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ABSTRACT: There is an increasing need for simple-to-use,
noninvasive, and rapid tools to identify and separate various cell
types or subtypes at the single-cell level with sufficient throughput.
Often, the selection of cells based on their direct biological activity
would be advantageous. These steps are critical in immune therapy,
regenerative medicine, cancer diagnostics, and effective treatment.
Today, live cell selection procedures incorporate some kind of
biomolecular labeling or other invasive measures, which may impact
cellular functionality or cause damage to the cells. In this study, we
first introduce a highly accurate single-cell segmentation method-
ology by combining the high spatial resolution of a phase-contrast
microscope with the adhesion kinetic recording capability of a
resonant waveguide grating (RWG) biosensor. We present a classification workflow that incorporates the semiautomatic separation
and classification of single cells from the measurement data captured by an RWG-based biosensor for adhesion kinetics data and a
phase-contrast microscope for highly accurate spatial resolution. The methodology was tested with one healthy and six cancer cell
types recorded with two functionalized coatings. The data set contains over 5000 single-cell samples for each surface and over 12,000
samples in total. We compare and evaluate the classification using these two types of surfaces (fibronectin and noncoated) with
different segmentation strategies and measurement timespans applied to our classifiers. The overall classification performance
reached nearly 95% with the best models showing that our proof-of-concept methodology could be adapted for real-life automatic
diagnostics use cases. The label-free measurement technique has no impact on cellular functionality, directly measures cellular
activity, and can be easily tuned to a specific application by varying the sensor coating. These features make it suitable for
applications requiring further processing of selected cells.
KEYWORDS: resonant waveguide grating biosensor, cell type classification, phase-contrast microscope, deep learning,
convolutional neural network, cell activity-based classification, single-cell selection

Cell adhesion is a fundamental biological process crucial for the
formation andmaintenance of tissues and organs inmulticellular
organisms. It involves the attachment of cells to each other or the
extracellular matrix through specific molecular interactions.
These interactions are mediated by cell adhesion molecules,
including integrins and cadherins, which play key roles in cell
signaling, migration, and differentiation.1 Proper cell adhesion is
essential for various physiological functions, such as embryonic
development, immune response, and tissue repair.2 Dysregula-
tion of cell adhesion can contribute to pathological conditions,
including cancer metastasis and autoimmune disorders.3,4

Understanding the intricacies of cell adhesion mechanisms
provides valuable insights into both normal physiological
processes and disease states. The glycocalyx, a carbohydrate-
rich layer on the cell surface, plays a crucial role in regulating cell
adhesion.5,6 This complex and dynamic structure consists of
glycoproteins and glycolipids that extend from the cell
membrane.7 Changes in the composition or structure of the
glycocalyx can have profound effects on cell adhesion, impacting
processes like immune response, tissue development, and overall

cellular communication.8 In essence, the glycocalyx serves as a
dynamic interface that modulates the adhesive properties of
cells, contributing significantly to the regulation of various
physiological and pathological processes.

Disruptions in cell adhesion mechanisms can contribute to
the development and progression of cancer.4 When adhesive
interactions are compromised, cancer cells can gain the ability to
detach from the primary tumor site, invade surrounding tissues,
and eventually metastasize to distant organs.9

Cellular heterogeneity is a hallmark of healthy tissues and also
a critical factor in understanding various biological phenomena
and disease states.10 In the context of diseases, such as cancer,
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cellular heterogeneity becomes particularly pronounced, as
subpopulations of cells can exhibit distinct genetic, epigenetic,
and phenotypic profiles.11,12 This heterogeneity poses chal-
lenges in the development of effective therapeutic strategies, as
treatments may be less effective against certain cell populations.
Label-free measurement methods in biology have emerged as
powerful tools for studying various biological processes without
the need for fluorescent or radioactive labels.13 These
techniques allow researchers to directly monitor and analyze
biomolecular interactions in their native state, providing a more
accurate representation of biological events thus having broad
applications in drug discovery, proteomics, and the study of
cellular signaling pathways, contributing to a deeper under-
standing of the intricacies of biological phenomena.14

Optical biosensors detect alterations in refractive index within
a range of 100−150 nm from the sensor surface, tracking the
resonance peak in response to the incident angle (utilizing
optical waveguide lightmode spectroscopy (OWLS),15 surface
plasmon resonance (SPR)16) or resonant wavelength/phase
shift (employing resonant waveguide grating (RWG)17 and
grating-coupled interferometry (GCI)18). The Epic Cardio
prototype, developed by Corning Inc., is a high-throughput
RWGoptical biosensor designed to be compatible with standard
384-well RWG sensor microplates, making it well-suited for
efficient and high-throughput biological experimentation. It has
a 25 μm spatial resolution over a single 4 mm2 sensor surface,
which, compared to its predecessor instrument, the Epic BT, is
capable of accurate single-cell analysis. However, the device did
not receive widespread use in the biophysical and biological
community, presumably because it was not yet commercialized.
It is important to emphasize that by measuring 12 sensor units in
parallel, this RWG device can capture hundreds of single-cell
signals simultaneously with subnanometer label-free signal
resolution perpendicular to the surface. This feature distin-
guishes it from advanced super-resolution microscopy setups,
where typically only one cell is measured at a time. Part of our
aim is to provide a framework for single-cell processing using the
RWG biosensor system, which could spark interest in the
technology’s application and help push the method from its
prototype phase to broader adoption.

RWG biosensors allow researchers to monitor the attachment
and detachment of cells to and from the sensor surface.19 As cells
adhere, alter their morphology, or undergo biochemical changes,
these alterations in mass and refractive index can be precisely
detected by RWG.20 This technology enables the quantitative
analysis of cellular adhesion kinetics.

