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1. Introduction

The relationship between local and global properties of structures is a central theme in combi-
natorics and computer science. Since the work of Rubinstein and Sudan [24], testing properties by
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sampling a small number of elements is an emerging research area. A classical result of this kind
is the triangle removal lemma by Ruzsa and Szemerédi [25], usually stated in the form that if a
graph G admits at most §|V(G)|? triangles then it can be made triangle-free by the removal of at
most ¢|V(G)|> edges, where § depends only on ¢. This can be applied to obtain a combinatorial
proof of Roth’s theorem [23] on 3-term arithmetic progressions, while the hypergraph removal
lemma has been used to prove Szemerédi’'s theorem. Removal lemmas were proved for abelian
groups by Green [16], for linear systems of equations by Kral, Serra and Vena [20], for local affine-
invariant properties by Bhattacharyya, Fischer, Hatami, Hatami and Lovett [9] and for permutations
by KlimoSova and Kral [19], and by Fox and Wei [11], as well.

A property of digraphs is a set of finite digraphs closed under isomorphism. A digraph G is e-far
from having a property @ if any digraph G’ on the vertex set V(G) that differs by at most &|V(G)?
edges from G does not have the property @ either. A property @ is strongly testable if for every ¢ > 0
there exists an f(¢) such that if the digraph G is e-far from having the property & then the induced
directed subgraph on f(e) vertices chosen uniformly at random does not have the property @ with
probability at least one half, and it always has the property if G does. Alon and Shapira [5] proved
that every monotone property of undirected graphs (that is, closed under the removal of edges and
vertices) is strongly testable, see Lovasz and Szegedy for an analytic approach [21], while R6dl and
Schacht generalized this to hypergraphs [22], see also Austin and Tao [7]. Similar results have been
obtained for hereditary classes of graphs and other structures, e.g., tournaments and matrices, see
Gishboliner for the most recent summary [12]. We focus on monotone properties and omit the
overview of other research directions.

Unfortunately, the dependence on ¢ can be quite bad already in the case of undirected graphs:
the known upper bounds in the Alon-Shapira theorem are wowzer functions due to the iterated
involvement of Szemerédi's regularity lemma. Following Alon and Fox [3], we call a property easily
testable if f(e) can be bounded by a polynomial of % else the property is hard. They showed
that both testing perfect graphs and testing comparability graphs are hard [2]. Easily testable
properties are quite rare, even triangle-free graphs are hard: Behrend’s construction [8] of sets
of integers without 3-term arithmetic progression leads to a lower bound of magnitude smg(%).
Alon proved that H-freeness is easily testable in the case of undirected graphs if and only if H is
bipartite. For forbidden induced subgraphs, Alon and Shapira gave a characterization [6], where
there are very few easy cases. Testability is usually hard for hypergraphs studied by Gishboliner
and Shapira [13] and ordered graphs investigated by Gishboliner and Tomon [14]. An interesting
class of properties that are easy to test are semialgebraic hypergraphs, see Fox, Pach and Suk [10].
Surprisingly, 3-colorability and, in general, “partition problems” turned out to be easily testable, see
Goldreich, Goldwasser and Ron [15]. Even a conjecture to draw the borderline between easy and
hard properties seems beyond reach.

The goal of this paper is to study testability of finite posets as special digraphs. By a poset, we
mean a set equipped with a partial order < that is anti-reflexive and transitive. Alon, Ben-Eliezer and
Fischer [1] proved that hereditary (closed under induced subgraphs) classes of ordered graphs are
strongly testable. This implies the removal lemma for posets and that monotone classes of posets
are strongly testable in the following way. We consider a linear extension < of the ordering <
of the poset P. To every poset with a linear ordering, we can associate the graph on its base set,
where distinct elements x < y are adjacent if x < y in the poset. A graph with a linear ordering is
associated with a poset if and only if it has no induced subgraph with two edges on three vertices,
where the smallest and largest vertices are not adjacent. An alternative to the application of this
general result is to follow the proof of Alon and Shapira [5] using the poset version of Szemerédi's
regularity lemma proved by Hladky, Mathé, Patel and Pikhurko [17].

