite and all its eigenvalues µα(T
ϕ
Γ) are nonnegative. If u =

∑
α cαχα then

∑

x

ψ(x)(u ◦ u)(x) = 〈TϕΓu, u〉 =
∑

α

|cα|2|Γ|µα(TϕΓ) > |Γ|−2〈u,Γ〉2
∑

x

ψ(x)(Γ ◦ Γ)(x)

and the result follows. ✷

In particular, we have equality in (53) for multiplicative subgroups. Note also that an analog
of the proposition above holds for an arbitrary tiling not necessary for tiling by cosets.

Corollary 45 Let Γ∗ ⊆ Fq be a coset of a multiplicative subgroup Γ. Then for every set Γ′ ⊆ Γ∗,
and every Γ–invariant set Q, we have

|Q+ Γ′| > |Γ′| · |Γ||Q|2
E2(Γ∗, Q)

. (60)

If Q(y) ⊆ Qk, y ∈ Γ′, is an arbitrary family of sets, then
∣∣∣
⋃

y∈Γ′

(Q(y) ±∆(y))
∣∣∣ > |Γ|

|Γ′|Ek+1(Γ∗, Q)
·
(∑

y∈Γ′

|Q(y)|
)2
.

Furthermore, for each k > 2, we have

R
(k)
Q [Γ∗] >

|Γ||Q|2k
Ek+1(Γ∗, Q)

. (61)

P r o o f. For every ξ ∈ F∗
q/Γ and α ∈ [|Γ|], let us define the functions χξα(x) := χα(ξ

−1x).

Then, clearly suppχξα = ξ · Γ and χξα(γx) = χα(γ)χ
ξ
α(x) for all γ ∈ Γ. Using the argument

from Proposition 44 it is easy to see that the functions χξα are orthogonal eigenfunctions of the
operator T

ϕ
Γ∗
. This completes the proof. ✷

It is easy to see that in the case Fq = Z/pZ, p is a prime number, |Γ| = O(p2/3) the bound
(61) is best possible up to a constant factor. In particular, it gives asymptotic formulas for the
sizes of the sets Γk ±∆(Γ), k > 3.

To apply the inequality (59) of Proposition 44 we need a lemma (see, e.g. [35] or [17, 18]).
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Lemma 46 Let p be a prime number, Γ ⊆ F∗
p be a multiplicative subgroup, and Q,Q1, Q2 ⊆ F∗

p

be any Γ–invariant sets such that |Q||Q1||Q2| ≪ |Γ|5 and |Q||Q1||Q2||Γ| ≪ p3. Then

∑

x∈Q

(Q1 ◦Q2)(x) ≪ |Γ|−1/3(|Q||Q1||Q2|)2/3 . (62)

Using Lemma 46, one can easily deduce bounds for moments of convolution of Γ, e.g. (see
[29]) that E(Γ) = O(|Γ|5/2) and E3(Γ) = O(|Γ|3 log |Γ|), provided that |Γ| = O(p2/3).

Corollary 47 Let p be a prime number, and Γ ⊆ F∗
p be a multiplicative subgroup, |Γ| = O(p1/2).

Then

E(Γ) ≪ |Γ| 2312 |Γ± Γ| 13 log 1
2 |Γ| . (63)

and

E(Γ) ≪ |Γ| 3118 |Γ± Γ| 49 log 1
2 |Γ| . (64)

P r o o f. We have E(Γ) = O(|Γ|5/2). One can assume that

|Γ± Γ| = O

(
E
3(Γ)

|Γ|23/4 log1/2 |Γ|

)
= O

(
|Γ|7/4

log1/2 |Γ|

)
(65)

because otherwise inequality (63) is trivial. To obtain (63), we use a formula from [20] (see
Lemma 2.5) (∑

x

(Γ ◦ Γ)3/2(x)
)2

|Γ|2 6 E3(Γ) · E(Γ,Γ± Γ) .

Further, by the assumption |Γ| = O(p3/4) and Lemma 46, we have (see also the proof of Theorem
1.1 from [20])

E
3(Γ) ≪ |Γ|3 ·

(∑

x

(Γ ◦ Γ)3/2(x)
)2
.

Combining the last two formulas, we obtain

E
3(Γ) ≪ |Γ|E3(Γ) · E(Γ,Γ± Γ) . (66)

We show that for every Γ–invariant set Q we have

∑

x

(Q ◦Q)(x)(Γ ◦ Γ)2(x) > |Γ|−2
E(Γ) · E(Γ, Q) . (67)

By (59) of Proposition 44 with ψ(x) = (Q ◦Q)(x) and u(x) = Γs(x) = (Γ ∩ (Γ− s))(x), we get

∑

x

(Q ◦Q)(x)(Γs ◦ Γs)(x) >
|Γs|2
|Γ|2 E(Q,Γ) . (68)
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Summing over s ∈ Γ− Γ, we obtain (67). Inserting (67) in (66), we infer that