The development of high throughput label-free measurement
techniques necessitates the improvement of the performance of
its data processing pipelines for medical applications to achieve
wide commercial use. Deep learning-based models provide
greater performance for representation learning in many
different medical areas. The publication of segmentation
architectures such as U-Net,30 V-Net35 or convolutional neural
network (CNN)- and recurrent neural network (RNN)-based
models for classification have served great use in medical image
processing or diagnosis. Their underlying construction enables
the models to learn latent representations and features of a given
data set at different levels of abstraction and apply them to
specific problems in machine learning applications.

In the present work, we introduce a single-cell evaluation
workflow that applies simultaneous segmentation and classi-
fication of cells based on RWG biosensor for adhesion and
phase-contrast microscope for high spatial resolution data. The

method applies Stringer’s et al. Cellpose21,22 model for
segmentation retrained for our use case. Then a highly accurate
localization is achieved by projecting the segmented cell areas
onto the lower-resolution biosensor images. Using this we
perform cell separation and classify the cell samples using deep
learning-based classifier networks.23 The workflowwas tested on
data sets comprising adhesion kinetics data from seven cell types
adhered on two different functionalized surfaces (fibronectin
and noncoated). We also determined the optimal measurement
time by testing the classification of the data sets with different
temporal lengths (30, 60, and 90 min). The performance
reached over 90% accuracy for both types of surfaces and
achieved a maximum of 97% in the case of the fibronectin
coating. We determined the 90 min-long measurements are
optimal for recording cell adhesion kinetics on this surface,
though performance for all timespans reached over 85%. Our
method does not affect cellular functionality; therefore, it can be
applied to larger evaluation pipelines where cells must be used
for different experiments (immune therapy, regenerative
medicine).

■ MATERIALS AND METHODS
All chemicals and reagents were obtained from Sigma-Aldrich Chemie
GmbH (Schelldorf, Germany), unless stated otherwise.

Cell Cultures and Cell Assays. HeLa cervical cancer cells
(ECACC 9302113) were cultured in Dulbecco’s modified Eagle’s
medium (DMEM, Gibco) supplemented with 10% fetal bovine serum
(FBS, Biowest SAS, France), 4 mM L-glutamine, 100 U/ml penicillin
and 100 μg/mL streptomycin solution.

MC3T3-E1 osteoblastic cells (ECACC 99072810) were cultured in
α-modified minimal essential medium supplemented with 10% FBS
(Biowest SAS, France), 2mML-glutamine, 100U/ml penicillin and 100
μg/mL streptomycin solution.

LCLC-103H human lung large cell carcinoma (ACC 384), H838
human lung adenocarcinoma (ATCC CRL-5844), and MDA-MB-231
and MCF-7 breast cancer cells were cultured in DMEM supplemented
with 10% FBS (Biowest SAS, France), 1% nonessential amino acids, 1
mM sodium pyruvate, and 100 U/ml penicillin and 100 μg/mL
streptomycin solution.

HepG2 human hepatocellular carcinoma cells (ATCC HB-8065)
were cultured in RPMI-1640 medium (Gibco) containing 10% FBS
(Biowest SAS, France), supplemented with 2 mM L-glutamine, and 100
U/ml penicillin and 100 μg/mL streptomycin solution.

The cultures were maintained at 37 °C in a humidified atmosphere
containing 5% CO2. For the experiments, cells were removed from the
tissue culture dishes using 0.05% (w/v) trypsin and 0.02% (w/v) EDTA
solution. The harvested cells were centrifuged at 200 × g for 5 min and
the cell pellet was resuspended in assay buffer (20 mM 2-[4-(2-
hydroxyethyl) piperazin-1-yl]ethanesulfonic acid (HEPES) in Hank’s
balanced salt solution (HBSS), pH 7.4). The centrifugation was
repeated two times to completely remove the cell culture media.

Cells were then counted in a hemocytometer and diluted to a final
cell density of 200 cells in 25 μL of HEPES-HBSS solution.

The measurements were carried out at room temperature. Twenty-
five μL assay buffer was added to 12 wells in a fibronectin or noncoated
Epic 384 well cell assay microplate. The baseline was recorded for 90
min before 25 μL cell suspension was added to each well and the cell
adhesion was measured for a maximum of 3 h.

The constructed single-cell database contains the data of 17
independent experiments carried out with the above-described
protocols.

Single-Cell Segmentation and Classification Workflow. In
this study, we have devised a single-cell evaluation workflow which can
achieve both precise cell segmentation and accurate classification of
seven distinct cell types. We accomplished this using an RWG-based
biosensor and a phase-contrast microscope, along with the usage and
implementation of deep learning-based mask generators and classifiers.
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Figure 1. Schematic illustration of the measurement workflow, detailing the working principle of the RWG biosensor (A) and the measured adhesion
complexes (B). The data is captured in two phases. First, the adhesion kinetic data is recorded using the RWGbiosensor, and subsequently, each well is
captured using a phase-contrast microscope for highly accurate spatial data. No changes are performed to the wells between the different
measurements. Figure created using BioRender (https://biorender.com/).

Figure 2. Schematic illustration of the different phases of the single-cell segmentation and classification workflow. First, the preprocessing phase
happens, where both microscope and biosensor samples are preprocessed, and a segmentation mask is generated based on the microscope images.
Afterward, the two samples are projected together, the images are cropped to size, and single cells separated using different segmentation strategies.
Finally, samples are classified using CNN-based classifiers, which output a cell type probability vector.
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The pipeline accommodates two primary types of input samples. The
measurement workflow used for obtaining the data is detailed in Figure
1. First, it takes in cell adhesion kinetic data obtained through Corning
Inc.’s Epic Cardio device using a 384-well microplate but only capable
of measuring 12 wells parallelly. In each well there is a 2 × 2 mm wide
sensor with a spatial resolution of 25 μm. Second, it involves the capture
of well images via a Zeiss phase-contrast microscope after the adhesion
measurements, with 20× magnification. The plate is put under the
microscope with no modification to the experimental setup. By
combining these two sets of samples, we can achieve highly accurate
single-cell segmentation, provided that the cells remain stationary
between the two data capture processes.

