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ABSTRACT 

 

We report C, Si, and S isotope measurements on 34 presolar silicon carbide grains of 

Type AB, characterized by 
12

C/
13

C < 10. Nitrogen, Mg-Al-, and Ca-Ti-isotopic 

compositions were measured on a subset of these grains. Three grains show large 
32

S 

excesses, a signature that has been previously observed for grains from supernovae 

(SNe). Enrichments in 
32

S may be due to contributions from the Si/S zone and the result 

of S molecule chemistry in still unmixed SN ejecta or due to incorporation of 

radioactive 
32

Si from C-rich explosive He shell ejecta. However, a SN origin remains 

unlikely for the three AB grains considered here, because of missing evidence for 
44

Ti, 

relatively low 
26

Al/
27

Al ratios (a few times 10
-3

), and radiogenic 
32

S along with low 

12
C/

13
C ratios. Instead, we show that born-again asymptotic giant branch (AGB) stars 

that have undergone a very-late thermal pulse (VLTP), known to have low 
12

C/
13

C 

ratios and enhanced abundances of the light s-process elements, can produce 
32

Si, which 

makes such stars attractive sources for AB grains with 
32

S excesses. This lends support 

to the proposal that at least some AB grains originate from born-again AGB stars, 

although uncertainties in the born-again AGB star models and possible variations of 

initial S-isotopic compositions in the parent stars of AB grains make it difficult to draw 

a definitive conclusion. 

 

 

Key words: astrochemistry – circumstellar matter – nuclear reactions, nucleosynthesis, 

abundances – supernovae: general  
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INTRODUCTION 

 

Small quantities of stardust are found in primitive meteorites, interplanetary dust 

particles, and cometary matter (Zinner 2013). These so-called presolar grains condensed 

in the winds of low-mass asymptotic giant branch (AGB) stars and in the ejecta of 

stellar explosions. Presolar grains carry huge isotopic anomalies for various elements, 

which reflect nucleosynthetic and mixing processes in their parent stars. They survived 

the passage through the interstellar medium (ISM) and solar system formation largely 

intact, making them unique samples of stellar material that can be analyzed in detail in 

the laboratory.  

 

Silicon carbide (SiC) is the best-studied presolar mineral. The majority of presolar SiC 

grains (~90 %) belong to the so-called ”mainstream” (MS) category, characterized by 

12
C/

13
C ratios of 10 – 100, 

14
N/

15
N ratios with a wide distribution but, on average, 

higher than solar, and Si-isotopic compositions that in a Si-three isotope representation 

plot along a line with slope ~ 1.3 (the Si “MS line”; Zinner et al. 2006). The isotopic 

compositions of C and Si and, more importantly, of heavy trace elements contained in 

MS grains indicate that they originate from 1 – 3 M


 AGB stars of close-to-solar 

metallicity (Lugaro et al. 2003). 

 

Silicon carbide grains from Type II supernovae (SNIIe), the X and C grains, are rare. 

Note that previously the C grains have also been named “unusual” or U/C grains. Here, 

we define C grains as having 
29,30

Si >300 ‰ (
i
Si = [(

i
Si/

28
Si)grain/[(

i
Si/

28
Si)


 – 1] × 

1000) and 
12

C/
13

C > 10. The X grains have isotopically light Si, i.e., large excesses in 

28
Si (

29,30
Si < −100 ‰;), isotopically light or heavy C, heavy N, and high inferred 

26
Al/

27
Al ratios of 0.1 – 1 (e.g., Hoppe et al 2000; Lin et al. 2010). Observed 

44
Ca 

excesses can be satisfactorily explained only by the decay of 
44

Ti, which is synthesized 

in significant amounts only in SNIIe (Woosley et al. 1973; Timmes et al. 1996; 

Pignatari et al., 2013a), providing definitive proof of the SNII origin of X grains (Nittler 

et al. 1996; Hoppe et al. 1996). Except for isotopically heavy Si, C grains exhibit the 

same isotopic signatures as X grains (Hoppe et al. 2012), including 
32

S excesses. In X 

grains, 
32

S could have originated either from the Si/S zone (e.g., Rauscher et al. 2002) or 

from the bottom of the He/C zone experiencing explosive He burning at high shock 
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velocities (Pignatari et al. 2013a). In C grains, 
32

S results instead from the decay of 

radioactive 
32

Si (half-life 153 yr; Pignatari et al. 2013b).  