E
4(Γ) ≪ |Γ|3E3(Γ) ·

∑

x

(Q ◦Q)(x)(Γ ◦ Γ)2(x) ,

where Q = Γ± Γ. By the assumption |Γ| = O(p1/2). Let us prove that

∑

x

(Q ◦Q)(x)(Γ ◦ Γ)2(x) ≪ |Q|4/3
|Γ|2/3 |Γ|

7/3 log |Γ| ≪ |Q|4/3|Γ|5/3 log |Γ| . (69)

From (67) and (66) it follows that the summation in the (69) can be taken over x such that

(Q ◦Q)(x) >
E(Γ, Q)

2|Γ|2 ≫ E
3(Γ)

|Γ|3E3(Γ)
:= H . (70)

Hence, it is sufficient to prove that

∑

x : (Q◦Q)(x)>H

(Q ◦Q)(x)(Γ ◦ Γ)2(x) ≪ |Q|4/3|Γ|5/3 log |Γ| . (71)

Let (Q ◦ Q)(ξ1) > (Q ◦ Q)(ξ2) > . . . and (Γ ◦ Γ)(η1) > (Γ ◦ Γ)(η2) > . . . , where ξ1, ξ2, . . . and
η1, η2, . . . belong to distinct cosets. Applying Lemma 46 once more, we get

(Q ◦Q)(ξj) ≪
|Q|4/3
|Γ|2/3 j

−1/3 , and (Γ ◦ Γ)(ηj) ≪ |Γ|2/3j−1/3 , (72)

provided that j|Γ||Q|2 ≪ |Γ|5 and j|Γ||Q|2|Γ| ≪ p3. We have j ≪ |Q|4/(|Γ|2H3), E3(Γ) =
O(|Γ|3 log |Γ|) and |Γ| = O(p1/2), thus, the last conditions are satisfied. Applying (72), we obtain
(69). Using the fact E3(Γ) = O(|Γ|3 log |Γ|), and the formula (69), we get

E
4(Γ) ≪ |Γ|6 log |Γ| · |Q|4/3|Γ|5/3 log |Γ|

and (63) is proved.

To show (64), we just put u(x) = (Γ∩ (Q− s))(x) in (68) instead of u(x) = Γs(x). We have

∑

x

(Q ◦Q)2(x)(Γ ◦ Γ)(x) > |Γ|−2 · E2(Γ, Q) , (73)

where Q = Γ± Γ. Applying (66), we get

∑

x

(Q ◦Q)2(x)(Γ ◦ Γ)(x) · |Γ|4E2
3(Γ) > E

6(Γ) . (74)

As before, we need an analog of the estimate (69)

∑

x

(Q ◦Q)2(x)(Γ ◦ Γ)(x) ≪ |Q|8/3|Γ|1/3 log |Γ| . (75)
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Again, using the inequality (73) and the definition of H (70), it is sufficient to prove that

∑

x : (Q◦Q)(x)>H

(Q ◦Q)2(x)(Γ ◦ Γ)(x) ≪ |Q|8/3|Γ|1/3 log |Γ| .

One can assume that an analog of (65) holds

|Q| = O

(
E
9/4(Γ)

|Γ|31/8 log1/2 |Γ|

)
= O

(
|Γ|7/4

log1/2 |Γ|

)
(76)

because otherwise the inequality (64) is trivial. Using previous arguments, the bound (76) and
applying Lemma 46, and inequalities |Γ| ≪ p1/2, E3(Γ) ≪ |Γ|3 log |Γ|, we get the required
estimate. Inserting (75) in (74), and using E3(Γ) ≪ |Γ|3 log |Γ| once again, we obtain (64). ✷

In particular, if E(Γ) ≫ |Γ|5/2 then |Γ ± Γ| ≫ |Γ| 74−ǫ, for any ǫ > 0. At the moment it

is known (see [35]), unconditionally, that |Γ − Γ| ≫ |Γ| 53−ǫ, for an arbitrary ǫ > 0 and any
multiplicative subgroup Γ with |Γ| = O(p1/2). Note also that the condition |Γ| = O(p1/2) in the
previous result can be slightly relaxed.

Corollary 48 Let Γ ⊆ F∗
p be a multiplicative subgroup such that −1 ∈ Γ, |Γ| > pκ, where

κ > 99
203 . Then for all sufficiently large p we have F∗

p ⊆ 6Γ.

P r o o f. Put S = Γ + Γ, n = |Γ|, m = |S|, and ρ = maxξ 6=0 |Γ̂(ξ)|. By a well–known upper
bound for Fourier coefficients of multiplicative subgroups (see e.g. Corollary 2.5 from [29]) we
have ρ 6 p1/8E1/4(Γ). If F∗

p 6⊆ 6Γ then for some λ 6= 0, we obtain

0 =
∑

ξ

Ŝ2(ξ)Γ̂2(ξ)λ̂Γ(ξ) = m2n3 +
∑

ξ 6=0

Ŝ2(ξ)Γ̂2(ξ)λ̂Γ(ξ) .

