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Abstract
The effect of the gradually formed cross-linked structure on the thermal properties and swelling behaviour of modified 
poly(vinyl alcohol) was investigated. To this aim, the semi-crystalline polymer was functionalized with aldehyde and amino 
moieties to produce polymers with dynamic imine cross-links, and, thus, with self-healing or curing ability. With increas-
ing degree of functionalization (0.89–7.12%), denser polymer networks cross-linked by dynamic imine bonds were formed, 
the samples systematically developed thermoset-like properties compared to the pristine, initially thermoplastic PVA. As a 
result, the introduction of new moieties into the initial PVA lowered the glass transition (from 65.3 to 35.0 °C) and melting 
temperatures (from 194 to 161 °C), however, a new peak  (Tcrd) with growing enthalpy values appeared on the DSC curves, 
which indicates that more and more energy must be supplied in order to break the imine cross-links formed between the 
introduced aldehyde and amino groups. The significant impact of the degree of functionalization and cross-linking density 
on the polymer structure was also clearly demonstrated: the crystallinity decreased as the abundance of the introduced moie-
ties increased and the formation of cross-links proceeded. At the same time, the water desorption enthalpies of the samples 
increased, suggesting a stronger, chemically cross-linked thermoset-like polymer network compared to the thermoplastic 
poly(vinyl alcohol).
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Introduction

Polymers can be classified in many ways based on differ-
ent aspects, such as skeletal structure (linear, branched, 
cross-linked, ring polymers), repeating units (homo- and 
copolymers) but most often, they are divided into three 
main groups depending on their thermal behaviour: ther-
moplastics, thermosets and elastomers. Thermoplastics 
represent a significant part of commercial polymers and 
will be in the focus of the present work.

Thermoplastics are linear or branched polymers that 
become viscous melts when heated above a specific tem-
perature. Thermoplastics can be either amorphous or 
(semi-)crystalline. Amorphous polymers don’t have crys-
talline regions, consequently, they cannot be described 
by the conventional melting temperature  (Tm). Instead, 
the glass transition temperature  (Tg) is introduced, above 
which the „frozen” polymer chains regain their mobility 
and transition from a glassy state (stiff, hard, brittle poly-
mer) into a rubbery state (soft polymer). In contrast to the 
amorphous thermoplastics, their (semi-)crystalline coun-
terparts contain both crystalline and amorphous regions 
that can be characterized by  Tm and  Tg, respectively [1]. It 
is also worth mentioning that amorphous polymers exhibit 
lower thermal stability due to their higher oxygen perme-
ability [2].

Poly(vinyl alcohol) (PVA) is one of today’s most widely 
used water-soluble thermoplastics. It is a linear, semi-crys-
talline, biodegradable polymer with excellent biocompatibil-
ity and film-forming ability [3–8]. It is used in biomedicine 
(tissue engineering [9, 10], wound dressings [11–13], drug 
delivery systems [5, 14–16]), in cosmetics (stabilizing agent 
[17], thickener [18, 19]), in food and many other industries 
as packaging material [20–23]. The high concentration of 
hydroxyl groups in PVA offers a great possibility for the 
functionalization and/or the physical/chemical cross-linking 
of the polymer to improve its properties. Frequently utilized 
methods to chemically cross-link PVA: (1) cross-linking 
with di-/multifunctional compounds (e.g. glutaraldehyde 
[24], glyoxal [25] under acidic conditions, diisocyanates 
[26]), (2) functionalization and the subsequent reaction of 
the introduced groups to form cross-links [27, 28], (3) func-
tionalization and the use of di-/multifunctional compounds 
to cross-link the introduced side groups [29], (4) cross-
linking by irradiation (e.g. electron beam [30], γ-rays [31]).

In order to maximize the performance of cross-linked/
functionalized polymers in the desired fields of applica-
tion, their physicochemical, mechanical and thermal prop-
erties must be extensively studied. Knowing the thermal 
characteristics (e.g.  Tg,  Tm, thermal stability, etc.) is of the 
utmost importance since they determine how the polymer 
can be processed and where it can be utilized.