 

SiC grains of Type AB have 
12

C/
13

C < 10 (Amari et al. 2001). They account for ~4% of 

the presolar SiC population. N-isotopic compositions are highly variable, with 
14

N/
15

N 

ratios ranging from 30 to 10,000. While the AB grains have Si-isotopic compositions 

similar to those of MS grains, they tend to have higher 
26

Al/
27

Al ratios of typically 10
–3

 

to 10
–2

 (Amari et al. 2001). Unlike the origin of MS grains, that of AB grains is still a 

matter of debate. The proposed stellar sources are J-type carbon stars (Lambert et al. 

1986) and born-again AGB stars, such as Sakurai’s object (Asplund et al. 1999). J-type 

carbon stars, which have low 
12

C/
13

C ratios, are viable candidate sources of AB grains 

without enrichments in s-process elements (Hedrosa et al. 2013). Unfortunately, the 

nature of J-type carbon stars is still not well understood; but a proposed scenario 

involves stellar mergers recently investigated by Zhang & Jeffery (2013). Born-again 

AGB stars might be the source of AB grains with enhancements of s-process elements, 

in line with astronomical observations of Sakurai’s object (Asplund et al. 1999). These 

stars experience a very-late thermal pulse (VLTP) where convective-reactive 

nucleosynthesis occurs and unprocessed, H-rich material is convectively mixed into the 

He-burning zone (Herwig et al. 2011). For the outer He intershell, which extends almost 

up to the stellar surface, Herwig et al. (2011) predict a 
12

C/
13

C ratio of <10 and high 

abundances of the first-peak s-process elements such as Sr, Y and Zr. The latter result 

from high neutron densities (up to a few 10
15

 cm
–3

) in the He intershell, produced by 

-capture on 
13

C (i-process; Cowan & Rose 1977). Dust around Sakurai’s object is 

dominated by amorphous carbon (Chesneau et al. 2009). SiC dust is below the detection 

limit, but has been identified in spectra from post-AGB stars (Molster et al. 2002). 

 

Amari et al. (2001) excluded SNIIe as possible sources of AB grains. However, later 

work by Savina et al. (2003, 2007) revealed two AB grains whose Mo- and Ru-isotopic 

compositions are suggestive of a SN origin. Therefore, SNIIe could be a minor source 

of AB grains. SiC grains with accepted SN origins (i.e., X and C grains) show 

characteristic Si-isotopic anomalies, which are not seen in AB grains. Other isotopic 

fingerprints of SN grains, e.g., high 
26

Al/
27

Al (>0.1) and/or evidence for 
44

Ti must thus 

be used to identify possible AB grains from SNIIe. 
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In the present work, we report C-, N-, Mg-Al-, Si-, S- and Ca-Ti-isotopic measurements 

on 34 AB grains. These measurements were motivated by the desire to obtain further 

constraints on the origin of AB grains, in particular to investigate whether SNIIe might 

have contributed to the population of AB grains and to discuss the proposed origin from 

born-again AGB stars. 

 

 

 EXPERIMENTAL 

 

SiC grains were extracted from a 30g sample of the Murchison CM2 meteorite 

(Besmehn & Hoppe 2003), by using a technique similar to that of Amari et al. (1994). 

Thousands of SiC grains were dispersed on several clean Au foils, one of which was 

used for the present study. 

 

The search for SiC AB grains was performed by applying the automatic grain mode 

analysis with the Cameca NanoSIMS 50 ion probe at Washington University (Gyngard 

et al. 2010b). Carbon- and Si-isotopic measurements of SiC grains were carried out in 

three steps: First, we obtained ion images of 
12

C
–
, 

13
C

–
, 

28
Si

–
, 

29
Si

–
, and 

30
Si

–
 in 

multi-collection mode, produced by rastering (256 × 256 pixels, 5000 s/pixel) a 

focused primary Cs
+
 ion beam (~100 nm, ~1 pA) over 20 × 20 m

2
-sized areas on the 

sample surface. Second, SiC grains were automatically identified from the 
28

Si ion 

image, and then each identified SiC grain was analyzed by integrating ion intensities 

with integration times adjusted according to grain size. Finally, the sample stage was 

moved to an adjacent area and the above steps were repeated. We acquired C and Si 

isotope data for ~2300 presolar SiC grains from 464 areas. 105 AB grains were 

identified in this way. Among those we selected 34 grains with Si-isotopic compositions 

away from the Si MS line by more than 2 (Fig. 1) for further analysis.  

