Epités - Epitészettudomany 51 (2023) 3-4, 181-194 @ﬁ@
DOI: 10.1556/096.2023.00095 AKADEMIAI KIADO

On the Buckling of the No-tension Material
Masonry Column

Istvdn TajTa' — Endre DuLACSKA®

!Inter-CAD Software Development Company

2 Department of Mechanics, Materials and Structures, Budapest University of Technology and Economics,
K. II. 61, Miiegyetem rkp. 3, H-1111 Budapest, Hungary. E-mail: dulilonci@freemail.hu

ORIGINAL RESEARCH ARTICLE

Received: 22 March 2023 « Accepted: 15 May 2023 ,')

First published online: 25 July 2023 a
© 2023 The Authors updates

SUMMARY

Masonry columns, subjected to eccentric compression, crack due to tension if the eccentricity is larger than
the size of the core of the section. Previous studies have assumed that the cracks have so small spacing that
the cracked tension side can be neglected during the analysis.

The critical load can be determined using this assumption. However, experimental experience has
shown that the cracks have large spacing, approximately equal to one and a half times the cross-section
height. Therefore, the crack-free parts between the cracks influence the lateral deflection and the critical
load. Considering the above-mentioned phenomenon, we determined the elastic critical buckling load of
the cracked masonry column.
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INTRODUCTION

Masonry is one of the oldest building methods, and its application possibilities are controlled by
thousands of years of experience. In Hungary, the masonry walls were not yet calculated in the
19* century. The design was based on the rules of thumb. The detailed analysis of masonry col-
umns became possible after Bloch (1930), Czaké (1916) accomplished the masonry element
compressive strength experiments in 1916. Until 1956 masonry structures were calculated only
for centric compression according to the Hungarian masonry structure standard (Csonka et al.
1950). Design for eccentric compression of masonry walls and columns was first introduced
in the MSZ standard of 1957 (MSZ 15023 1957), following the experimental and theoretical
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models of Andrejev’s book (Andrejev 1953). It did not even arise at the time that the behaviour
of an inhomogeneous no-tension material differs from a homogeneous one.

The question was examined experimentally by Haller in 1949 (Haller 1949), considering
non-linear stress distribution over the cross-section. However, Yokel's 1971 study (Yokel 1971),
based on Angervos (Angervo 1954) and Royen’s (Royen 1937) papers, brought the break-
through. Yokel neglected the tensile stress on the cross-section due to the possibility of cracking.
He showed, based on experimentally verified, iteratively solved differential equation solution,
that the eccentricity reduces the resistance of the masonry column. Yokel assumed that the
cracks are developing in the weak, closely spaced mortar bed joints, which is why the effect of
tension can be neglected. Based on these results, simplifying Royen’s model, Duldcska (Dulacska
1972; Bolcskei — Duldcska 1974; Duldcska 1979, 1983, 1990) was able to derive a closed-form
solution for the linear buckling load of the linear elastic, no-tension masonry column, using the
state properties of the mid-cross-section along the column height.

Recently many researchers examined the problem. It is worth mentioning the works of
Mojsilovic (Mojsilovic — Marti 1994), Sabha (Sabha 1999), Schlegel (Schlegel 2004; Schlegel —
Rautenstrauch 2000, 2005), Bakeer (Bakeer 2014, 2016; Bakeer — Christiansen 2017) and
Kirtschig (Kirtschig 1976). In addition to these references, we must also cite the following litera-
ture: Andrejev (1953), Beanspruchungen und Tragmodelle (2018), Fodi (2011), Hendry (1998),
Turkstra (1971), Yokel (1971).

Hendry provides an extensive, thorough, but not complete, bibliography on the subject in
the book chapter titled “The Strength of Masonry Compression Element” (Hendry 1998).

A good review of the problem can be found on the Internet in Beanspruchungen... (2018)
and in Como’s book (Como 2015).