The thermal properties of PVA are greatly affected by 
the formation of hydrogen bonds due to the abundance of 
hydroxyl groups. The polymer shows a large, well-defined 
endotherm peak around 200 °C which can be attributed 
to the  Tm (230 °C [32], 185 °C [33]) of the polymer. J.S. 
Park’s work describes the effect of chemical cross-linking 
on  Tm of PVA: as the concentration of the glutaraldehyde 
increased, the reduction of the melting peak intensity and 
the shift towards lower temperature values were observed. 
It was discovered by Giménez et al. that the introduction 
of bulky, rigid pendant groups into the polymer caused an 
increase in  Tm (240–260 °C) [33]. The same trends can be 
observed in the case of  Tg: whereas cross-linking with glu-
taraldehyde [32] or with different dianhydrides [34] led to 
lower  Tgs compared to the initial  Tg (85 °C [32], 82.9 [34], 
46 °C [33]) of the pristine PVA, the modification of poly-
mer chains with rigid, bulky moieties resulted in higher  Tgs 
(46–88 °C) [33]. On the other hand, both the cross-linking 
of PVA with glutaraldehyde and the functionalization with 
rigid, bulky moieties resulted in improved thermal stability 
of the polymer [32, 33, 35]. However, it must be pointed out 
that no universal correlation can be derived with regards to 
the changes of  Tm,  Tg values and thermal stability because 
different factors such as size and structure of molecules 
used for cross-linking/functionalization, cross-linking den-
sity, degree of functionalization, and some properties of the 
pristine polymer (backbone mobility, crystallinity, degree of 
hydrolysis, water content, etc.) [32, 36–39] have a combined 
effect on the thermal properties and therefore always must be 
studied with respect to the given polymer [26].

In our previous study, the modification of PVA with 
4-formylbenzoic acid (4-FBA) and 3,4-diaminobenzoic acid 
(3,4-DABA) was described [28]. The formation of dynamic 
Schiff base linkages, which resulted from the interaction 
of the aldehyde and amino moieties, generated a revers-
ible covalent network with unique autonomous self-healing 
abilities. However, the introduction of new functionalities 
into the polymer and the formation of the reversible imine 
cross-links greatly affect the thermal, mechanical and phys-
icochemical properties, and, thus, the processability of the 
polymer. The importance of investigating the effects of func-
tionalization on the above-mentioned properties of PVA is 
described in this manuscript.

Experimental

Materials

For the synthesis of the polymers, PVA  (Mw = 46.83 kDa; 
degree of hydrolysis: 86–89%) was acquired from 
Nagart Kft., while 4-formylbenzoic acid (4-FBA, 
97%), 3,4-diaminobenzoic acid (3,4-DABA, 97%), 
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N,N′-dicyclohexylcarbodiimide (DCC, 99%) and 4-(dimeth-
ylamino) pyridine (DMAP, ≥ 99%) were purchased from 
Sigma-Aldrich. Dimethyl sulfoxide (DMSO, ≥ 99.9%) was 
obtained from Merck.

Preparation of the polymer films

The procedure for the preparation of modified PVA polymer 
films was described in great detail in our previous publica-
tion [28]: 5.0 g PVA  (Mw = 46.83 kDa) was dissolved in 
100.0 mL of DMSO without heating. Then, 4-formylbenzoic 
acid, DCC and catalytic amount (10% molar equivalence to 
DCC) of DMAP were added to the PVA/DMSO solution, 
followed by the addition of 3,4-diaminobenzoic acid. The 
reaction mixture was stirred at 25 °C for 24 h. The urea 
byproduct of DCC was removed by filtration. The reac-
tion mixture was concentrated by heating, the polymer was 
obtained by precipitation with acetone and was separated 
from the liquid phase by centrifugation (5000 rpm, 25 min; 
Hettich Universal 30F centrifuge). Finally, the acquired 
polymer was dried at room temperature to constant mass. 
Next, the dried polymers were dissolved/swollen in distilled 
water. Subsequently, the polymer solutions (11.25 w/v%) 
were poured into Petri dishes and dried at 40 °C to con-
stant mass, resulting in free-standing films. For the swollen 
state (i.e. hydrogel) studies, 50 ± 0.6 mg of the dry polymer 
samples were equilibrated at room temperature in 125 μL 
distilled water for one week. Since the films cast of the pris-
tine PVA and all the other modified polymers dissolve in 
distilled water apart from the one with a nominal degree 
of functionalization of 7.12%, the samples were swollen in 
a small amount of water. Based on the added amount of 
water, the water content of the gels was calculated to be 
ca. 71 mass%. Next, the values of enthalpy of desorption/
vaporization (ΔHvap) were determined by differential scan-
ning calorimetry.