 

Subsequent N-, Mg-Al-, S- and Ca-Ti-isotope measurements were carried out with the 

NanoSIMS 50 ion probe at the Max Plank Institute for Chemistry. Sulfur-isotopic 

compositions were determined for all 34 grains by acquiring 
32

S
–
, 

33
S

–
,
 
and 

34
S

–
 along 

with 
12

C
–
 and 

13
C

–
 ion images in multi-collection, produced by rastering a Cs

+
 primary 

ion beam (~100 nm, ~1pA) over 2 × 2 to 3 × 3 m
2 

areas
 
(128 × 128 pixels, 15000 
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s/pixel, 1 to 6 image planes) covering the AB grains. Subsequently, we carried out 

Al-Mg and Ca-Ti isotope analyses for 20 and 10 grains, respectively. For the 

Al-Mg-isotope measurements, 
24

Mg
+
, 

25
Mg

+
, 

26
Mg

+
, 

27
Al

+
, and 

28
Si

+
 ion images were 

obtained in multi-collection by rastering an O
–
 primary ion beam (~300 – 400 nm, ~5 

pA) over 2 × 2 to 4 × 4 m
2 

areas
 
(128 × 128 pixels, 15000 s/pixel, 4 to 5 image 

planes). Similarly, 
28

Si
+
, 

40
Ca

+
, 

42
Ca

+
, 

44
Ca

+
 and 

48
Ti

+
 ion images were acquired for the 

Ca-Ti isotope measurements. Finally, N-isotopic compositions were measured on two 

AB grains by recording 
12

C
–
, 

13
C

–
, 

26
CN

–
, 

27
CN

–
, and 

28
Si

–
 ion images in a setup similar 

to that for the S isotope measurements.
 

 

 

RESULTS AND DISCUSSION 

 

The isotopic compositions and trace element abundances of 34 AB grains studied here 

are shown in Table 1. Their Si- and S-isotopic compositions are displayed in Figs. 1 and 

2. The Si-isotopic compositions of the AB grains from this study are similar to those 

from previous studies (Amari et al. 2001). A few grains, however, show relatively large 

deviations from the Si MS line (AB1, AB27, AB29, AB33, AB34; see Fig. 1). Typical S 

abundances range from 0.1 to 1 weight percent; in a few cases very high S 

concentrations are observed (AB13, AB17, AB34), which indicates that AB grains are 

contaminated to various extent by terrestrial or meteoritic sulfur. Three grains with 

comparatively low S concentrations and no apparent S contamination show enrichments 

in 
32

S of >100 ‰ at significance levels of ≥2 in 
33

S/
32

S and 
34

S/
32

S (AB21, AB24) or 

of ~3 in 
34

S/
32

S (AB40) (Fig. 2). Eighteen out of the 20 AB grains analyzed for Mg-Al 

show excesses in 
26

Mg with inferred 
26

Al/
27

Al ratios of typically between 10
–3

 and 10
–2

, 

consistent with results from previous studies (Amari et al. 2001). One grain (AB34) 

exhibits a 
26

Al/
27

Al ratio of 5.7±0.8 × 10
–2

, the highest value for AB grains found so far 

and close to, but still lower than the typical values for X grains. Measurements on some 

grains (AB10, AB22, AB25, AB36) gave very high Al abundances, which must be 

caused by Al contamination. No grains show significant 
42

Ca/
40

Ca and 
44

Ca/
40

Ca 

anomalies of >2, and therefore there is no clear evidence for extinct 
44

Ti. 
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In the following, we concentrate on the three grains with significant 
32

S excesses. On 

average, these three grains have 
33

S ~ –360 ‰ and 
34

S ~ –200 ‰. Given the relatively 

small number of analyzed grains, it is unlikely that the 
32

S excesses of these three grains 

just represent statistical outliers. Neither AGB stars nor novae are expected to produce 

lower than solar 
33

S/
32

S (and 
34

S/
32

S for AGB stars) ratios (José et al. 2004; Cristallo et 

al. 2009). Galactic chemical evolution (GCE) may account for moderate variations of 

S-isotopic compositions (Kobayashi et al. 2011). But it should be noted that no MS 

grains show large 
32

S excesses as inferred from a study of a few large MS grains (LU 

and LS separates; Gyngard et al. 2007). 