We show that monotone classes of posets (closed under taking subposets) are easily testable.
This is equivalent to the following removal lemma with polynomial bounds.

Throughout this paper, we work with finite posets. The height of a poset P is the length of
its longest chain, while the width is the size of the largest antichain, denoted by h(P) and w(P),
respectively. The chain with h elements is denoted by C,. Given two posets P, Q, a mapping
f : Q — P is a homomorphism if it is order-preserving, i.e., f(x) < f(y) for every x < y. The
probability that a uniform random mapping from Q to P is a homomorphism is denoted by t(Q, P),
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which we often refer to as the homomorphism density. A poset P is called Q-free if it does not
contain Q as a (not necessarily induced) subposet.

Theorem 1.1 (Polynomial Removal Lemma for Posets). Consider an ¢ > 0 and a finite poset Q of height

at least two. For every finite poset P, if t(Q,P) < ( )h(Q)w(Q) then there exists a Q-free (moreover,
Cn(q)-free) subposet of P obtained by the removal of at most e|P|? edges.

We show that Q-free posets are easily testable.

Algorithm 1 Basic test for Q-free posets

Input: the poset P
P’ < induced subposet on |Q| elements chosen uniformly at random
if Q is a subposet of P’ then Reject P
else Accept P
end if

This test always accepts a Q-free poset, and rejects a poset P with probability at least t(Q, P). If

2
t(Q.P) < (% ) (@u(@? , then byTheoreml 1P is not e-far from being Q-free. If t(Q, P) > (%)h(Q)w(Q) ,

< ( )h(Q)w(Q)

then it is sufficient to iterate this test
h(Q)w(Q)?
(3)

r(Q 5 =< times independently (i.e., taking f(¢) =

|Q| in the definition of easy testability) to reject a poset e-far from being Q-free with
probability at least 1 — (1 —¢t(Q, P)) ) > % The inequality holds since 0 < t(Q,P) < 1, the
functiont — 1 — (1 — t)% is monotone increasing on (0, 1] and lim; o1 — (1 — t)% =1- %
We will consider the family of (possibly infinitely many) finite posets not in the class. To state
our precise result, we define the height and width of a set of posets P as
h(P) = min h(P) w(P)= min w(P).

PeP PeP:
h(P)=h(P)

Corollary 1.2 (Easy Testability for Monotone Classes of Posets). Consider a family of finite posets P
with h(P) > 2. Let Q € P with height h(Q) = h(P) and width w(Q) = w(P). For every ¢ > 0 and

2
finite poset P, if t(Q, P) < (%)h(P)w(P) then there exists a P-free (moreover, Cyp)-free) subposet of P
obtained by the removal of at most ¢|P|* edges.

Observe that by Theorem 1.1 there exists a Cyq)-free subposet of P obtained by the removal
of at most &|P|?> edges. Since every poset in 7 contains Ch(p), this subposet is also P-free, hence
Corollary 1.2 holds.

Chains will play an important role in more efficient tests for monotone classes of posets: we give
a simple classification of these classes from the testing point of view. Two properties ¢; and &, of
posets are indistinguishable if for every ¢ > 0 and i = 1, 2 there exists N such that for every poset P
on at least N elements with property @; there exists a poset P’ on the same set with property ®;_;
obtained by changing at most £|P|? edges of P. Since we are interested in monotone properties, we
only need to allow deleting edges and not adding them.

Theorem 1.3 (Indistinguishability). Consider a family of finite posets P, set h = h(P) > 2 and
w = w(P). The class of P-free posets and the class of Cy-free posets are indistinguishable. Namely,
every Cy-free poset is P-free, and if a poset P is P-free then it has a Cy-free subposet obtained by the

removal of at most 2 ( Pl )’” IP|? edges.