Therefore, by the estimate ρ 6 p1/8E1/4(Γ) and Parseval identity we get

n3m2
6 ρ3mp≪ (p1/8E1/4)3mp .

Now applying formula (64) and m≫ n5/3 log−1/2 n (see [35]), we obtain the required result. ✷

The inclusion F∗
p ⊆ 6Γ was obtained in [35] under the assumption κ > 33

67 .

9 Two versions of Balog–Szemerédi–Gowers theorem

We show here two versions of the Balog–Szemerédi–Gowers theorem (see Lemma 22) in the
case when Ek(A) is not much bigger than the trivial lower bound in terms of additive energy
i.e. E(A)k−1/|A|2k−4. The first result (Theorem 51) provides an improvement on the size of a
”structured” subset A′ of A and the size of A′ −A′, as well, assuming that E2+ε(A) is ”small”.
Our method essentially follows, with some modifications, the Gowers proof [11]. Our second
theorem (Theorem 53) gives a near optimal estimate on |A′−A′|, again for a very large A′ ⊆ A,
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however we have to assume that E3+ε(A) is small. To prove Theorem 53 we develop the idea
used in the proof of Theorem 23. At the end of this section we establish some results concerning
sumsets and energies of multiplicative subgroups and convex sets.

We will need two lemmas. The first one is a version of Gowers Lemma 7.4 [11], see also
Lemma 1.9 in [27].

Lemma 49 Let I and S be sets with |I| = n and |S| = m. Suppose that Si ⊆ S, i ∈ I, is a
family of sets such that ∑

i,j∈I

|Si ∩ Sj| > δ2mn2 ,

where 0 6 δ 6 1. Let η > 0. Then there is J ⊆ I , |J | > δn/
√
2 such that

∣∣{(i, j) ∈ J × J : |Si ∩ Sj| > ηδ2n/2
}∣∣ > (1− η)|J |2 . (77)

P r o o f. We have

δ2mn2 6
∑

i,j∈I

|Si ∩ Sj| =
∑

α

∑

i,j∈I

Si(α)Sj(α) . (78)

For α ∈ S, we put Kα = {i ∈ I : α ∈ Si}. Clearly Kα(i) = Si(α), so we can rewrite (78) as

δ2mn2 6
∑

α

|Kα|2 .

Let

Y =
{
(i, j) ∈ I × I : |Si ∩ Sj| < ηδ2m/2

}
,

then ∑

α∈S

|Kα ×Kα ∩ Y | =
∑

(i,j)∈Y

|Si ∩ Sj| < ηδ2mn2/2 ,

so that ∑

α∈S

|Kα|2 − η−1
∑

α∈S

|Kα ×Kα ∩ Y | > δ2mn2/2 .

Thus, there exists α ∈ S such that |Kα| > δn/
√
2 and |Kα ×Kα ∩ Y | < η|Kα|2. It is enough to

observe that the assertion holds with J = Kα. ✷

Corollary 50 With the assumption of Lemma 49 there is a set J ′ ⊆ J of size at least 2−5δn
such that for every i, j ∈ J ′ there are at least 2−2δn elements k ∈ I with

|Si ∩ Sk| > 2−4δ2m, |Sj ∩ Sk| > 2−4δ2m.

P r o o f. Applying the previous lemma with η = 1/8, we obtain a set J satisfying (77). Let V
be the set of all pairs (i, j) ∈ J × J such that |Si ∩ Sj| > 2−1ηδ2m = 2−4δ2m. Then we have

∑

(i,j)∈J×J

V (i, j) > (1− η)|J |2 =
7

8
|J |2 .
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Put J ′ =
{
i ∈ J :

∑
j V (i, j) > 3

4 |J |
}
. Clearly

∑

i∈J ′

∑

j∈J

V (i, j) >
1

16
|J |2 ,

whence |J ′| > 2−4|J | > 2−5δn. Furthermore, observe that if i, j ∈ J ′, then

∑

k

V (i, k)V (j, k) > |J |/2 ,

as required. ✷

Now we are ready to prove the first main result of this section.

Theorem 51 Let A be a subset of an abelian group. Suppose that E(A) = |A|3/K and E2+ε(A) =
M |A|3+ε/K1+ε . Then there exists A′ ⊆ A such that |A′| ≫ |A|/(2M)1/ε and

|A′ −A′| ≪ 2
6
εM

6
εK4|A′| .

P r o o f. Observe that

|A|3
K

= E(A) =
∑

a

A(a)
∑

b

A(b)(A ◦A)(a− b) .

For a ∈ A, we set
Sa =

{
b ∈ A : (A ◦ A)(a− b) > |A|/(2K)

}
,

hence ∑

a

A(a)
∑

b

Sa(b)(A ◦A)(a − b) >
|A|3
2K

.