 

The Rauscher et al. (2002) SNII models predict large enrichments in 
32

S for the Si/S 

zone, dominated by 
28

Si and 
32

S (Fig. 3). Simple ad-hoc SN mixing models predict 
32

S 

excesses to be accompanied by 
28

Si excesses, which are not observed here. If we assume 

that the 
32

S excesses originate from the Si/S zone, we must invoke S-Si fractionation 

due to sulfur molecule chemistry in the still unmixed SNII ejecta (Hoppe et al. 2012) to 

explain the Si- and S-isotopic signatures of the three AB grains. If we consider selective 

mixing of matter from different zones in the 15 M


 SNII model of Rauscher et al. 

(2002) in proportions Si/S:O/Si:He/N:H = 0.0028:0.0094:0.25:1 (mass fractions of 

whole zones), and assume preferential trapping of S from the Si/S zone by a factor of 20, 

we find a fairly good match between the observed and predicted isotopic compositions 

(model A, Table 1). The only mismatch between the grain data and the model prediction 

exists for the C-isotopic composition; the average 
12

C/
13

C ratio of the three grains is ~3 

while the predicted value is 17. In SNII models, very low 
12

C/
13

C ratios of ~3 are 

predicted for the He/N zone, but contributions of matter from this zone must be limited 

because of the observed low 
26

Al abundances (the He/N zone is a major production site 

for 
26

Al; Fig. 3). 

 

Recently, Pignatari et al. (2013b) presented an alternative explanation for 
32

S excesses 

in C grains: decay of radioactive 
32

Si, produced by n-capture reactions in the C-rich 

explosive He/C zone. This scenario is attractive because the ad hoc assumption of Si-S 

fractionation due to S molecule chemistry in SN ejecta can be avoided and because the 

very large 
32

S excess found by Xu et al. (2012) in a C grain, larger than what is 

predicted for S in the Si/S zone (Fig. 2), can easily be explained. If we follow the 

approach of Pignatari et al. (2013b), assuming that all 
33

S and 
34

S in the three AB grains 
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is contamination, 
32

Si/
28

Si is calculated from –0.001 × S × 
32

S/
28

Si, where S is the 

average of 
33

S and 
34

S. With S = –250 ‰ (weighted average of our three AB grains) 

and 
32

S/
28

Si = 5 × 10
–3

 we obtain 
32

Si/
28

Si = 1.3 × 10
–3

. The model of Pignatari et al. 

(2013b) predicts 
32

Si/
28

Si ratios on the order of 10
–4

 to 10
–3

, similar to those inferred for 

SN grains, in certain regions of the C-rich explosive He shell. From the 15 M


 SNII 

model of Rauscher et al. (2002), in which 
32

Si is significantly produced in the outer part 

of the O/C zone (Fig. 3), the average Si-isotopic compositions, and 
26

Al/
27

Al and 

32
Si/

28
Si ratios can be well reproduced if matter from the Si/S, O/Ne, and O/C (only 

outer 0.2 M


) zones are mixed in proportions 0.0163:0.0136:1 (SN model B, Table 1). 

However, the 
32

Si-rich material from the C-rich layer of Pignatari et al. (2013b) and the 

mixture in SN model B have high 
12

C/
13

C ratios typical of He burning conditions, which 

is not compatible with the AB grain signatures. Admixture of matter from the 
13

C-rich 

He/N zone is not able to resolve this problem because it would make 
26

Al/
27

Al 

significantly higher than observed. Therefore, in view of no evidence for 
44

Ti, the 

relatively low 
26

Al/
27

Al ratios, and especially the low 
12

C/
13

C ratios of the grains, a 

possible SN origin of our three AB grains with 
32

S excesses seems unlikely for both 

stellar models considered, although it cannot be completely excluded due to the large 

uncertainties affecting those models and present limitations in our understanding of 

core-collapse SN explosions in general. Note that mixtures in both SN models have C/O 

< 1. It is not favorable for the formation of carbonaceous dust, although Clayton et al. 

(1999) argued that carbon dust can condense even when C/O < 1. 