In other words, for every P-free poset P on at least N = h®w?(e /2)"“"2 elements there exists a

Cp-free (not necessarily induced) subposet P’ obtained by the removal of at most ¢|P|* edges.
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Theorem 1.3 motivates a better understanding of the removal lemma for chains and the testing
of Cy-free posets. First, we study the basic test with one-sided error. We can also use this test for
Cyp-free posets to test P-free posets, where h = h(P). This test is 111ot complete, but the probability

of rejecting a P-free poset turns out to be negligible, 2 (hz""z h? (’2’) where w = w(P), since

evegy copy of C, should contain one of the edges removed in Theorem 1.3. If we iterate the test
( ) times independently, then the probability of accepting a poset e-far from being P-free is at
most one half by Thelorem 1.1. On the other hand, the probability of rejecting a poset that is P-free

is at most 2 (““’,‘l’ ) = ) (%) , and this is negligible if &, h, w are fixed and |P| is large enough.

We can get a more efficient test by sampling larger subposets instead of iterating the basic test
with a constant number of samples.

Algorithm 2 Subposet test for C,-free posets with s samples

Input: the poset P
P’ < induced subposet of s elements chosen uniformly at random
if C; is a subposet of P’ then Reject P
else Accept P
end if

It turns out that sampling s = |_410g +4-| elements is enough to reject posets e-far from being
Cp-free with probability at least one half, while we always accept Cy-free posets.

By Theorem 1.3 this test can also be used for testing P-free posets, where h(P) = h: it rejects
posets e-far from P-free with probability at least one half at the price of allowing the error of
rejecting a P-free poset with negligible probability.

Theorem 1.4 (The Subposet Test). Let h > 2 be an integer, ¢ > 0,c > 0 and P a finite poset. If P
is e-far from being Cy-free then a random subset of (%1 elements chosen independently and
uniformly at random contains a copy of C, with probability at least 1 — e,

Observe that being e-far from every C,-free poset guarantees that ¢ is small, so the number of
samples will be large enough.

Remark 1.5. Every poset P is 5 —-close to be Cy-free.

Proof. Every poset can be extended to a linear ordering. Partition the poset P into (h 1) intervals
of equal size and remove the edges inside the intervals: this gives a Cy-free poset 5—-close to
P. O

For any fixed h, our bound gives the right order of magnitude (in &) on the necessary number of
samples for one-sided testing of Cp,-free posets, see Proposition 2.4.

The comparability graph G associated with a poset P has vertex set V(G) = P and edge set
E(G) = {(x,y) : x < yory < x}. Alon and Fox proved that it is hard to test if a given graph is a
comparability graph [3]. However, under the promise that the input graph is a comparability graph,
we can test monotone classes, even though we do not know the underlying poset. All of our results
apply to testing monotone classes of comparability graphs, see Section 4.

In a subsequent work, we prove that the exact degree is (h— 1) in the polynomial removal lemma
for chains (and many other structures). Proposition 2.2 shows that this is sharp. The proof is too
technical for this paper to detail here.

In Section 2, we prove the polynomial removal lemma for chains and Theorem 1.4. Section 3
contains the proofs of Theorems 1.1 and 1.3. Section 4 discusses our results on comparability graphs.
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2. Testing chains
First, we prove a removal lemma for chains.

Lemma 2.1 (Remomal Lemma for Chains). For every ¢ > 0, positive integer h > 2 and every finite poset
P, if t(Cy, P) < (%) then there exists a Cy-free subposet of P obtained by the removal of at most &|P|?
edges of P.

Polynomial removal lemmas for directed paths have already been obtained by Alon and Shapira
[4], but their bound is O gs”z . We could use their result to get a removal lemma for chains with

a worse polynomial bound. However, we improve their bound to degree h. This is almost the exact
degree, as the following example shows.

Proposition 2.2. Consider the integer h > 2 and & > 0 such that ¢! is an integer. Let P be a poset

that consists of €~ chains of equal size at least h and divisible by (h — 1).
(1) Every subposet obtained by the removal of less than % (ﬁlPl2 - |P|) edges from P contains Cp,
as a subposet, hence P is at least ( £

_e _ _1
2h—2 2|P|
(2) The inequality t(Cy, P) < Ehh_!l holds.