By Hölder inequality we have

∑

a

A(a)
∑

b

Sa(b)(A ◦ A)(a− b) 6
∑

a

A(a)
(∑

b

Sa(b)
) ε

1+ε
(∑

b

Sa(b)(A ◦A)(a − b)1+ε
) 1

1+ε

6

(∑

a

|Sa|
) ε

1+ε
(∑

a

A(a)
∑

b

A(b)(A ◦A)(a− b)1+ε
) 1

1+ε

6

(∑

a

|Sa|
) ε

1+ε
E2+ε(A)

1
1+ε , (79)

so that ∑

a

|Sa| >
|A|2

2
1+ε
ε M

1
ε

(80)

and ∑

a,a′∈A

|Sa ∩ Sa′ | >
|A|3

2
2+2ε

ε M
2
ε

.
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We apply Corollary 50 with I = S = A, n = m = |A|, and the family {Sa}, a ∈ A. Set

δ = 2−
1+ε
ε M− 1

ε . By Corollary 50 there exists a set A′ ⊆ A, |A′| > 2−5δn≫ |A|/2 1
εM

1
ε such that

for every x, y ∈ A′ there are at least 2−2δn ≫ |A|/2 1
εM

1
ε elements z ∈ A with

|Sx ∩ Sz|, |Sy ∩ Sz| > 2−4δ2m.

For each b ∈ Sx ∩ Sz we have (A ◦ A)(x − b), (A ◦ A)(z − b) > |A|/(2K). Similarly, for each
b ∈ Sy ∩ Sz we have (A ◦ A)(y − b), (A ◦ A)(z − b) > |A|/(2K). Therefore,

((A ◦A) ◦ (A ◦ A))(x− z) >
∑

b

(A ◦ A)(x− b)(A ◦ A)(z − b) > 2−4δ2m
|A|2
4K2

≫ |A|3

2
2
εM

2
εK2

and the same holds for y − z. Thus, there are ≫ |A|7/(2 5
εM

5
εK4) ways to write x − y in the

form a1 − a2 + a3 − a4 + a5 − a6 + a7 − a8, ai ∈ A. Hence

|A′ −A′| |A|7

2
5
εM

5
εK4

≪ |A|8

and the assertion follows. ✷

Corollary 52 Let A be a subset of an abelian group. Suppose that E(A) = |A|3/K and E3(A) =
M |A|4/K2 . Then there exists A′ ⊆ A such that |A′| ≫ |A|/M and

|A′ −A′| ≪M6K4|A′| .

Now, using a different approach, we prove the following almost optimal version of Balog–
Szemerédi–Gowers Theorem, provided that E3+ε(A), ε > 0, is small.

Theorem 53 Suppose that E(A) = |A|3/K and E3+ε(A) = M |A|4+ε/K2+ε, where ε ∈ (0, 1].

Then there exists A′ ⊆ A such that |A′| ≫M
− 3+6ε

ε(1+ε) |A| and

|nA′ −mA′| ≪M
6(n+m) 3+4ε

ε(1+ε)K|A′|

for every n,m ∈ N.

P r o o f. Let P be the set of popular differences with at least |A|/2K representations. Similarly,
as in the proof of Theorem 23 we have

∑

s∈P

(A ◦ A)(s)2 > 1

2
E(A) >

|A|3
2K

and
|A|3
K

≪ E3+ε(A)
2

3+ε |P | 1+ε
3+ε ,
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so |P | ≫ K|A|/M2/(1+ε). Furthermore, by Hölder inequality

∑

s∈P

(A ◦A)(s) ≫ E(A)
2+ε
1+ε

E3+ε(A)
1

1+ε

≫M− 1
1+ε |A|2 . (81)

As in Theorem 51, put Sa = A ∩ (a − P ), a ∈ A i.e. Sa is the set of all b ∈ A such that
a − b ∈ P. We show that P has huge additive energy. To do this we apply a generalization of
Katz–Koester transform. Observe that for every s ∈ A−A we have

⋃

a∈As

(
a− (Sa ∩ Sa−s)

)
⊆ P ∩ (P + s).

From Cauchy-Schwarz inequality it follows that

(P ◦ P )(s) >
∣∣∣
⋃

a∈As

(
a− (Sa ∩ Sa−s)

)∣∣∣ >
(
∑

a∈As
|Sa ∩ Sa−s|)2

E(As, A)
. (82)

By (81), we have

∑

s∈P

(A ◦ A)(s) =
∑

a∈A

|Sa| := γ|A|2 ≫ max(M− 1
1+ε ,K−1|A|−1|P |) |A|2 , (83)

so that ∑

a,a′∈A

|Sa ∩ Sa′ | =
∑

s

∑

a∈As

|Sa ∩ Sa−s| ≫ γ2|A|3.