In the initial phase of our data processing pipeline, we acquire single-
cell data using Corning Inc.’s Epic Cardio RWG biosensor, capturing
spatial-temporal cell adhesion kinetic data for a maximum duration of
90 min. Following this adhesion measurement, we employ a phase-
contrast microscope to capture precise spatial data of the cells. Once the
measurement phase is complete, the cell adhesion data set undergoes an
automatic global background correction.

Afterward, we proceed with cell localization and segmentation on the
microscope data. A cell mask is generated, with each cell receiving a
unique identifier within the mask. Subsequently, the two data sets are
projected on the same plane to achieve precise alignment. In this
semiautomated process, the scaling factor of the projection is
determined based on the documented resolutions of the two devices.
Then, translation properties are manually configured, and scaling errors
are rectified. The output of this process is the projection properties,
which are dynamically employed in the subsequent evaluation phase.

Following the projection, single cells undergo assessment. Initially,
cells are filtered based on their individual properties and afterward
segmented according to a predefined strategy. We explored three
segmentation strategies: two involving masks generated from micro-
scope images and a standard watershed segmentation, which is widely
employed for segmentation tasks. Finally, cells are exported as
individual video samples for the classification phase. The full processing
pipeline is illustrated in Figure 2.

In the classification phase samples are passed through CNN-based
classifiers which output the probabilities for each cell type. In this
context, we employed four different deep learning-based models in our
cell-type classification process. We measured and evaluated model
performance based on segmentation strategy and measurement
timespan using data sets of seven cell types on two different
functionalized surfaces.

Single-Cell Resonant Waveguide Grating (RWG) Sensor. The
Epic Cardio31 device from Corning Inc., USA employs the RWG
(Resonant Waveguide Grating) technology for capturing optical label-
free single-cell adhesion kinetics. It functions by employing a near-
monochromatic infrared laser with an adjustable wavelength range of
825−840 nm. Within the waveguide, only a specific light wavelength
meeting the resonance criterion can be incoupled. This criterion
depends on the refractive index within the immediate vicinity (within
100−150 nm) of the sensor’s surface.

The reflected light is then directed toward a rapid CMOS
(Complementary Metal−Oxide−Semiconductor) camera featuring
an 80 × 80 pixel resolution and capable of swiftly scanning the entire
wavelength range. The scan is conducted with a step size of 0.25 pm in
under 3 s. To enhance the quality of measurements, numerous scans are
gathered and averaged in the final output.

In terms of physical specifications, each sensor has dimensions of 2 ×
2 mm, and the instrument has a lateral spatial resolution of 25 μm,
making it particularly well-suited for detecting single cells.

Data Preprocessing and Single-Cell Evaluation. Due to the
single-cell RWG-based biosensor’s ability to capture raw wavelength-
shift (WS) data for as many as 1200 individual cells during a session, we
developed a semiautomated data processing pipeline to extract single-
cell video data sets for subsequent classification. However, the
biosensor’s resolution proves inadequate when it comes to accurately
localizing and segmenting large and densely packed cell clusters. To
address this limitation, we expanded the evaluation workflow to include

phase-contrast microscope-based localization and segmentation,
enhancing the accuracy of the identification of cell surfaces.

After measurement, the Cardio device exports a video matrix of the
entire well surface, organized in a (T, 240, 320) configuration for 12
wells in a 3 × 4 arrangement, with T representing the number of
temporal measurements. These matrices need to be partitioned to
separate the individual wells into a (12, T, 80, 80) format for further use.
Subsequently, the wells are trimmed to the start of the adhesion
measurement phase, a calculation that can be precisely determined
using the exported biosensor timeline. This is possible because there are
always gaps in the timeline corresponding to when the cells are pipetted
into the wells.

Following this, the wells undergo offset correction by subtracting the
first frame from each time step, and outliers are removed by masking
values falling outside the 3-standard deviation boundary. This step is
typically necessary to exclude areas where the biosensor intersects with
the well boundaries. Finally, the well requires correction for the global
background noise level, achieved by selecting and subtracting the
average of the background data. Since the accuracy of the background
threshold can be influenced, especially at the periphery of cell regions of
interest (ROIs), we implemented a pseudorandom pixel selection
approach to reduce background noise. In the preprocessing stage,
several background pixels are chosen, with parameters determining
their distance from foreground ROIs and other selected pixels. At this
stage, the foreground-background is divided by a preset 75 pm absolute
wavelength shift threshold. The selection process is also centered
around the cell adhesion image to mitigate potential errors at the well
edges. The preprocessed samples are exported by well, ready for the
projection and single-cell evaluation phases.

Single-Cell Segmentation on the Microscope Images. To
achieve precise cell localization and segmentation at a high level, we
employed a multimodal strategy. In our prior research papers, we
utilized a method that involved searching for local maxima while
applying upper and lower thresholding to identify cells within the
biosensor data. This method works well for isolated cells, but it did not
effectively leverage the throughput capabilities of the Epic Cardio when
dealing with larger cell clusters. In such cases, where cells have
overlapping ROIs, a more precise selection of the distances between
neighboring cells would be required, which would need to be tuned
manually for every well.

To address this issue, after measuring adhesion with the biosensor,
we used a phase-contrast microscope to capture the cell cultures. The
higher resolution of the microscope enables more accurate separation
of individual cells. Using this data, we projected the identified segments
onto the biosensor samples to determine cell centroids and surfaces.