)-farfrom being Cp,-free.

Proof. (1) The comparability graph of P is the union of ¢! complete graphs K p. If P’ is a Cy-free
subposet of P, then the corr“ejalsponding comparability graph is Ky-free. By Turan’s theorem we have
to remove at least (h — 1)(?) edges from K, p| in order to obtain a Kj,-free graph. Now (1) follows,
IP|
since ¢~'(h — 1)(%,7) = 555|PI> — 3 IP.
(2) The probability that all of the h elements are mapped to the same chain is ¢"~'. Note that
any homomorphism C, — P maps C, onto an h element chain in P, since P is anti-reflexive. The

conditional probability that such a bijection preserves the order of the elements is % O

We consider a linear extension < of the ordering < of the poset P. We may assume that the set
of elements of P is [|[P|] = {1,2..., |P|}, and the linear ordering < is the ordering of the integers.

The algorithm defines a rank function r on the set of elements, such that if r(y) = k+ 1 for some
element y, then it has ‘many’ predecessors x < y with r(x) = k. Hence, it has ‘many’ chains Cj{
ending at y.

Algorithm 3 Rank function r

Input: y > 0, poset P on [|P|], where if x < y thenx < y
fory=1,...,|P| do
if 3k:|{x:x <y, r(x)=k}| > y|P| then
r(y) < 14+ max{k: [{x:x <y, r(x)=k}| > y|P|}
else
riy) < 1
end if
end for
Output: Rank functionr : P — Z,

Algorithm 4 will remove the edges to get a C;-free poset (see Fig. 1 for an example).

Analysis of Algorithm 4:

Claim 2.3. The following holds.

(1) The output P’ is a poset.
(2) The output poset P’ is Cy-free.
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Algorithm 4 Edge removal using the rank function r

Input: y > 0, h € Z,, poset P on [|P|], where if x < y thenx < y
ALGORITHM 3(y, P)
for x <y do
if r(x) = r(y) then
E(P) < E(P)\ {(x, )}
else if r(y) > h then
E(P) < E(P)\ {(x, y)}
end if
end for
PP <P
Output: P’ on vertex set [|P|], edge set E(P’) C E(P)

Fig. 1. Example for Algorithm 3 on the left and Algorithm 4 on the right with h =5,y = % The Hasse diagram of the
poset P is on the left, the ranks are written on the elements, and the Hasse diagram of P’ is on the right.

(3) The number of edges x < y removed such that r(x) = r(y) is at most y|P|?.
(4) If the number of elements with rank r(y) > h is at most y |P|, then the number of edges removed
by Algorithm 4 in order to get a Cy-free poset is at most 2y |P|%.

Proof. (1)Ifx, y, z are distinct elements in P with (x, y) € E(P") and (y, z) € E(P’), then (x, z) € E(P),
and r(z) < h, r(x) < r(y) < r(z). Hence (x, z) € E(P’).

(2) Let x, y be distinct elements in P with (x,y) € E(P’). Note that r(x) < r(y) by the transitivity
in posets, hence r is non-decreasing on every chain in P. Every edge with r(x) = r(y) has been
removed. Thus, r is strictly increasing on every chain in P’. The poset P’ is C;-free since the edges
ending at those elements, where r is at least h, have been removed.

(3) For every y, the number of x < y with r(x) = r(y) can be at most y|P|, else r(y) would be
greater than r(x). So, the number of such removed edges is at most y|P|%.

(4) This is a straightforward consequence of the algorithm and (3). O

Proof of Lemma 2.1. We run Algorithm 4 with h,P and y = %
Claim. If t(Cy, P) < y", then the number of elements with rank r(y) > h is strictly less than y|P|. In
particular, there is no element with rank (h + 1).

Proof. Observe that there are at least (y|P|)™~1 chains on r(x) elements ending at x for every x
such that r is strictly increasing on these chains.