Let p > 1 and q > 1, then by Hölder inequality and Lemma 2

γ2|A|3 ≪
(∑

s

(
∑

a∈As
|Sa ∩ Sa−s|)q

E(As, A)q/2

) 1
q
(∑

s

E(As, A)
q

2(q−1)

) q−1
q

≪ E q
2
(P )

1
q

(∑

s

|As|
(p−1)q
(q−1)pE1+p(As, A)

q
2p(q−1)

) q−1
q

6 E q
2
(P )

1
q

(∑

s

|As|
2(p−1)q

2p(q−1)−q

) 2p(q−1)−q
2pq

E2+p(A)
1
2p

= E q
2
(P )

1
q E 2(p−1)q

2p(q−1)−q

(A)
2p(q−1)−q

2pq E2+p(A)
1
2p .

In particular, taking p = 1 + ε, q = 2p, we get

γ2|A|3 ≪ E1+ε(P )
1

2+2ε |A| 2ε
1+εE3+ε(A)

1
2+2ε ,

hence

E1+ε(P ) ≫ (γ2|A|3− 2ε
1+ε )2+2ε

E3+ε(A)
−1
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In view of the inequality K|A|/M 2
1+ε ≪ |P | 6 2K|A| and the definition of γ, we infer that

E(P ) > |P |2− 2
εE1+ε(P )

1
ε (84)

≫ |P |2− 2
εγ4+

4
ε |A| 6ε+2

E3+ε(A)
− 1

ε (85)

=
γ4K|A|
|P |

(
γ4K2|A|2
M |P |2

) 1
ε

|P |3 (86)

≫ M−β|P |3 , (87)

where β = 3+4ε
ε(1+ε) . Note that the first inequality in the formula above follows certainly from

Hölder for ε ∈ (0, 1) but it is also takes place for ε = 1.
Now we proceed as in the proof of Theorem 23. By Balog–Szemerédi–Gowers Theorem 22

there exists a set P ′ ⊆ P such that |P ′| ≫M−β|P |, and

|P ′ + P ′| ≪M6β|P ′| ,

so that by Plünnecke–Ruzsa inequality

|nP ′ −mP ′| ≪M6(n+m)β |P ′| .

By the pigeonhole principle, we find x such that

|(A− x) ∩ P ′| ≫ |P ′|/K ≫ |A|/Mβ+ 2
1+ε .

Setting A′ = A ∩ (P ′ + x), the assertion follows. ✷

Remark 54 In the proof of the theorem above we need the assumption that the energy E4(A) is
small. However, for some sets, for instance multiplicative subgroups, one can apply the inequality
E3(As, A) 6

|As|
|A| E3(A) (see Proposition 44) to obtain the same result.

Corollary 55 Suppose that E(A) = |A|3/K and E4(A) =M |A|5/K3. Then there exists A′ ⊆ A
such that |A′| ≫M−9/2|A| and

|nA′ −mA′| ≪M21(n+m)K|A′|

for every n,m ∈ N.

Remark 56 Observe that Corollary 55 can be proved by arguments used in the proof of Lemma
3. Indeed, let G be the popularity graph on A i.e. for a, b ∈ A, {a, b} is an edge in G if and only
if (A ◦ A)(a− b) > |A|/(2K). By (83)

|E(G)| =
∑

x∈P

(A ◦ A)(x) := γ|A|2 ≫ max(M−1/2,K−1|A|−1|P |)|A|2 .

Let C be the family of 4−tuples (a1, a2, a3, a4) ∈ V (G) such that {a1, a2}, {a2, a3}, {a3, a4}, {a4, a1} ∈
E(G). Then we have

|C| > γ4|A|4 .
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Let us consider a map ψ : C → P 4 defined in the following way. If C = (a1, a2, a3, a4) ∈ C then

ψ(C) = (a1 − a2, a2 − a3, a3 − a4, a4 − a1) .

Arguing as in Lemma 3, we get

E(P ) >
|C|2
E4(A)

≫ γ8M−1K3|A|3

The rest of the proof remains the same.

As an applications of ideas that appeared Lemma 3 and Theorem 53, we also prove some
estimates on the size and the additive energy of multiplicative subgroups of Fp and convex sets.

Corollary 57 Let A be a convex set. Then

|A−A||A| 2858 ≫ E(A)15 log−
15
2 |A| . (88)

Further, let p be a prime number, Γ be a multiplicative subgroup, |Γ| ≪ √
p. Then

|Γ− Γ||Γ|33 ≫ E(Γ)14 log−
15
2 |Γ| . (89)

P r o o f. Let D = A − A, E(A) = |A|3/K. Let also P be the set of popular differences with at
least |A|/2K representations. As before

∑

a∈A

|Sa| >
E(A)2

4E3(A)
≫ |A|3K−2 log−1 |A| ,

and hence ∑

a,a′∈A

|Sa ∩ Sa′ | =
∑

s∈D

∑

a∈As

|Sa ∩ Sa−s| ≫ |A|5K−4 log−2 |A| .