NOTATIONS AND ASSUMPTIONS, USED IN THE PAPER

Notations

b: the thickness of the column cross-section

h,: the height of the column cross-section

A, A; cross-section area of the column, compressed area of the column, respectively

ey eccentricity of the compressive force

ey calculated eccentricity

e,;  initial eccentricity (imperfection)

a: the distance between the point of action of the eccentric force and the compressed

extreme fiber
w displacement of the column mid-cross-section
Iy buckling length of the column (he, according to Eurocode-6)
H: width of the experimental specimen
D: height of the experimental specimen
N: compressive force acting on the column
N, the characteristic value of the plastic resistance of an eccentrically compressed cross-
section
N+ critical, Euler buckling load of an elastic column
N, critical buckling load of a continuously cracked, elastic column
N, critical buckling load of a discretely cracked, elastic column
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critical buckling load of the elastic-plastic column
M the bending moment

E, the modulus of elasticity
v: the Poisson ratio

K: the bending stiffness

R the radius of curvature

p the curvature M/K = 1/R

P the curvature of the continuously cracked elastic column

Py the curvature of the crack-free elastic column

1,2:  the index of continuously cracked and the crack-free column

h: index of the discretely cracked column

Assumptions

- The material of the column is linear-elastic and perfectly plastic or rigid-plastic to determine
the failure load.

- The buckling length of the cracked column is equal to the buckling length of the crack-free
column.

- According to the rigid-plastic material model, the real, non-linear plastic stress distribution
for compression is considered constant.

- The variable eccentricity of the column is considered to be constant, corresponding to the
mid-cross-section, assuming in favour of safety.

EXPERIMENTAL EXPERIENCES

All the methods mentioned above assumed that the bed joint mortar has smaller tensile strength
than the masonry unit or stone block, which is why the masonry column cracks for tension due
to eccentric compression. In reality, the adhesive strength between the mortar and the masonry
unit is much lower than the tensile strength of the mortar. Therefore, the crack develops between
the mortar and the masonry unit, as shown in Figure 1.

Figure 1. Opening crack between mortar and brick

‘mation Centre of the Hungarian Academy of Sciences MTA | Unauthenticated | Downloaded 08/22/24 11:10 AM UTC



184 Epités - Epitészettudomany 51 (2023) 3-4, 181-194

The researchers also assumed that the crack develops closely spacing, i.e., the column is con-
tinuously cracked; therefore, the cracked tension side of the column is like not being there. This
model is shown in Figure 2.a.
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Figure 2. a) The continuously cracked masonry column (assumed)
b) The discretely cracked masonry column (according to experiments)

However, the experimental experience shows that the design according to the continuously
cracked model is safe but does not represent reality. That could be observed in experiments that
the crack spacing is about one and a half times the cross-section height (1.5 h,). This is illustrat-
ed in Figure 2.b.

In our opinion, this occurs because a crack appearing changes the stress state around the
crack. If the crack spacing is one and a half times the cross-section height or less, then the tensile
stress is far less than the tensile strength; therefore, no crack can develop.

The consequence is that the cracked cross-section defines the bending rigidity in the vicinity of
the crack. In between the cracks, the bending rigidity is according to the crack-free cross-section.

We proved experimentally and by finite element calculation that if the crack spacing is one
and a half times the cross-section height or less, no tensile stress causing cracking may occur on
the tension side between the cracks. This is shown in the next section

INVESTIGATION OF THE STRESS DISTRIBUTION OF THE BLOCKS BETWEEN
CRACKS

It would have been best to do the experimental tests on masonry units. However, the large scat-
ter of the masonry unit’s strength and modulus of elasticity would make it impossible to get
good results. Therefore, we chose to make the specimens (cube and prism) from steel to approx-
imate the material’s assumed linear properties with a load below the elastic limit. By rotating the
block, we could also measure the stress distribution for large and small crack spacing of mason-
ry blocks. The experiments on the cube are for the mid-size block. The experimental elements
are shown in Figure 3.
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Experimental specimens

Material of prism: $235, linear H/D > prism size ratio
Prism size: 100x100x100mm 0.5 1 2
100x100x200mm 1N