There is no element where r takes value (h + 1) since such an element would be the end of
at least y|P|h chains on at least (h 4+ 1) elements, but we do not have so many different chains of
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length h. By the same reason, the number of elements, where r takes value h, is strictly less than
ylPl. =

(4) of Claim 2.3 proves the lemma. O

Now we use the rank function defined by Algorithm 3 to optimize the number of samples to test
Cp-free posets.

Proof of Theorem 1.4. We consider again a linear extension < of the ordering < of the poset P.
We might assume that the set of elements of P is [|P|] = {1,2...,|P|}, and the linear ordering <
is the ordering of the integers. We define r : P — Z, using Algorithm 3 with y = 2.

Let X be a subset of [2lgactl] — l°g(g)+‘ + i—‘ elements chosen uniformly at random from

P. We prove that with probability at least (1—e~¢) there is a chain with elements x;, < --- < X3 < X1
such that r(x¢) = h — k+ 1 for all k € [h]. We will find these elements one by one, starting with x;.

We show that there are at least y|P| elements x € P with r(x) = h. Suppose for a contradiction
that there are less. Then running Algorithm 4 gives a Cy-free poset and by (4) of Claim 2.3 we
removed at most ¢|P|? edges, contradicting that P was ¢-far from being C,-free.

Thus, the probability that we do not choose any element with r(x) = h into the set X is at most
(1 — y)y~ oglhyte+1/4) % Denote by x; the smallest element (in the linear extension) such that
r(xq1) = h, if there is such an element.

Claim. Consider X1, X2, ..., X, for k < h such that for every £ € {2,3,...,k} the element x, is the
smallest (in the linear extension) such that r(x,) = h — € + 1 and x, < x¢_1. Then the conditional
distribution on the choice of x1, . .., X, of the other elements of X is uniform on the set

Sk ={xeP\{x1,%,....x} : Ve e [k] if x < xg then {r(x) Zh — £+ 1} V {x £ x¢_1}}.

Proof. Note that X C S, U{xq, X2, ..., x¢}: else for the smallest x (in the linear extension) such that
X & S U{x1,X2, ..., X} there would be an ¢ such that x < x,, r(x) = h—£+ 1 and x < x;_1. Hence,
we should have chosen x instead of x,.

On the other hand, the set X could be S’ U {x1, X3, ..., X} for any subset S C S, of size
{% + i-‘ — k. Since the conditional distribution of X is uniform on these sets, the claim
follows. =

Now we show that a suitable x;,; exists with probability at least 1 — %

There are at least y|P| elements x € P (in particular, x € P \ {x1,Xa,..., X} by the partial

ordering) such that x < x; and r(x) = h — k by the definition of the rank function. Let us denote
these good candidates for xp+1 by Rgt1.

Since ¢ < and y < there are at least '‘2(+c

‘l .
2h 5 Tl elements in X \ {xq, X2, ..., Xx}. The

probability that none of them is in Ry.1 is at most (1— y )~ '(og+e) % Let x,,1 be the smallest
element (in the linear extension) such that x,1 € Ri1 N X if there is such an element.
The union bound yields the theorem. O

The following proposition shows that Theorem 1.4 gives the right order of magnitude on the
number of samples required for one-sided testing.

We denote by Ky, w,,...w, the complete h-partite poset: the set of elements consists of pairwise
disjoint antichains A; of size w; for 1 <i <k;andx <y forx € A;andy € A;ifand only if i < j. Let
Kpxw be the shorthand notation for K, ,, ., with hw elements. In particular, Kpx1 is the chain Cp.
Proposition 2.4. Given ¢ > 0 and the positive integers h > 2, w > 1 such that sw is also an integer,
consider the poset P = Key . w.....w With (¢ +h — 1)w elements.

(1) Every subposet obtained by the removal of less than sw? edges from P contains Cy, as a subposet,

hence P is at least = +, TR -far from being Cy-free.
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(2) For any 0 < ¢ < ew the probability that a random subset with at most 5 elements does not
contain Cy, as a subposet is at least e~€.