Characterization

The Attenuated Total Reflection Fourier Transform Infrared 
Spectroscopy (ATR-FTIR) measurements were performed 
using a BioRad FTS-60A FTIR spectrometer. The spectra 
were registered between 4000 and 600  cm−1 by accumulat-
ing 32 scans at a resolution of 4  cm−1.

The X-ray diffractograms of the pristine PVA and the 
modified polymer films were recorded on a Philips X-ray dif-
fractometer (XRD) with Cu Kα (= 0.1542 nm) as the radia-
tion source at ambient temperature in the 10–60° (2θ) range 
applying 0.02° (2θ) step size.

The thermal behaviour of the polymer films in dry and 
swollen states was investigated by using differential scan-
ning calorimetry (DSC). The DSC measurements were car-
ried out by utilizing a Mettler Toledo DSC 822e instrument. 

For the dry state investigations, the polymer samples were 
heated in the temperature range of 25–250 °C at a rate of 
2.5 °C  min−1 in a sealed aluminium sample holder with a 
hole at the top. In the previous publication, an attempt was 
also made to find the  Tgs of the polymer films, however, this 
was only possible for the pristine PVA, whereas in the case 
of the modified polymer films,  Tgs could not be identified 
[28]. This issue probably arose from the interfering effect of 
the evaporation of water remaining in the polymer films after 
the drying step and the moisture that was absorbed from the 
air during the storage of the samples. In order to resolve the 
problem, an additional drying step at 60 °C was included 
directly before new DSC measurements were carried out. To 
make sure that the thermal events have enough time to occur, 
the heating rate was set to 2.5 °C  min−1. The swollen sam-
ples were studied in the temperature range of 25–200 °C at a 
heating rate of 5 °C  min−1 following the same measurement 
procedure. In the course of the evaluation of DSC curves, 
values of ΔHvap were calculated from the areas under the 
peaks and normalized to the water contents (71 mass%) of 
the swollen hydrogels. Nitrogen was used as the carrier gas 
at a flow rate of 50 mL  min−1. Each experiment was carried 
out in triplicate and the data were all averaged.

Results and discussion

Structural characterization

In our previous paper, the results of digital microscopy, 
scanning electron microscopy, X-ray micro-computed 
tomography and tensile tests were presented in great detail, 
which demonstrated well the self-healing properties of the 
functionalized polymers [28]. As clearly shown by the ten-
sile tests, the formation of imine cross-links significantly 
affected the mechanical properties of the polymers and gave 
them the capability to self-heal. It could be observed that 
the neat PVA film exhibited minimal self-healing capacity 
(which may be attributable to the self-adhesion of PVA, 
hence the term “Healed” PVA) and the “healed” PVA film 
had poorer mechanical properties than the virgin sample. In 
contrast, the functionalized polymer film displayed a high 
healing efficiency and the healed sample possessed similar 
mechanical properties to that of the undamaged modified 
PVA film (Fig. 1a). For this reason, the current work was 
devoted to the investigation of the effects of imine bond for-
mation on the crystallinity and thermoanalytical properties 
of the samples.

The formation of imine bonds was studied with FTIR 
spectroscopy and detailed spectra were shown in our previ-
ous publication [28]. In this work, only the spectral region of 
1670–1510  cm−1 is demonstrated, which confirms the suc-
cessful functionalization and imine bond formation between 



 T. Takács et al.

aldehyde and amino groups (Fig.  1b). With increasing 
nominal degree of functionalization, a band was observed 
with gradually increasing intensity with a maximum at 
1635–1628  cm−1. This band was attributed to C=N stretch-
ing vibration, indicating the formation of imine cross-links 
in the polymer films [40]. Furthermore, the peak appearing 
around 1540  cm−1 can be assigned to the aromatic C=C 
bending vibrations suggesting the successful modification 
of PVA [41]. The imine cross-link density may be assessed 
quantitatively by determining the areas under the corre-
sponding absorption bands. It was observed that as the extent 
of modification increased, the area under the C=N band also 
increased continuously, suggesting a gradual increase in the 
cross-linking density (Fig. 1c). The degrees of crystallin-
ity of the PVA samples were also estimated via ATR-FTIR 
spectroscopy, according to the method reported by Peppas 
[42] and the values varied between 46–9% (see later).