Further, by (82), we have

|A|10K−8 log−4 |A| ≪
(∑

s∈D

∑

a∈As

|Sa ∩ Sa−s|
)2

≪
(∑

s∈D

|Ps|1/2 · E(As, A)1/2
)2

(90)

≪ E3(A)
∑

s∈D

(P ◦ P )(s) . (91)

Whence ∑

s∈D

(A ◦A ◦A ◦ A)(s) ≫
( |A|
K

)2∑

s∈D

(P ◦ P )(s) ≫ |A|9K−10 log−5 |A| .

By Theorem 1 from [14], we get

|A|4−4/3+1/12|D|2/3 ≫ |A|9K−10 log−5 |A| ,
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so

|D|K15 ≫ |A| 758 log−
15
2 |A|

and finally,

|D||A| 2858 ≫ E(A)15 log−
15
2 |A| .

To get (89) return to (90) and obtain

|Γ|7K−8 log−5 |Γ| ≪
∑

s∈D

(P ◦ P )(s) .

We can suppose that |P |2|D| ≪ (K|Γ|)2|D| ≪ |Γ|5, because otherwise |D| ≫ |Γ|3K−2 and (89)
holds. Thus, |P |2|D||Γ| ≪ |Γ|6 ≪ p3 by the assumption |Γ| ≪ √

p. Applying Lemma 46, we have

|Γ|7K−8 log−5 |Γ| ≪ (K|Γ|)4/3|D|2/3
|Γ|1/3 .

In other words

|Γ|9 ≪ |D|K14 log
15
2 |Γ| ≪ |D||Γ|42E−14(Γ) log

15
2 |Γ|

and we obtain (89). This completes the proof. ✷

In particular, if E(A) ∼ |A| 52 then |A−A| ≫ |A| 158 log−
15
2 |A| for any convex set. Similarly, if

E(Γ) ∼ |Γ| 52 then |Γ−Γ| ≫ |Γ|2 log− 15
2 |Γ| for an arbitrary multiplicative subgroup Γ, |Γ| ≪ √

p.

Corollary 57 easily implies that |A − A| ≫ |A| 32+ǫ, ǫ > 0 for any convex set or multiplicative
subgroup of size O(

√
p).

10 Relations between Ek(A) and Tl(A)

Notice that from Corollary 55 one can deduce that there exists a constant C > 0 such that if
E(A) = |A|3/K and E4(A) =M |A|5/K3 then

Tl(A) >
|A|2l−1

K(CM)Cl
.

Theorem 53 gives similar bound provided by E3+ε(A) =M |A|4+ε/K2+ε. The proof of Theorem
51 bring up the following question. Does there exist a set A such that E(A) = |A|3/K, E3(A) =
M1|A|4/K2, and Tl(A) = M2|A|2l−1/K l−1, l > 3 with M1,M2 relatively small simultaneously?
Note that if E(A) = |A|3/K then the estimates E3(A) > |A|4/K2, Tl(A) > |A|2l−1/K l−1 easily
follows from the Cauchy–Schwarz inequality. Interesting, that the answer is negative, provided
that the assumption on the additive energy we replace by |A − A| = K|A|. It can be deduced
from Theorem 23, but we describe a more direct approach providing a slightly better lower
bounds. Similar arguments were used in [30].
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Proposition 58 Let A ⊆ G be a set, and l > 2 be a positive integer. Then

( |A|8
8E3(A)

)l
6 Tl(A)|A −A|2l+1 , (92)

( |A|9
8E3(A)

)l
6 Tl(A)|A +A|3l+1 , (93)

and ( |A|20
32E3

3(A)

)l
6 Tl(A)|A +A|6l+1 . (94)

P r o o f. Let D = A − A, S = A + A, |D| = K|A|, and |S| = L|A|. As before, we define
P = {s ∈ D : |As| > |A|/(2K)} and P ′ = {s ∈ D : |As| > |A|/(2L)}. Then

∑

x∈P

|As| > |A|2/2

and ∑

s∈P ′

|As|2 >
1

2
E(A) .

By Lemma 21 and the Katz–Koester transform

|A|6
4E3(A)

6
∑

s∈P

|A−As| 6
∑

s∈P

(D ◦D)(s) .

Thus, by definition of the set P , we have

|A|7
8KE3(A)

6
∑

s

(A ◦A)(s)(D ◦D)(s) .

Using the Fourier inversion formula and the Hölder inequality, we infer that

|A|7
8KE3(A)

6

∫

ξ
|Â(ξ)|2|D̂(ξ)|2 6

( ∫

ξ
|Â(ξ)|2l

) 1
l
(∫

ξ
|D̂(ξ)|

2l
(l−1)

) l−1
l
,

so that ( |A|7
8KE3(A)

)l
6 Tl(A) · |D|l+1

for every l > 2 and (92) follows.