Note that the bound in (1) is sharp: if we remove all of the ew? edges between the first two
antichains, we obtain a C,-free poset.

Proof. (1) Every edge with an endvertex in the first antichain (of size ew) is contained by exactly
w2 chains of height h, since we can choose the other elements of the chain from the other
antichains arbitrarily. On the other hand, an edge not adjacent to the first antichain is contained by
w2 chains. Since P contains ew" chains of height h, we need at least sw? edges to cover these.

(2) Every subposet isomorphic to C, has an element in the first antichain. The probability that a

subposet on k < i < 3 elements contains no element of this antichain is

1’-‘[ (h—Tw—i+1 1 \* — o
> > .
ple (h—1+8)w—-i+1 1+ 2¢

This gives the right order of magnitude of the number of samples re(lmred for the one-sided
testing of Cy-free posets for every fixed h: Theorem 1.4 shows that using [ <17 samples the
error probability is at most e~¢, while Proposition 2.4 gives an example where the error is at least
e~ ¢ when sampling at most i elements.

3. Testing monotone classes of posets

The following lemma provides a lower bound on the density of the complete h-partite poset
Khxy in terms of the density of the chain of length h. The proof is inspired by the counting
argument of Kévari, S6s and Turan [18] in the proof of the upper bound to the symmetric case
of the Zarankiewicz problem (that is, using modern notation, the upper bound on ex(n, K; ;)). We
use again the notation [n] = {1, 2,...,n}.

Lemma 3.1. For every poset P and positive integers h, w the inequality
(K. P) = £ (Cy. P)
holds.

Proof. The following two claims imply the lemma.

Claim.
t(Ku,v,l,w,l,...a P) > tw(cfh P)

Proof. Note that Ky, 1.,,1... is the union of w edge-disjoint chains of length h intersecting only on
the elements of the even layers (where it has only one element), and a mapping of K, 1 ,.1... is a
homomorphism if and only if its restriction to every chain is a homomorphism. Consider a mapping
of the even layers of K, 1,,1,... The events that the random mapping gives a homomorphism for
chains are conditionally independent for disjoint chains (conditioning on the mapping of the even
layers). Hence, the conditional probability that mapping w elements for every odd layer gives a
homomorphism of K, 1.1, is the wth power of the probability that mapping only one element
for every odd layer gives a homomorphism of the chain C,. We use Jensen'’s inequality to obtain the
required result. Now, we describe this argument more formally.

Let (X”)le[h]je[w] tor i oqq Where xi; € P and (Xi~1)ie[h] tor i even D€ Chosen uniformly and indepen-
dently at random in P.

t(Kw.l.uv,l,...~ P) =P

if h k
(Vk Clh—1].¢ € [w] if k odd then X, < Xkr1.1 >

if k even then X1 < Xk+1.¢

(Xf«l)ie[h] for i even

(Xi-f)xs[h].js[w] for i odd

if k odd then Xko < Xk+1,1
=E( P, . Vkelh—1],¢ e [w . "~ ' ‘x- ., ieven
(Xil»;v)eiﬁ[hl |: (lel):eéglj,je[wl ( L ! [w] if k even then Xy 1 < Xg41.0 ( ”1)‘5[’”
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Here we split K, 1,1, into w edge-disjoint copies of C,. Since the events corresponding to
elements in the same odd layer are independent, we obtain that this equals

E (1) e |:]P )i (Vk elh—1] x1 < x,<+1,1‘ (Xi'l)ie[h] ,ieven >:|

i even i odd
w
(xi~1)ie[h] ,ieven ):|

= [IP(,(I-J),.E[,1J <Vk elh—1] x1 < Xk+l,l>] = t"(Cp, P),

where we have applied Jensen’s inequality. B

i even

= |:E Ci)iem © (xfil)(jig[h] <Vk €th=11 X <X

Claim.

t(Khxwv P) > tw(Kw,Lw,L”mP)