For parsing the microscopy images, we employed Mouseland’s
Cellpose v221,22 cell segmentation tool. Cellpose is a deep learning-
based segmentation network that utilizes an encoder-decoder
architecture to achieve state-of-the-art segmentation performance.
The network outputs three separate images: a horizontal and vertical
gradient of the input, as well as a background-foreground image.
Combining these outputs results in a gradient vector field that encodes
the position, orientation, and surface of a cell. The segmentationmask is
generated from this vector field image. Cellpose v2 also offers a user-
friendly tool for model development, enabling developers to easily
reannotate predicted segmentation masks using an interactive user
interface.

During model development, we followed an iterative approach for
transfer learning the segmentation model with our data and manually
annotating the ground truth images. We used Cellpose’s cyto model for
pretrained model weights. We gave training and test data to our
Cellpose model in an incremental fashion, increasing the data pool in
small iterations. Using this approach, fewer corrections were needed to
the generated masks with each iteration. In the final iteration, the model
was trained using our whole microscope data set. The efficacy of this
segmentation was afterward evaluated to quantify its effects on the
classification loss. Of note, since the RWG biosensor had a lower
resolution, heavily overlapping cells were annotated as one to leave out
the issue of multicell to single sensor for further development.
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Image Projection and Single-Cell Segmentation. Due to
differences in the capturing areas between the two measurement
devices, we spatially aligned the two sets of samples. To address this, we
developed a GUI tool in Python. The alignment happens in two steps. It
works by first scaling the two samples using the precomputed scaling
factor. This is calculated using the nominal properties of the devices.
During the development phase, we encountered a slight variation
between the theoretical and practical scaling therefore we introduced an
error correction step to the alignment process. Coordinates can be
manually selected on the two samples, which correspond to the same
cell. Once the selection is done the program calculates the scaling and
translation factors according to the following equations:

=
= =N N

m m

b b
scaling

1
( 1) i

N

j i j

N
i j

i j1 0,

= ×
=N

m btranslation
1

scaling
i

N

i i
0

where N is the total number of selected coordinates on the microscope
(m) and biosensor (b) samples. The scaling is corrected using the
Euclidean distance ratio between vectors on the different sample planes,
while the translation equates to the average difference between the
vectors. The method is similar in aim to an affine transformation but
leaves out the rotation and shearing operations from the projection.
Once the properties were identified and the final projection was
executed, we cut the size of the microscope image to match the area of
the projected biosensor sample.

After achieving alignment, single cells are filtered based on both
biosensor and microscope characteristics. The cells are filtered by their
individual properties, such as area, maximum adhesion, and distance
from the edge of the biosensor image.

We conducted evaluations using three segmentation strategies. The
first strategy employed manually annotated microscope masks, and the
resulting data included biosensor pixels intersecting with the masks.
The second approach followed a similar technique but utilized
predicted masks generated by our trained Cellpose model. The third
strategy involved watershed segmentation. In this case, cell centroids
were determined through a local maxima search, and regions were
subsequently segmented using the watershed algorithm. The separation
of foreground and background for the Euclidean distance calculation
was based on the lower threshold applied during the maxima search.
Single cells were automatically selected using the three strategies
without any manual filtering. The cell selection happened on the
projected plane, where the biosensor pixel coordinates were evaluated
based on the projection properties and the final cell separation was
performed on the original biosensor image. The output selections were
copied onto a (t,8,8) video matrix and exported in tif f format.

Single-Cell Classification Using Convolutional Neural Net-
work-Based Models. After the single-cell separation, samples are
preprocessed before the final classification process. Preprocessing
consists of a pixel-wise standardization of the samples. Afterward, they
are passed through a classifier neural network which transforms the
initial three-dimensional sample into a cell probability vector. We
implemented four CNN-based models: CNN, ResNet, DenseNet, and
a CNN-LSTM model with added recurrent layers. These models
normally accept 2D images, but wemodified them to receive 3D spatial-
temporal data samples.

Our CNN model simultaneously downsamples the temporal and
spatial dimensions. It starts with (t,8,8) input dimensions and
compresses the dimensions to ( t

2
,2,2) at the output of the feature

extractor in two sequential blocks. Blocks contain 3D convolution
layers with 8 and 16 channel and 3 × 3 receptive field sizes. These are
followed by ReLU activation, DropOut and normalization layers.
During development, we experimented with both Batch24 and Layer25

normalization. Layer normalization proved better for our use case
which we applied for every normalization layer in all models. The block
ends with max pooling layers which half the spatial dimensions. The
first pooling layer also compresses the temporal dimension. Afterward,

the output is flattened, and the classifier transforms its input in two
layers to the probability vector.

We also implemented a ResNet-based26 model. ResNet applies a
shortcut connection between stacked layers to allow the uninterrupted
flow of different layers of representations through the whole classifier.33

This way the gradient vanishing problem can be mitigated. Our model
applied basic residual blocks with (8,16), (16,32) channel sizes for the 3
× 3 convolutions without any bottleneck layers. The pooling and the
classifier are constructed the same as it is in the previous case.

Our third model was implemented based on the DenseNet27,34

architecture which compared to the ResNet connects all layers by
receiving the feature maps of all previous layers, concatenates them to
its output and passes them to the subsequent layer.

Our final model is a CNN-LSTM-based28 Convolutional Recurrent
Neural Network (CRNN)29 to try to simultaneously leverage the
spatial feature extraction capability of CNN and the temporal of the
Long Short-TermMemory (LSTM) layers. Our network contains three
convolutional blocks, the same as described at the CNN network, but
the pooling layers downsample only the spatial dimensions. Afterward,
the output is passed through an LSTM block with 3 layers and 256
output size. In each case, a SoftMax operation is applied after the final
layer of the classifier to produce the cell probability vector.

Data Sets and Model Training. In this section, we provide an
overview of the data sets and the training procedures employed for both
the microscope segmentation and the single-cell classification models.
For this research, we utilized data from 17 distinct experiments
encompassing seven different cell types.