Type of experiment: : !
= centric compression (total cross- i )
section or 10x100mm strip load)
= gccentric loading — 10x100 mm == ==

strip load IN IN TN
- max. load: N=150kN

Measured, calculated data:

F loading force " elH=0>05

€ linear strain IN IN
0 Poissons ratio r] - . JJ
E Young modulus -

T f

Figure 3. Steel specimens to measure stress distribution due to eccentric load

The experimental setups are shown in Figure 4. The width of the steel specimens is denoted by H
and the height by D. The specimen sizes are as follows: 100x100 mm cube and 100x100x200
mm prism. The eccentric line load was applied to the specimens through a 10x10 mm steel strip,
which was welded to the loading platen. The compressive force was N = 150 kN during the test.
Based on the experiments, the steel modulus of elasticity is E = 20600 kN/cm?, and the Poisson’s
ratio is v = 0,34.

In the experiments, the strain at extreme fibres was measured by strain gauges to calculate
the stresses. The stresses were also calculated by finite element method using AXIS VM software
(AXIS VM 2020).

The set up of the experiment

Figure 4. The tested steel specimens between the loading plates
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The results of the calculation for different eccentricities are shown in Figures 5-6, to see how
the stress diagrams are changing.

Results of finite-element method calculation -

- stress diagrams
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Figure 5. The standing prism and the cube normal stress for different e/H eccentricities

Results of finite-element method calculation —
- stress diagrams
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Figure 6. The horizontal prism normal stress at different e/H eccentricities
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A comparison of the calculated values with AXIS software (AXIS VM 2020) and measured
strains is shown in Figure 7. The solid lines are for compressive strain and the dashed lines are
for tensile strain, or the latter shows the strain at the less compressed side. The measured and
calculated results on the compressed side are slightly different but have the same trend. There
may be several reasons for the difference (e.g., strain gauge, experimental setting, etc.), but this

is not addressed here because it is unimportant.
The calculated and measured strain and stress results show clearly that the eccentric force

does not cause tension at all in the case of the 2/1 ratio horizontal prism and in the case of the
1/1 ratio cube (i.e., there is no possibility of cracking). However, in the case of a 2/1 standing
prism, considerable tensile stress develops, so there is a possibility for cracking. These facts
explain why the experimentally observed cracks of eccentrically compressed masonry columns
do not show the assumed continuous or near continuous crack distribution (i.e., crack at each
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Figure 7. Comparison of the calculated and the measured strains
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mortar bed joint). However, the observed discrete crack spacing is between the 1/1 ratio cube
and the 1/2 ratio prism, approximately around at crack spacing to cross-section ratio 1/1.5.

That is, the masonry column has cross-sections, considerably far away from each other, that
are cracked and have parts that are not cracked.

It is a consequence of all of these that the assumption of the continuous cracking results low-
er limit for the bending stiffness and so for the buckling strength of cracked masonry column,
and its real buckling load must be larger. We discuss that in the following.

ANALYSIS OF THE CRACKED MASONRY COLUMN

Buckling of a perfectly elastic, no-tension material column is due to the continuous reduction of
the compressed area of the cross-section during the increase of the lateral deflection, and a limit
point type buckling defines the load-bearing capacity, although the stress maximum is far less
than the strength of the material. If the material of the column is elastic-perfectly plastic, then
there may be such eccentricities when the load-bearing capacity is defined by material failure
instead of elastic buckling. Therefore, 0 < 1.3-1.5 0,,,,,,» condition must also be satisfied in the
case of a compressed column because the stress, 30-50% larger than 0, causes material fail-
ure in the cross-section. When the stress o for elastic buckling and material failure is equal, the
column’s failure mode changes from buckling to material failure. The buckling resistance of the
column, as a function of the slenderness, is a hyperbola, while the material failure is character-
ized approximately by a shallow parabola. In order to study the behaviour of the masonry col-
umn, we must know the linear elastic buckling load capacity. As it was pointed out in the Intro-
duction, it is possible to calculate the elastic buckling resistance N . of the continuously cracked
masonry column, neglecting the effect of the cracked tension part of the cross-section, similarly
to Bolcskey — Duldcska (1974), Dulacska (1979, 1983), Royen (1937), Yokel (1971), Dulacska —
Tajta (2009). However, the column resistance may also be determined considering the crack-
free, total cross-section, N, ..