Proof. The proof is very similar to the previous one. Now we use the observation that Kj,,, is the
union of w edge-disjoint copies of K, 1,1, intersecting only on the odd layers (where Ky, 1.4 .1....
has w elements), and a mapping of Kj,, is a homomorphism if and only if its restriction to every
such copy of Ky 1,,1,.. is @ homomorphism. Consider a mapping of the odd layers of Kjx,,. The
events that the random mapping gives a homomorphism for copies of K, 1.,.1,... are conditionally
independent for disjoint copies of K, 1 ,.1,... (conditioning on the mapping of the odd layers). Hence,
the conditional probability that mapping w elements for every even layer gives a homomorphism
of Kp«,, is the wth power of the probability that mapping only one element for every even layer
gives a homomorphism of K, 1 ,, 1..... We use Jensen’s inequality again to obtain the required result.
Let (Xi’j)ie[h],je[w] be chosen uniformly and independently at random in P.

(Ko, P) (keth—11.e.mew] X < Xesim)

= P(Xivf)ie[h].je[w]

= E(xiJ)ie[h],je[lA,-] |:]P ("i-j)ig[h],je[m] <Vk €lh—1L.&me [w] X < Xk'“""‘ (xi’j)iethJleJ »1odd >i| '
i odd i

i even

Here we split Kjx,, into w edge-disjoint copies of K, 14,1,... Since the events corresponding to
elements in the same even layer are independent, we obtain that this equals

w
if k odd then X, < Xg11.1 .
v - : : N
E(X*"?iifﬂ»fe[w] {]P (.0 e < kelh=1].teh] if k even then X1 < Xpp1.¢ ‘ (X"])lé[hl-fé[wl i odd

if k odd then x ¢ < Xk1.1 ; ’
E P Vk e [h—1],¢ ’ | )y - 00
|: (Xi'j)ilighjdem Gi)ieim < kel It el if k even then X1 < Xky1. (xu)’e[h]ﬁ[w] e

i even

w
if k odd th
{ﬂ’ (g o e (Vke =1 e efw] . 00 Tem e = Mert )} = (K11, P),

v

if k even then x 1 < Xyy1.¢
Gig)icrni for i odd ’ ’
) /ie[h).je[w]

where we have applied Jensen’s inequality. B

The lemma follows. O

72 .
Proof of Theorem 1.1. Assume that t(Q,P) < (%)hu . The poset Q is a subposet of Kjy,,, SO

Lemma 3.1 gives t%*(Cy, P) < t(Kixw, P) < t(Q, P). These yield t(Cy, P) < (%)h so by Lemma 2.1
there is a C,-free subposet P’ of P obtained by deleting at most ¢|P|* edges. O

Proof of Theorem 1.3. If a poset is Cy-free, then it is P-free.
In order to prove the other direction, consider a poset Q € P with minimal height h = h(P)
and (amongst these) minimal width w = w(P). If a poset P is Q-free, then there is no injective

9
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homomorphism from Q to P. The probability that a Q — P mapping is not injective is at most
('#1)|P|~" since a pair of elements in Q should be mapped to the same element in P. Thus, £(Q, P) <

IP|~'|Q|?. Since |Q| 15 hw,lTheorem 1.1 shows that one can get a Cy-free subposet of P by the

removal of 2(h?w?)m? |P|” m? |P|? edges. O

4. Comparability graphs

We will obtain the same theorems for monotone classes of comparability graphs as for posets:
the difference will only be in the hidden constants. These allow the same tests as for posets. For
a fixed finite graph F, the basic test samples |V(F)| vertices and accepts a graph if these do not
span an isomorphic copy of F. The following removal lemma shows how many iterations we need
to reject comparability graphs e-far from being F-free with probability at least one half while
always accepting F-free comparability graphs. Similarly to posets, given two finite graphs F, G, the
probability that a uniform random mapping from F to G is a homomorphism (i.e., edge-preserving)
is denoted by t(F, G).