For the training of the Cellpose model, we employed a total of 175
microscope images. During the preprocessing stage, these images were
divided into 2 × 2 tiles to reduce the loading time during training,
resulting in a total of 700 images, which collectively contained over
13,000 cells. The data set was then split into training and validation sets
in an 80−20% ratio while maintaining a uniform distribution between
cell types. To achieve this, we used an oversampling data set
augmentation, where the sample count of each cell type is inflated to
the count of the cell type which had the most samples in the original
training data set. This approach provides a data set, where in each
training iteration the model can learn from cell types equally. This is
performed for each cell type batch by randomly repeating samples until
the batch count reaches the desired quantity. Subsequently, the models
were trained over 250 epochs with a learning rate of 0.01 and a batch
size of 8, utilizing pretrained cyto model weights. To optimize resource
utilization, we introduced a data loading mechanism with dynamic
image transformation into the existing codebase. Following the training
process, masks were generated for all microscope images and exported
for subsequent use in segmentation tasks.

The classification models were trained on data sets for two types of
surfaces, one for fibronectin, and the other for the noncoated surface to
compare the separability of the different cell classes using different
functionalized surfaces. For this, we used 6 different cell types: H838,
HeLa, HepG2, LCLC-103H, MCF-7, and MDA-MB-231. Also, we did
a separate training with the fibronectin surface, adding a healthy
MC3T3-E1(preosteoblast) cell type. The cell counts for each data set
can be seen in Table 1. All measurements reached 90min, so we capped
the data sets to this timespan. To test the classification performance for
different time intervals, we created three data sets with 30-, 60- and 90
min-long sample sets.

For classification, single-cell data sets were partitioned in a 64−
16.5−16.5% ratio for training, validation and test sets. The training and
optimization happened on the train and validation sets while the later
performance testing and evaluation were on the test set. To counteract
class imbalance, we performed the same oversampling augmentation as
in the previous case. The different data sets also contain the same cell
samples for maximal comparability. After the partitioning, the
standardization factors (mean (μ) and standard deviation (σ)) were
precomputed for later usage. The mean and standard deviation
calculations were done using Welford’s online algorithm32 in a pixel-
wise manner, where each pixel is standardized using the following
equation:
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where x and xs denote the raw and standardized samples in the X and Xs
data set with N length and t ϵ T, w ϵ W, h ϵ H indices for the different
axes.

Each classification model was trained for a maximum of 250 epochs
using 1e-4 learning rate, 1e-5 weight decay, Adam optimizer and cross-
entropy loss. To ensure that the models were not optimized on
validation, or the test sets we also applied 5-fold stratified cross-
validation training.

■ RESULTS AND DISCUSSION
The evaluation is presented in two phases, first the performance
of the single-cell segmentation and afterward, the cell type
classification is assessed. The segmentation is evaluated using
two metrics: Detection Error (DE), which measures the ratio of
lost cells during the segmentation for a given algorithm and
Dice-Score (DS), which measures the ratio of spatial overlap
between the ground truth and the predicted cell mask. Two
types of DS were evaluated for the Cellpose-based segmenta-
tion: DSm, which measures the segmentation accuracy on the
phase-contrast images and DSb, which shows the pixel loss ratio
on the biosensor images. The metrics were evaluated for both
data set scenarios and coating surfaces.

Based on the results listed in Table 2. it can be said that the
Cellpose-based segmentation provides a more accurate
segmentation since it shows a lower value for both metrics.
For DE it stays around 5% for both coating surfaces. It also
shows a lower DS rate for both scenarios. In the case of
noncoated surfaces, there is a decrease in DE and DS. This is
influenced by cell density in a well, the shape complexity of the
individual cells and the alignment precision of the two images.
As shown in Figure 3. both segmentation methods can perform
with similar accuracy for less dense wells, where cells are more

Table 1. Total Cell Counts of the Datasets Used for
Classificationa

cell types
coating
surface manual predicted watershed

H838 | HEPG2 | HeLa | LCLC-
103H | MCF-7 | MDA-MB-231
(Scenario I.)

F 7330 7128 3895
N 5195 4882 4086

H838 | HEPG2 | HeLa | LCLC-
103H | MC3T3-E1 | MCF-7 |
MDA-MB-231 (Scenario II.)

F 7797 7533 4355

aTwo scenarios were created: Scenario I., where H838, HeLa,
HepG2, LCLC-103H, MCF-7, and MDA-MB-231 were applied and
Scenario II. with the added MC3T3-E1 samples. Scenario I. was
tested on both fibronectin (F) and noncoated (N) coating surfaces.
Separate datasets were created based on the three segmentation
strategies: manual annotation, predicted masks, and watershed
segmentation. Models were trained separately in three timespans:
30, 60, and 90 min-long measurements.

Table 2. Error Rates for the Segmentation Strategiesa

Cellpose-based
segmentation

watershed
segmentation

cell types
coating
surface DE DSm DSb DE DS

H838 | HEPG2 | HeLa |
LCLC-103H | MCF-7 |
MDA-MB-231

F 0.02 0.07 0.13 0.40 0.76
N 0.06 0.06 0.11 0.23 0.63

H838 | HEPG2 | HeLa |
LCLC-103H | MC3T3-
E1 | MCF-7 |
MDA-MB-231

F 0.03 0.07 0.13 0.39 0.76

aDetection error (DE) shows the ratio of missed cells of a
segmentation, whilst Dice-Score measures the delineation of the
predicted and ground truth masks. Overall, the Cellpose-based
segmentation proves to be highly accurate for both microscope
segmentation shown by DSm and biosensor pixel loss, DSb.