Assuming that the crack spacing, according to the experiments, is equal to one and a half
times the height of the cross-section, then the average curvature of the column can be deter-
mined as the average stiffness K of the continuously cracked and the crack-free column.

THE CRITICAL LOAD OF THE CONTINUOUSLY CRACKED COLUMN, N, \q

The curvature pl of the mid cross-section and the stiffness K; and the load N, according to
Bolcskey — Duldcska (1974) are: p; = 0/3E(a-w), and K, = 4,5Eb e - (0,5h-e-w)?, and the com-
pressive force in the function of the lateral displacement is given by N, = 1,5b - (a-w)?. The nota-
tions are shown in Figure 8.

The lateral displacement is assumed to vary according to the sine function w = p, (I/7)*.
Using these equations, the N, compressive force can be determined as a function of lateral dis-
placement w: N, = (4,57* ba® [(wa)-2(wa)*+(wa)’]/(1,*). The function has a maximum at w = a/3.
This limit point defines the critical load of a continuously cracked column: N, ;. = 27> Eba’) /
(31,7 ). The equation can be written as a function of the eccentricity e, instead of using variable a.
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Figure 8. The eccentrically compressed column, cracked on the tension side:
a) Model of the column; b) The critical load as a function of the eccentricity e,

Figure 8.a shows the model of the cracked column. In Figure 8.b, the solid line shows how the
critical load of the continuously cracked column N/, varies as a function of the eccentricity e,.
The figure clearly shows that the increase of eccentricity significantly reduces the critical load.

THE CRITICAL LOAD OF THE DISCRETELY CRACKED COLUMN, N, «»

According to the experiments, the eccentrically compressed masonry column cracks discretely,
and the spacing between the cracks is approximately one and a half times the cross-section
height.

In the vicinity of the crack, the stiffness is K, which is the stiffness of the continuously
cracked column. The crack-free column stiftness in between the cracks is K, = E;, bht/12.

Using the two stiffness parts, a replacement stiffness K, must be calculated to determine the
Nh load resistance of the column. The replacement stiftness is K, = 2K,K,/ (K,+K).

(Do not forget that K; is a function of both the eccentricity e, and the displacement w.)

The load resistance of the discretely cracked column N, is: N, = (72 wK;,) / (e ).

(The lateral displacement defining the limit point is shifted slightly from w = a/3. Since this
difference is small, it can be neglected as an approximation.)
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The load resistance of column Nj, is the function of the displacement w and the eccentri-
city e,.

Figure 9 shows the variation of the N, load resistance of the column, scaled by Euler’s critical
load, as a function of lateral displacement w for three different eccentricities e,,.

* /\szQbhv

g [N
/‘\;L —
005 01 015 Q2 03

Figure 9. Variation of Ny /Ny |, as a function of w/h,

The dashed line in Figure 8.b shows the critical buckling load N, ;.. It is calculated by the replace-
ment stiffness K, and with the exact limit point, as it is shown in Figure 9.

Observing the variation of N, and N, in Figure 8, it can be concluded that in the case of
the discretely cracked column, the critical buckling load of the masonry column increases about
one and a half times compared to the continuously cracked case.

SUMMARY

Masonry columns, subjected to eccentric compression, crack due to tension if the eccentricity is
larger than the size of the core of the section. Previous studies have assumed that the cracks have
so small spacing that the cracked tension side can be neglected during the analysis.