Theorem 4.1 (Polynomial Removal Lemma for Comparability Graphs). Consider an ¢ > 0 and a finite

2
graph F that is not an independent set. For every finite comparability graph G, if t(F, G) < (%)X(F)Q(F)
then there exists an F-free (moreover, K, (r)-free) spanning subgraph of G that is a comparability graph,
obtained by deleting at most &|V(G)|* edges.

Proof. The graph F is a subgraph of the multipartite Turan graph T with x(F) classes each of size
«(F), hence t(F, G) > t(T, G). There exists a poset P with comparability graph G. The height of the
poset P is exactly the chromatic number of G, and the width of the poset P equals the independence
number of G.

Note that #(T, G) > t(K,(r)xa(F), P), sSince we may assume that T is the comparability graph of
Ky (Fyxa(F), hence every homomorphism of K, (r)xq«(r) to P is a comparability-preserving map from T
to G, i.e,, a graph homomorphism. By Theorem 1.1 there exists a C,(r)-free subposet of P obtained by
deleting at most £|P|? edges, and its comparability graph satisfies the conditions of the theorem. O

Note that we did not need to know the underlying poset P to prove the existence of the desired
subgraph of G.

Given a set of (possibly infinitely many) finite graphs F, we define the chromatic number x(F)
and the independence number «(F) as follows.

x(F) = min x(F) af(F)= min o«(F).
FeFr FeF:
x(F)=x(F)

Corollary 4.2 (Easy Testability for Monotone Classes of Comparability Graphs). Consider a family of
finite graphs F and a graph F € F with chromatic number x(F) > 2 and independence number a(F).

[e7 2 .
For every ¢ > 0 and finite comparability graph G, if t(F, G) < (%)X(I) ) then there exists an F-free
(moreover, K, (r)-free) spanning subgraph of G, that is a comparability graph, obtained by deleting at
most |V(G)|? edges.

We also give a classification of monotone classes of comparability graphs as we did for posets.
Two properties @1 and @, of graphs are indistinguishable if for every ¢ > 0 and i = 1, 2 there exists
N such that for every graph G on at least N vertices with property @®; there exists a graph G’ on the
same vertex set with property @;_;, obtained by changing at most £|V(G)|* edges of G. Since we
are interested in monotone properties, we only need to allow deleting edges.

Theorem 4.3 (Indistinguishability). Consider a family of finite graphs F. Set x = x(F) > 2,a =
«(F). Comparability graphs with chromatic number at most (x — 1) are indistinguishable from F-free
comparability graphs. Namely, every comparability graph with chromatic number at most (x — 1) is

10
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F-free, and every F-free comparability graph admits a spanning subgraph with chromatic number at

1
most (x — 1), that is a comparability graph, obtained by the removal of at most 2 (l)‘(/z(g;) ro? IV(G)|?
edges.

Proof. Clearly, every comparability graph with chromatic number at most (x — 1) is F-free. On the
other hand, given an F-free comparability graph G, consider a poset P whose comparability graph
is G. Theorem 1.3 implies that there is a C, -free subposet P’ obtained by the removal of at most

1
2 (l’{,z(‘é;) xe? [V(G)|? edges. The comparability graph G of P’ is the desired spanning subgraph of G:

it is K, -free, since P’ is C,-free. Hence, x(G') < x — 1 by the dual of the Dilworth theorem. O

The analog of Algorithm 2 is the test sampling a random set of vertices and accepting the graph
if the subgraph spanned by them is K, -free. We need the same number of samples as in the case
of posets. The following theorem is a straightforward consequence of Theorem 1.4.

Theorem 4.4 (On the Subgraph Test). Let x > 2 be an integer, ¢ > 0,c > 0 and G a finite
comparability graph. If G is e-far from being K, -free then a random subset of ’VW vertices
chosen independently and uniformly at random contains a copy of K, with probability at least 1 —e™.

The comparability graph of the poset in Proposition 2.4 shows that for any fixed h, this bound has
the right order of magnitude in &. As in the case of posets, we can also use the test for K, -free
subgraphs to test a monotone class of comparability graphs F: the probability that we reject an
F-free comparability graph is negligible.
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