Figure 3. Illustration of the projected adhesion image and the single-cell segmentation strategies. The left side illustrates the aligned images. The blue
markers represent the centroids of single-cell segments. We applied three strategies for segmentation. These are illustrated using four cells on the right
side, which are annotated with the appropriate number on the aligned image. The blue outline (3rd row) illustrates the cover pixel-based segmentation
(M), where pixels are selected if they intersect the aligned microscope segment (red outline, 1st row). This is also used for segmenting the Cellpose
predicted mask (P). The yellow outline (4th row) illustrates the watershed-based segmentation (W) strategy. The maximum pixel (green outline, 2nd
row) was used in our previous research to perform quantitative analysis of different cell types. ColumnsC andD display a segmentation scenario, where
cells are grouped together. The figure illustrates a hard case of MCF-7 cells with heavy overlapping, but these provide a minority in the overall data set.
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distant from one another, while the real benefit of our
segmentation comes from applying it to more packed wells,
where the cell activated areas can merge because of the lower
resolution of the adhesion images. The method is still bound for
cell densities by the resolution of the biosensor image. Using a
phase-contrast microscope can lead to highly precise cell
separation, but heavily overlapping cells are still an issue
which can provide superposed adhesion signals for single
sensors. To omit this issue, these cases were taken as single cells
for our experiments.

The impact of various coating surfaces on the adhesion of
different cell types in both spatial and temporal dimensions is
illustrated in Figure 4. The fibronectin surface exhibits increased
adhesion strength for HeLa and LCLC-103H cell lines, whereas
the noncoated surface positively influences HepG2, H838, and
LCLC-103H cell types. Also, on the noncoated surface, the cells
appear to have a more regular shape than on the fibronectin-
coated. This effect happens as the result of the cells adhering to
the noncoated surface with a passive process usually taking the
shape of a hemisphere, while cells can adhere to a fibronectin-
coated surface through active processes forming adhesion
complexes resulting in a shape characteristic of the given cell
type. On the fibronectin-coated surface, cells readily find various
cell adhesion motifs, such as RGD sequences.40 Each cell type
binds to these different motifs in distinct ratios, depending on
their specific integrin receptors and adhesion mechanisms. For
example, some cells may preferentially bind to one type of motif

more than another, leading to varied adhesion strengths and
patterns.40,41 On the noncoated surface, there are no specific cell
adhesion motifs, so cells adhere to the surface through a passive
process, which does not depend heavily on the cell type, or its
direct biological functionality or activity. These differences in
surface properties, including the presence and variety of
adhesion motifs, can lead to higher classification accuracy on
the fibronectin-coated surface.

Bothmanual and predictedmasks reveal that, on average, cells
occupy a 3 × 3 pixel region. However, standard deviation images
for HeLa, LCLC-103H, and MC3T3-E1 cell lines exhibit
deviations. In contrast, watershed segmentation results in larger
cell areas, potentially influenced by cell density. The algorithm
may enlarge the area of strongly adhered cells while reducing
that of weaker ones, or the overall lower precision of the
background threshold may cause the foreground area to expand,
resulting in more positive cell areas.

The classification performance was evaluated using four
metrics: Accuracy, F1-Score, AUC Score and AUC Precision-
Recall (AUC-PR) Score. For visualizing the class separation
capability of the trained models, we also applied t-distributed
stochastic embedding(t-SNE)36 and Precision-Recall curve.
Figure 5. shows the metrics for Scenario I. for both fibronectin
and noncoated cases for every segmentation strategy.

Overall, the fibronectin coating shows a better performance
across every metric and segmentation strategy compared to the
noncoated parallel. There is a relative increase in the

Figure 4. Spatial and temporal distribution of the sensor signal of the different cell types. For spatial, the kinetic average was taken of the temporal
domain for 90 min measurement lengths over the 8 × 8 pixel area (200 × 200 μm2). Similarly, for temporal, the spatial domains were averaged to show
the temporal kinetics of a given cell type.
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performance between the 30- and the 60min-long data sets. The
fibronectin case also shows that the classification performance
for the predicted masks nearly matches the manually segmented
data set whichmeans that the deep-learning-based segmentation
results in a relatively small error for the classification
performance of the segmentation. The watershed-based had a
worse performance, CNN-LSTM andResNetmodels proving to
be the best overall models for classification, but the performance
is still diminished by 10−15% in this case.

The noncoated case shows a decrease in classifier perform-
ance. CNN, ResNet and DenseNet models still show a slight

increase from 30 to 60 min, while CNN-LSTM shows an overall
decrease in performance with increased timespans. All networks
show a decrease in performance from 60 to 90 min. We
investigated this phenomenon further which could be solved by
increasing the network layers which could stagnate the
decreasing performance after 60 min. We did not include
these in the evaluation, because we wanted to compare the
performance for both coating surfaces and segmentation
strategies using the same networks across the board. Also,
both cases show a lower variation and overall higher value in the
AUC metric, which is likely caused by the imbalance in the test

Figure 5. Change of the classifier evaluation metrics, trained and tested on Scenario I., for both fibronectin (upper) and noncoated (lower) surfaces.

Table 3. Evaluation Metrics of the Classifiers Trained and Tested on Scenario I., Fibronectin Coating on the 60 Minute-Long
Dataset

F1-score AUC score AUC-PR score

M P W M P W M P W

CNN 0.92 0.90 0.77 0.99 0.98 0.96 0.96 0.95 0.85
ResNet 0.94 0.93 0.79 0.99 0.99 0.95 0.97 0.97 0.90
CNN-LSTM 0.97 0.95 0.85 0.95 0.97 0.97 0.86
DenseNet 0.93 0.91 0.66 0.99 0.99 0.89 0.97 0.95 0.71

Table 4. Evaluation Metrics of the Classifiers Trained and Tested on Scenario I., Noncoated Surface on the 60 Minute-Long
Dataset

F1-score AUC score AUC-PR score

M P W M P W M P W

CNN 0.84 0.79 0.75 0.97 0.96 0.94 0.91 0.86 0.83
ResNet 0.85 0.86 0.79 0.97 0.98 0.95 0.92 0.93 0.85
CNN-LSTM 0.74 0.72 0.86 0.93 0.92 0.98 0.80 0.80 0.92
DenseNet 0.68 0.59 0.63 0.91 0.86 0.88 0.73 0.61 0.68
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set, favoring the performance of cell lines which have a majority
in sample count.