 

We will thus reconsider born-again AGB stars and investigate whether such stars can 

produce 
32

S excesses. First, we explored the i-process in a 1-zone He intershell with 

initially high abundances of protons and 
12

C, such as they occur in the VLTP in 

post-AGB star Sakurai’s object (Asplund et al. 1999; Werner & Herwig 2006; Herwig 

et al. 2011). The key ingredient of the i-process is strong proton capture resulting in an 

efficient production of neutrons due to the 
13

C(,n)
16

O activation. A 1-zone He 

intershell, burning at a constant temperature of 2 × 10
8 

K and  = 10
4 

g/cm
3
, and an 

initial abundance of X(
1
H) = 0.2, X(

12
C) = 0.5, and X(

16
O) = 0.35, with all other species 

having solar abundances (Asplund 2005), produces a neutron density of Nn ~ 10
15

 cm
–3

,
 

which defines the i-process. This neutron density is much higher than the highest 

s-process values of Nn ~ 10
11-12

 cm
–3

, but much lower than in r-process conditions with 
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Nn > 10
20

 cm
–3

. Significant amounts of radioactive 
32

Si are predicted to be produced 

after 1.1 hr, reaching a maximum when large amounts of the first-peak s-process 

elements (e.g., Sr, Y and Zr) are produced, but before significant production of the 

second-peak s-process elements (e.g., Ba and La). This matches well the elemental 

abundances observed in Sakurai’s object, which seems not to have experienced any 

relevant s-process during its AGB phase. Variations in s-process element abundances of 

AB grains found by Amari et al. (2001) could reflect the fact that AB grains condensed 

also around post-AGB stars which experienced significant s-processing, producing the 

second-peak s-process elements before the i-process activation. 

 

Second, we used the one-dimensional, multi-zone model of Herwig et al. (2011) to 

calculate abundance profiles of C and Si isotopes in the He intershell (Fig. 4). Model 

RUN106 of Herwig et al. (2011) produces an abundance ratio of the second- to 

first-peak s-process elements close to that observed in Sakurai’s object (Asplund et al. 

1999). In the outer He intershell, a 
32

Si/
28

Si ratio of ~8 × 10
–2

 is predicted, significantly 

higher than that inferred for our AB grains. If we assume mixing with unprocessed 

material of solar composition in a ratio 1:35 by mass (this corresponds to a 
28

Si 

abundance ratio of 1:60), it is possible to reproduce the inferred 
32

Si/
28

Si ratio of ~10
–3

 

in AB grains. The dilution factor of 35 may be achieved if a likely gradient of i-process 

products in the outermost zones is considered, as it was observed on the surface of 

Sakurai’s object over a timescale of a few months. However, a proper treatment requires 

full multi-dimensional hydrodynamic simulations including the energy feedback during 

H ingestion (Herwig et al. 2011 and references therein), which is beyond the scope of 

this paper. Along with 
32

Si, significant amounts of 
29

Si and 
30

Si are produced, with 

higher enrichments in 
30

Si than 
29

Si. With the assumed dilution of a factor of 35 with 

isotopically normal material, and 
29

Si/
28

Si = 0.16 and 
30

Si/
28

Si = 0.35 resulting from the 

i-process (Fig. 4), we obtain 
29

Si = 37 ‰ and 
30

Si = 161 ‰. Considering the 

limitations of the VLTP model used here and the fact that it is based only on one mass 

and one metallicity, we find the difference between predicted and observed 
30

Si 

acceptable (Table 1). Models of born-again-AGB stars predict 
12

C/
13

C ratios of <10 in 

the outer region of the He intershell along with high C abundances of more than 100 

times the solar value. In a 1:35 mixture of He intershell material and material of solar 

composition, C is dominated by C from the He intershell and the 
12

C/
13

C ratio of the 

mixture will be relatively close to that in the outer He intershell. In RUN106, 
12

C/
13

C = 
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6.6 is predicted for the He intershell, which gives 
12

C/
13

C = 8.2 in the mixture. The 

predicted 
26

Al/
27

Al is 4.4 × 10
–6

, much lower than observed in the grains. A higher 

26
Al/

27
Al and slightly lower 

12
C/

13
C could be achieved if the parent stars experienced 

cool bottom processing during their AGB phase (Nollett et al. 2003). 
14

N/
15

N is 

predicted to be 790. 