Next we prove (93). For every 1 6 j 6 t := ⌊logL+ 1⌋ put

P ′
j = {s ∈ D : 2j−1|A|/(2L) < |As| 6 2j |A|/(2L)} .
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Further, we have

|A|3
2L

6
∑

s∈P ′

|As|2 6
|A|
2L

t∑

j=1

2j
∑

s∈P ′
j

|As| =
|A|
2L

t∑

j=1

2jδj |A|2 , (95)

where δj :=
1

|A|2
∑

s∈P ′
j
|As|. Whence

t∑

j=1

2jδj > 1

and
t∑

j=1

2jδ2j >
1

2L
. (96)

By Lemma 21 applied for arbitrary j ∈ [t], we obtain

δ2j |A|6E−1
3 (A) 6

∑

s∈P ′
j

|A+As| .

By the definition of the sets P ′
j and the Katz–Koester transform, we get

δ2j |A|62j−1 |A|
2LE3(A)

6
∑

s∈P ′
j

(A ◦ A)(s)(S ◦ S)(s) ,

hence by (96)
|A|7

8L2E3(A)
6
∑

s

(A ◦ A)(s)(S ◦ S)(s) .

Again using the Fourier inversion formula one has

( |A|7
8L2E3(A)

)l
6 Tl(A)|S|l+1

and the result follows.
It remains to show (94). By the first estimate from (95) and the Cauchy–Schwarz inequality,

we obtain ∑

s∈P ′

|As| >
|A|6

4L2E3(A)
.

Applying Lemma 21, we get
|A|14

16L4E3
3(A)

6
∑

s∈P ′

|A+As| .

Using the same argument as before, we have

|A|15
32L5E3

3(A)
6
∑

s

(A ◦ A)(s)(S ◦ S)(s) ,
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so that ( |A|15
32L5E3

3(A)

)l
6 Tl(A)|S|l+1

and the proposition is proved. ✷

Our next result describes the structure of the sets, whose energy Tl(A) is as small as possible
in terms of |A − A|. It should be compared with the main theorem of [6], where a similar
statement was obtained under weaker assumptions, namely E(A) = |A|3/K. Our assumption
|A−A| = K|A| is much stronger than E(A) = |A|3/K, but also our description of the structure
of A is much more rigid.

Theorem 59 Let A be a subset of an abelian group G such that |A−A| = K|A| and T3(A) 6
M |A|5/K2. Then there exist sets R ⊆ G and B ⊆ A such that |R| ≪ M3/2|A|/|B|, |B| ≫
|A|/KM, E(B) ≫ |B|3/M9/2 and

|A ∩ (R +B)| ≫ |A|/M3/2 .

P r o o f. Let P = {s ∈ A−A : (A◦A)(s) > |A|/3K} and define Sa as in Theorem 53. By Hölder
inequality we have

E(A) =

∫

ξ
|Â(ξ)|4 6

(∫

ξ
|Â(ξ)|6

)1/2(∫

ξ
|Â(ξ)|2

)1/2
= T3(A)

1/2|A|1/2 6
M1/2|A|3

K
.

Further, by |A−A| = K|A|,
2

3
|A|2 6

∑

s∈P

(A ◦A)(s) .

Observe that

∑

s

∑

a∈As

|Sa ∩ Sa−s| =
∑

x∈A

(A ◦ P )(x)2 >
1

|A|
(∑

s∈P

(A ◦ A)(s)
)2

>
4

9
|A|3 ,

and ∑

s 6∈P

∑

a∈As

|Sa ∩ Sa−s| 6 |A|
∑

s 6∈P

|As| 6
1

3
|A|2 .

Hence ∑

s∈P

∑

a∈As

|Sa ∩ Sa−s| ≫ |A|3 .

By Cauchy–Schwarz inequality and (82), we have

|A|3 ≪
(∑

s∈P

(
∑

a∈As
|Sa ∩ Sa−s|)2

E(As, A)

)1/2(∑

s

E(As, A)

)1/2

≪
(∑

s∈P

(P ◦ P )(s)
)1/2

E3(A)
1/2 ,



T. Schoen and I. D. Shkredov 41

so ∑

s∈P

(P ◦ P )(s) ≫ |A|6
E3(A)

. (97)

On the other hand, we have

( |A|
K

)3∑

s∈P

(P ◦ P )(s) ≪ T3(A) ,

hence

E3(A) > c
|A|4
KM

:= γ|A|4 ,
for some constant c > 0.

Observe that ∑

|As|6
1
2
γ|A|

E(A,As) 6
∑

|As|6
1
2
γ|A|

|A||As|2 6
1

2
E3(A) .

Put

β = max
|As|>

1
2
γ|A|

E(A,As)

|A||As|2
.

Then, by Lemma 1, it follows that

1

2
E3(A) 6

∑

|As|>
1
2
γ|A|

E(A,As) 6 β|A|
∑

s

|As|2 = β|A|E(A) ,

hence β ≫M−3/2. Finally, there exists a set B = As such that |B| ≫ |A|/KM and

E(A,B) ≫ |A||B|2/M3/2 .

By Cauchy–Schwarz inequality

E(B) >
E(A,B)2

E(A)
≫ K|B|4

M2|A| ≫ |B|3/M9/2 .