Tables 3 and 4 also show themetric results for the 60min-long
data sets for all networks. For fibronectin coating CNN-LSTM
and ResNet models performed the best, reaching 0.95 for all
metrics. The Cellpose-based segmentation proved to reach
around the same level of accuracy as the manually annotated
data set. The watershed-based shows a ∼ 10% decrease in metric
results for both F1 and AUC-PR scores.

For the noncoated surface, the CNN and ResNet models
showed the best results. Here the Watershed-based reaches
nearly the performance of the predicted data set. There is only a
2−4% difference. Compared to the fibronectin case, the
noncoated surface-based classification shows a ∼ 10% decrease
in performance which proves the fibronectin to be more optimal
for cell type classification purposes.

Visualizing the results based on the individual cell types,
Figure 6 shows that the fibronectin case executes a near-perfect

Figure 6.Comparative figures for network performance between coating surfaces and segmentation strategies for Scenario I. The plots show the results
for the best network based on the coating surface, which is CNN-LSTM for fibronectin and ResNet for noncoated. The t-SNE plots show the spatial
distribution of the output probability scores of the neural networks reduced to 2D space. Each point represents a single cell color-coded with its cell
type. Good classification performance is shown by well-defined clusters of cell types with minimal intermingling. Of note, the distance between
separate clusters is not necessarily informative in terms of class separability. The PR curve plots the precision against the recall for different classifier
thresholds. A high area under the curve represents a lower false positive and false negative rate.
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separation for the predicted data set. The confusion matrix
shows an over 0.9 true positive rate for all cell types. The t-SNE
plot also shows a well-defined separation between the class
spaces, optimizing only a few samples to wrong cases. The PR
(Precision) curve shows a significant deviation from the optimal
classifier only for LCLC-103H. In comparison, the watershed
case shows a worse score.Most cells reach 0.85−0.9 true positive
rate. Only the H838 and MCF-7 show a value below 0.8. In this

case, t-SNE shows a less defined separation between HepG2,
MCF-7 and H838 cells. These cells share most of their
misclassified samples. It can also be noted that H838 and
MCF-7 share a substantial, 10% and 11% of their samples with
the MDA-MB-231 class. In this case, the PR curve also shows a
high deviation from the optimal classifier with H838 andMCF-7
showing a greater difference even from other cell types.

Figure 7. Change of the classifier evaluation metrics, trained and tested on Scenario II., for the fibronectin surface.

Table 5. Evaluation Metrics of the Classifiers Trained and Tested on Scenario II., Fibronectin Coating on the 60 Minute-Long
Dataset

F1-score AUC score AUC-PR score

M P W M P W M P W

CNN 0.93 0.91 0.80 0.99 0.99 0.95 0.97 0.96 0.86
ResNet 0.95 0.94 0.85 0.99 1.00 0.97 0.98 0.98 0.90
CNN-LSTM 0.98 0.96 0.86 1.00 1.00 0.97 0.99 0.99 0.91
DenseNet 0.93 0.92 0.77 0.99 0.99 0.94 0.97 0.96 0.83

Figure 8. Performance of the predicted and watershed data set-based classification with the CNN-LSTMmodel for Scenario II. on fibronectin coating.
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For the noncoated case, the ResNet model showed the best
results. This coating has lower metrics scores stopping on
average at 0.85 compared to the ∼0.95 for the fibronectin case.
The confusion matrix shows a lower accuracy for HepG2 and
H838 with H838 sharing 14% of its samples with LCLC-103H.
Here the t-SNE shows higher intermingling between cell types
compared to fibronectin and the PR curve also shows a lower
trajectory, shared by most cell types except MCF-7 which
deviates toward a more positive result. In the noncoated case,
the neural network and the watershed-based segmentation
produced similar results. The confusion matrix shows two
notable results. MDA-MB-231 and HeLa show worse results
than in the previous case sharing 17 and 25% of their samples
with MCF-7. The t-SNE also shows these clusters close to each
other. The PR curve also shows better results for MCF-7, HeLa
and HepG2 while MDA-MB-231 shows a considerably worse
trajectory.

Previously we described the classification results for both
fibronectin and noncoated surfaces on the same cell pool. In the
next section, we added an MC3T3-E1 cell type to the already
existing data set to test how the performance is influenced by
adding additional classes. This was only validated for the
fibronectin surface which generally proved to show a better
performance for single cell classification.

Similar to the previous case classification on the fibronectin
plate using manual or predicted masks shows a better result. The
metrics in Figure 7 and Table 5 show that the workflow is still
able to achieve 0.95 F1-Score and AUC-PR score for the best
models while the watershed segmentation-based data set
achieves only 0.85 on F1-Score and above 0.9 on AUC-PR for
1.5-h measurement lengths. Similarly, the 30 to 60 min metric
increase is the same. In this case, the CNN and CNN-LSTM
models show the same decrease from 60 to 90 min which
previously could be seen on the noncoated results. In this case,
too ResNet and CNN-LSTM models proved to be the best
classifiers.

In both cases, the figures show a high level of accuracy (over
90% seen in Table 5). The t-SNE plots in Figure 8 show the
predicted segmentation has a higher level of class separation
where only outlier samples are misclassified, while the watershed
data set shows that the output probability of cell types MCF-7,
MDA-MB-231, HepG2 andH838 aremuch closer to each other.
Similar to the predicted case, the PR curves show a highly
accurate classification. Only the H838 and LCLC-103H cell
types show a decay from the optimal classifier while the
watershed case shows that HeLa andMC3T3-E1 cell types show
a decay in precision.