 

In conclusion, born-again AGB stars appear to be stellar sites that provide a natural 

source of 
32

S excesses via radioactive 
32

Si decay along with low 
12

C/
13

C ratios, as 

observed in some AB grains. The models of Herwig et al. (2011) used here are 1D and 

spherically symmetric and it will be interesting to see whether full 3D models can 

quantitatively match the grain data in a self-consistent way. Also, future investigations 

are needed to evaluate the effect of GCE and heterogeneities in the ISM on S-isotopic 

compositions. 
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FIGURE LEGENDS 

 

 

Figure 1. Silicon-isotopic compositions of presolar SiC AB grains identified in this 

work. The squares represent grains that have Si-isotopic compositions away from the 

MS line by more than 2 and which were measured for S- and in part also for N-, 

Mg-Al-, and Ca-Ti-isotopic compositions. Other AB grains (diamonds) and the 

mainstream grains (circles) from this study are shown for reference.  

 

Figure 2. Sulfur-isotopic compositions of 34 SiC AB grains. Three grains (AB21, 24 

and 40) show large 
32

S excesses of >100 ‰. Also shown are X and C grains with 

significant S isotope anomalies from previous studies (Gyngard et al. 2010a; Hoppe et 

al. 2012; Xu et al. 2012). The predicted S-isotopic compositions of the different zones 

in a 15 M


 SNII (Rauscher et al. 2002) are shown by crosses and arrows for 

comparison. 

 

Figure 3. Mass fractions of 
12

C, 
26

Al, 
28

Si, 
32

Si, 
32

S and 
44

Ti (upper panel), and 

solar-normalized ratios of 
29,30

Si/
28

Si and 
33,34

S/
32

S (lower panel, left scale), and the 

32
Si/

28
Si ratio

 
(lower panel, right scale) in the interior of a 15M


 SNII model (Rauscher 

et al. 2002). The different SN zones are shown at the top of this figure.  

 

Figure 4. Mass fractions of 
4
He, and C and Si isotopes in the He intershell of a 

born-again AGB star predicted by the model (RUN106) of Herwig et al. (2011).
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Table 1. Isotopic compositions and trace element abundances of 34 SiC AB grains. 

Grain 12C/13C 14N/15N 26Al/27Al [Al]1 29Si 30Si 33S 34S [S] 1 44Ti/48Ti [Ti] 1 

      (10−3)  (‰) (‰) (‰) (‰)  (10–2)  