The critical load can be determined using this assumption. However, experimental experi-
ence has shown that the cracks have large spacing, approximately equal to one and a half times
the cross-section height. Therefore, the crack-free parts between the cracks influence the lateral
deflection and the critical load. Considering the above mentioned phenomenon, we determined
the elastic critical buckling load of the cracked masonry column.
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NUMERICAL EXAMPLE

We examine the characteristic load-bearing capacity of an eccentrically compressed masonry
column, comparing the EC6 (MSZ EN 1996-1-1 Eurocode 6 2009) standard and the results of
the present paper.

Figure 10. Numerical example

Data according to EC6, Figure 10:

h, =380 mm (38cm), b = 1000 mm (100 cm), k, = 5700 mm (570 cm). a = e, = 95 mm (9.5 cm).
A, =380-1000 = 3.8-10° mm? (3800 cm?), A, = 1.9-10° mm? (1900 cm?).

Masonry unit: f, = I0N/mm? (100 kp/cm?). Mortar: f,, = 1.0 N/mm? (10 kp/cm?).

Masonry element: f, = 0.5 (f,>7)-(f,,>*) = 0.5-10.0°7-1.0° = 2.5 N/mm? (25 kp/cm?).

Modulus of elasticity: E;, = 1000-f, = 2500 N/mm? (25000 kp/cm?).

Eccentricity: e, = M/N + e,,;, = e; + h,/450 = (82 + 13) = 95.0 mm. (9.5 cm).

init

CHARACTERISTIC VALUE OF THE LOAD CAPACITY ACCORDING TO EC6

In this case, the eccentricity and slenderness reduction factor according to EC6 (MSZ EN 1996-
1-1 Eurocode 6 2009): @ = 0.32. The load-bearing capacity: Nm, k=®-b-h,f, = 0.32-:380-1000-2.5
= 3.04-10° N. (3.04 Mp).
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THE CHARACTERISTIC VALUE OF THE LOAD CAPACITY ACCORDING TO
THE PRESENT PAPER

Euler critical load:

N, ,, = 7 E,I/h? = 9.86-2500-1000-380%/12 / 5700 = 3.47-10° N (34.7 MP).

The buckling load of the discretely cracked elastic masonry column:

N, = 0.18 N;;, = 0.18-3.47-10° = 6.25-10° N (6.25 MP).

Area whose centroid is the point of action of the compressive force:

A, =190-1000 = 1.9-10° mm? (1900 cm?).

The plastic load-bearing capacity of the cross-section for eccentric loading:

N, = A f, = 1.9-10°2.5 = 4.75-10°N (4.75 MP).

The non-linear critical buckling load Nm, k can be calculated by the Ritter-Morsch, (and Renk-
ine) equation: N, , = N, /(1+N,/N,, ), which was originally derived by Navier, according to Bach
- Baumann (1924).

The load-bearing capacity of the cracked masonry column:

N, =N, /(1+ N/N, ,,) = 4.75:10°/ (1 + 4.75/6.25) = 2.70-10°N (2.7 Mp).

m.
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A hizoszilardsag nélkiili téglapillér statikai modelljérdl

0SSZEFOGLALO

A kiillpontosan nyomott téglapillér a maghatart meghaladé kiilpontossagnal a hizott oldalon bereped.
A korabbi vizsgélatok feltételezték, hogy a berepedés olyan stir(in helyezkedik el, hogy a vizsgalat sordn a
huzott oldalt teljesen el lehet hanyagolni, és a kritikus erét e feltevés alapjan lehet meghatarozni. A kisérleti
tapasztalatok azonban azt mutattdk, hogy a repedés nem stir(in jelentkezik, hanem megkozelitéen a masfél-
szeres keresztmetszeti méretnek megfeleld tavolsagban. Ezért a repedések kozotti tomb belejatszik az alak-
valtozasba, és igy a kritikus teher meghatérozaséaba is. E tulajdonsag figyelembevételével meghataroztuk a
téglapillér rugalmas kritikus erejét.

KULCSSZAVAK

falazott szerkezet, stabilitasvesztés, huzdszilardsag nélkiili anyag
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