We also performed a featured-based classification on
aggregated biophysical properties of the samples in the
Supporting Information using Random Forest, AdaBoost and
KNeighbors classifiers.

■ CONCLUSIONS
We presented a single-cell evaluation workflow which is capable
of highly accurate cell segmentation and classification based on
RWG biosensor and phase-contrast microscope data. We tested
the method using seven different cell types and two types of
surfaces. The data set comprised of over 12,000 samples across
the two surfaces, recorded in 17 measurements. The
classification performance reached over 95% for the fibronectin
coating with an optimal measurement time between 60 and 90
min for over 90% accuracy with ResNet and CNN-LSTM
models showing the best results. Since we tried to maximize

classification performance while minimizing the required
measurement time, we concluded, that captures capped at 90
min are enough for optimal performance for our models.

Compared to our method, state-of-the-art single-cell process-
ing systems such as flow cytometry37,39 and fluorescence-
activated cell sorting (FACS)38 provide a high throughput
method for processing and sorting methods capable of
processing several thousands of cells per second which can
capture cell biophysical properties such as size and shape, cell−
cell interactions and protein localization however our RWG
biosensor-based classificationmethod provides reliable perform-
ance in cell type identification, is completely label-free and uses a
parallel capturing. It also includes temporal data of adhesion and
cell migration, which can provide useful information for further
analysis, and the capturing surface is experimentally tunable for
better performance with new sample types and applications.
Since our proposed method is a cell activity-based classification,
it would have advantages in novel applications where selected
cells are further processed and with a mandatory high-quality
and functional activity, such as in gene and immune therapy.

Our method could still be improved by omitting the
microscope image capturing after the adhesion measurement.
This could be achieved by training a U-Net-based segmentation
model which can automatically segment the biosensor image by
using the segmented cells from themicroscope images as ground
truth. Developing a method which can track cell movement and
changes in the cell area could also improve the characterization
of different cell types. To provide adequate testing, classification
experiments could be performed in wells containingmultiple cell
types. To achieve this in a supervised manner cell types could be
labeled using different fluorescent dyes to identify them from the
microscope image. Dealing with overlapping cells remains an
issue. For classification purposes, these cases can be omitted, and
the models can still provide reliable results. This issue could be
mitigated using the simultaneous identification of multicell
objects and signal normalization based on the underlying cell
count. A microstructured sensor with tiny wells for each
individual cell landing on the RWG surface could also solve this
issue in further applications.

■ ASSOCIATED CONTENT
Data Availability Statement
The single-cell analysis code is available on GitHub https://
github.com/Nanobiosensorics/single-cell-classification-3d and
the analyzed data set can be downloaded from https://nc.ek-cer.
hu/index.php/s/Gs37r3HLDacDSd5.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acssensors.4c01139.

Quantifying biophysical properties of single cells; cell type
characterization based on cell area, max wavelength shift
(WS), and WS change rate biophysical properties;
feature-based classification of the single-cell data sets;
classification using RandomForest, AdaBoost, and
KNeighbors classifiers based on biophysical properties
(PDF)

■ AUTHOR INFORMATION
Corresponding Author

Robert Horvath − Nanobiosensorics Laboratory, Institute of
Technical Physics and Materials Science, HUN-REN Centre
for Energy Research, Budapest H-1121, Hungary;

ACS Sensors pubs.acs.org/acssensors Article

https://doi.org/10.1021/acssensors.4c01139
ACS Sens. XXXX, XXX, XXX−XXX

K

https://pubs.acs.org/doi/suppl/10.1021/acssensors.4c01139/suppl_file/se4c01139_si_001.pdf
https://github.com/Nanobiosensorics/single-cell-classification-3d
https://github.com/Nanobiosensorics/single-cell-classification-3d
https://nc.ek-cer.hu/index.php/s/Gs37r3HLDacDSd5
https://nc.ek-cer.hu/index.php/s/Gs37r3HLDacDSd5
https://pubs.acs.org/doi/10.1021/acssensors.4c01139?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acssensors.4c01139/suppl_file/se4c01139_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Robert+Horvath"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-8617-2302
pubs.acs.org/acssensors?ref=pdf
https://doi.org/10.1021/acssensors.4c01139?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


orcid.org/0000-0001-8617-2302;
Email: horvath.robert@ek.hun-ren.hu

Authors
Balint Beres − Nanobiosensorics Laboratory, Institute of
Technical Physics and Materials Science, HUN-REN Centre
for Energy Research, Budapest H-1121, Hungary; Department
of Automation and Applied Informatics, Faculty of Electrical
Engineering and Informatics, Budapest University of
Technology and Economics, Budapest H-1111, Hungary

Kinga Dora Kovacs− Nanobiosensorics Laboratory, Institute of
Technical Physics and Materials Science, HUN-REN Centre
for Energy Research, Budapest H-1121, Hungary; Department
of Biological Physics, Eötvös University, Budapest H-1117,
Hungary

Nicolett Kanyo − Nanobiosensorics Laboratory, Institute of
Technical Physics and Materials Science, HUN-REN Centre
for Energy Research, Budapest H-1121, Hungary

Beatrix Peter − Nanobiosensorics Laboratory, Institute of
Technical Physics and Materials Science, HUN-REN Centre
for Energy Research, Budapest H-1121, Hungary

Inna Szekacs − Nanobiosensorics Laboratory, Institute of
Technical Physics and Materials Science, HUN-REN Centre
for Energy Research, Budapest H-1121, Hungary

Complete contact information is available at:
https://pubs.acs.org/10.1021/acssensors.4c01139

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
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