AB grains with 32S excesses 

M7_AB21 5.71 ± 0.07               2 ± 14 55 ± 17 –600 ± 230 –340 ± 130 0.39 <26 0.06 

M7_AB24 7.44 ± 0.06       3.28  ± 0.96  7.8 55 ± 14 100 ± 17 –310 ± 140 –131 ± 67 0.78         

M7_AB40 2.33 ± 0.01       5.3  ± 1.2  17.3 37 ± 4 89 ± 4 –320 ± 200 –264 ± 90 0.12 0.33 ± 0.36  0.15 

Other AB grains 

M7_AB1 6.05 ± 0.02 3550 ± 570 1.6  ± 1.5  9.1 37 ± 6 –47 ± 7 630 ± 270 34 ± 91 0.11 3.2 ± 1.7  0.68 

M7_AB2 3.18 ± 0.01       2.72  ± 0.76  16.7 45 ± 3 21 ± 4 57 ± 82 –13 ± 34 0.37         

M7_AB6 3.89 ± 0.02       1.91  ± 0.42  7.6 6 ± 2 4 ± 3 –47 ± 116 25 ± 52 1.41         

M7_AB7 2.10 ± 0.01               –37 ± 5 –39 ± 6 213 ± 94 14 ± 37 0.90 0.02  ± 0.13  1.59 

M7_AB8 4.65 ± 0.03       3.4  ± 1.3  2.6 17 ± 7 –8 ± 8 –270 ± 170 –22 ± 84 0.38         

M7_AB10 5.27 ± 0.09       0.19  ± 0.11  50.0 13 ± 9 –11 ± 10 –98 ± 190 -8 ± 85 3.06         

M7_AB11 4.70 ± 0.03               –23 ± 5 –21 ± 7 –6 ± 140 7 ± 60 1.05         

M7_AB12 5.31 ± 0.06       0.1  ± 2.7  12.9 60 ± 7 36 ± 8 –1 ± 260 –287 ± 92 0.90         

M7_AB13 5.08 ± 0.04               –21 ± 10 –33 ± 12 –68 ± 42 21 ± 19 14.2         

M7_AB14 4.83 ± 0.07       0.52  ± 0.88  5.3 –19 ± 13 –37 ± 15 89 ± 212 43 ± 89 1.86         

M7_AB15 4.59 ± 0.07               –4 ± 7 –9 ± 8 –74 ± 226 -89 ± 95 2.15         

M7_AB16 2.93 ± 0.03       3.80  ± 0.74  5.3 49 ± 10 23 ± 12 180 ± 230 –204 ± 79 0.95 <0.72 0.85 

M7_AB17 8.93 ± 0.15               61 ± 14 22 ± 17 33 ± 33 –20 ± 14 73.9         

M7_AB18 4.46 ± 0.06       1.4  ± 1.3  4.0 134 ± 14 79 ± 17 78 ± 159 64 ± 68 3.26         

M7_AB19 7.97 ± 0.04               24 ± 6 48 ± 8 170 ± 150 –35 ± 58 0.42         

M7_AB20 2.62 ± 0.03       10.2  ± 2.0  3.9 –39 ± 13 22 ± 16 –400 ± 170 –62 ± 91 1.29 <4.0 0.47 

M7_AB22 8.34 ± 0.17       <2.5 27.1 –24 ± 6 17 ± 8 –210 ± 230 140 ± 120 1.72         

M7_AB25 3.57 ± 0.01 63 ± 1 2.4  ± 4.5  46.2 34 ± 6 60 ± 7 –68 ± 97 27 ± 44 0.97         

M7_AB26 7.52 ± 0.02       0.55  ± 0.80  2.0 –27 ± 13 43 ± 16 134 ± 59 16 ± 24 0.77         

M7_AB27 1.91 ± 0.01       9.0  ± 9.0  7.2 9 ± 19 103 ± 24 110 ± 240 –228 ± 84 0.60 0.5  ± 1.0  0.61 

M7_AB29 5.83 ± 0.08               –28 ± 27 124 ± 36 470 ± 310 –35 ± 106 1.05         

M7_AB30 7.81 ± 0.03       <2.8 6.7 8 ± 4 40 ± 5 –79 ± 143 152 ± 68 0.21 <7.5 0.68 

M7_AB31 8.07 ± 0.04               19 ± 9 81 ± 11 –29 ± 129 90 ± 58 0.31         

M7_AB33 6.55 ± 0.05               63 ± 17 197 ± 22 –89 ± 115 44 ± 53 1.14         

M7_AB34 5.49 ± 0.10       56.5  ± 8.2  12.2 –5 ± 10 86 ± 12 110 ± 120 –57 ± 49 8.78         

M7_AB35 4.24 ± 0.02               81 ± 3 98 ± 4 200 ± 150 82 ± 65 0.28 0.39  ± 0.31  0.13 

M7_AB36 2.85 ± 0.01       13.5  ± 1.6  35.4 –20 ± 5 50 ± 7 –340 ± 150 –4 ± 79 0.14 <0.20 1.64 

M7_AB37 2.19 ± 0.01               4 ± 4 55 ± 5 56 ± 69 –87 ± 27 1.57 1.2  ± 0.7  0.31 

M7_AB38 1.85 ± 0.00       2.08  ± 0.62  14.8 8 ± 4 56 ± 5 116 ± 74 –11 ± 30 0.34         

M7_AB39 6.03 ± 0.02               10 ± 5 82 ± 7 1 ± 130 80 ± 57 0.24         

M7_AB41 9.90 ± 0.06               –26 ± 3 31 ± 3 120 ± 100 14 ± 42 0.90         

Average2 
AB21, 24, 40 

3.09 ± 0.01 
      

4.65  ± 0.86    36 ± 3 88 ± 4 –360 ± 100 –202 ± 49 

  

0.43 

  

0.24  ± 0.42 
  

        

SN model A 17       3.97   30 90 –253 –234   0.06   

SN model B 2.2 × 105  4.1   33 91 –250 –250   4.65   

Born-again 

AGB model 
8.2 790 0.0044  37 161      

1Weight percent. 
2Averages are calculated by adding counts from individual measurements. Errors are 1 and are based on counting statistics only. 
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