Notice that
E(A,B) =

∑

a∈A, b∈B

|(a+B) ∩ (b+A)| ,

hence for some r, we have

|(r +B) ∩A| > E(A,B)

|A||B| ≫ |B|/M3/2 .

Moreover,
E(A′, B) > E(A,B)− 2|(r +B) ∩A||B|2

where A′ = A\ (r+B). Thus, iterating this procedure we obtain a set R of size O(M3/2|A|/|B|)
such that

|A ∩ (R+B)| ≫ |A|/M3/2,

which completes the proof. ✷
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Remark 60 It is easy to see that the proofs of Theorem 53 and Theorem 59 relies on the
following general inequality

(∑

x∈B

(A ◦ A)(x)
)8

6 |A|8E(B)E4(A) .

The same argument gives for all l > 1

(∑

x∈B

(A ◦ A)(x)
)4l

6 |A|6l−4
El(B)El+2(A) .

Is is interesting to compare these inequalities for B = A−A with Lemma 3.

We finish the paper with an exposition of a well-known result of Katz and Koester [16]. For a

set G ⊆ A×B, by A
G
−B we mean the set of all elements a− b such that (a, b) ∈ G.

Theorem 61 Suppose that |A−A| = K|A|. Then there is a set B ⊆ A−A or B ⊆ A such that
|B| ≫ |A|/(K25/22 logK) and E(B) ≫ |B|3/(K21/22 log4/11K).

P r o o f. Let 1 6 M 6 K1/22 be a real number. We assume that E(B) 6 M |B|3/K for every
B ⊆ A−A or B ⊆ A such that |B| ≫ |A|/(K25/22 logK). Our aim is to show that M is large.

Suppose that E(A) 6 M |A|3/K. Again, let P ⊆ A − A = D be the set of all differences
with at least |A|/2K representations. Then

1

2
|A|2 6

∑

s∈P

(A ◦A)(s) 6 E(A)1/2|P |1/2 ,

hence |P | > 1
4K|A|/M. We consider two cases. First assume that there exists a set P ′ ⊆ P of

size |P |/2 such that for every s ∈ P ′ we have |A−As| > K1/2M |A|. As in (37) we have

E(D) >
∑

s∈P

(D ◦D)(s)2 >
∑

s∈P ′

|A−As|2 > |P ′|KM2|A|2 ≫M |D|3/K

and the assertion follows if we will show that M is large.
Now, assume that there exists a set P ′′ ⊆ P of size |P |/2 such that for every s ∈ P ′′ we

have |A−As| < K1/2M |A|. Therefore, for each s ∈ P ′′, E(A,As) > |A||As|2/K1/2M, so that

∑

x

(A ◦ A)(x)(As ◦As)(x) >
|A||As|2
K1/2M

.

Pigeonholing, for each s ∈ P ′′ there is an 1 6 i = i(s) 6 1
2 log(KM

2) such that

∑
x:

|A|/2i<(A◦A)(x)6|A|/2i−1

(As ◦ As)(x) ≫
2i|As|2

K1/2M logK
. (98)
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Thus, there exist i0 and a set Q ⊆ P ′′ of size ≫ |P |/ logK such that for every s ∈ Q, i(s) = i0.
Let Gs ⊆ A2

s consists of all pairs (a, a′) ∈ A2
s such that (A ◦ A)(a − a′) > |A|/2i0 . By (98) it

follows that |Gs| ≫ 2i0 |As|2/(K1/2M logK). Again we may assume that

|As
Gs− As| ≫

22i0 |As|
M3 logK

,

because otherwise after some choice of constants, we have E(As) > |Gs|2/|As
Gs−As| >M |As|3/K.

Put

X =
⋃

s∈Q

(As
Gs− As)

and observe that |X|2−2i0 |A|2 6 E(A) 6M |A|3/K, so |X| 6 22i0M |A|/K. Define

g(x) = |{s ∈ Q : x ∈ As
Gs− As}|

and notice that if x ∈ As
Gs− As then s ∈ D ∩ (x +D). Therefore, assuming E(D) 6 M |D|3/K

and E(X) 6M |X|3/K,

|A|222i0
M4 log2K

≪
∑

s∈Q

|As
Gs− As| =

∑

x∈X

g(x) 6
∑

x∈X

(D ◦D)(x)

=
∑

d∈D

(D ◦X)(d) 6 |D|1/2E(D)1/4E(X)1/4

6 M1/4K|A|5/4E(X)1/4 . (99)

On the other hand for each x ∈ X we have (A ◦A)(x) > |A|/2i0 , so that

2−i0 |A||X| 6
∑

x∈X

(A ◦ A)(x) 6M1/4K−1/4|A|5/4E(X)1/4 . (100)

Combining (99) and (100), in view of |A| > K|X|/(22i0M), we see that

E(X) ≫ |X|3
M10K1/2 log4K

.

The assertion follows for M ≫ K1/22/ log4/11K. ✷
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