The effect of functionalization on the crystallinity of 
the PVA films was also investigated by XRD (Fig. 2). For 
the pristine PVA, the characteristic reflections observed 
at 2θ ~ 11.2°, 19.4°, 22.7° and 40.5° in the range of 
10–60° are in good agreement with the values reported 
in the literature [43–45]. The peaks at 2θ ~ 11.2° and 

40.5° correspond to the (100) and a compound of (111), 
( 1

−

1 1 ), (210), ( 2
−

1 0 ) crystalline planes, respectively. The 
main diffraction peak at 2θ ~ 19–20° originates from the 
overlapping reflections from the ( 10

−

1 ) and (101) planes, 
whereas its shoulder at 2θ ~ 22.7° can be attributed to 

Fig. 1  a Stress–strain curves of 
the neat PVA and a modified 
polymer film (nominal degree 
of functionalization: 1.78%) 
before and after healing at room 
temperature for 24 h, the inset 
shows the extensibility of the 
healed sample; b the relevant 
section of the FTIR spectra of 
pristine PVA and the modified 
polymers with different nominal 
degrees of functionalization; 
c areas of peaks related to the 
imine bond (1635–1628  cm−1) 
as a function of the nominal 
degree of functionalization; The 
dashed line is a guide to the eye

35

30 PVA

“Healed” PVA broke

25

20

15

10

5

0

0.80
1670 1650 1630

Imine Aromatic

1610 1590

Wavenumber/cm–1

Tr
an

sm
itt

an
ce

/a
.u

.

Im
in

e 
pe

ak
 a

re
a/

a.
u.

1570 1550 1530 1510

0.85

0.90

0.95

1.00

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0 1 2 3 4

Nominal degree of functionalization/%

After imine
bond formation

Before imine
bond formation

5 6 7 8

1.05

0 20 40 60 80
Engineering strain/%

E
ng

in
ee

rin
g 

st
re

ss
/%

100 120 140 160

Healed 1.78%

1.78%
Preload: 5N

Stretched

PVA

0.89%

1.78%3.56%7.12%

OH

O O

O O

O O

OO

OOH

NH2

N

O

NH2

NH2

(b)

(a)

(c)

10 20 30 40

2θ /°
50 60

In
te
ns

ity
/a
.u
.

(100) (200)

(101
–
)/(101) (111)

(11
–
1)

(210)
(21

–
0)

PVA

0.89%

1.78%

3.56%

7.12%

Fig. 2  XRD patterns of the pristine PVA and the modified polymer 
films with different nominal degrees of functionalization



Structural and thermoanalytical characterization of self‑healing polymer: the effect of…

the (200) reflection [43, 44]. As shown in Fig. 2, with 
increasing nominal degree of functionalization, the dif-
fraction peaks gradually broadened, their intensities sys-
tematically diminished, which suggested a decrease in the 
crystallinity of the samples.

This trend was also corroborated by the determined 
degree of crystallinity values. In order to estimate the 
degrees of crystallinity of the samples, the relevant 
parts of the diffractograms in the range of 10–30° were 
resolved into crystalline and amorphous components by 
utilizing a Gaussian curve fitting method, as shown in 
Fig. 3. The resolved diffraction pattern for the pristine 
PVA film (Fig. 3a) revealed five characteristic contri-
butions from the (100), (001), ( 10

−

1 ), (101) and (200) 
crystalline planes with peak maxima at 2θ ~ 11.2°, 17.8°, 
19.4°, 19.7° and 22.7°, respectively, which is in accord 
with the data reported in the literature [43, 45]. Since 
the reflection at 2θ ~ 19.4° arises from the main crystal-
line plane, it is the most suitable candidate to follow the 
changes in crystallinity of the samples, as the nominal 
degree of functionalization is varied. The ratio of the area 
under the crystalline peaks to the sum of the areas under 
the crystalline and amorphous contributions can give a 
good estimation of the degrees of crystallinity of the pol-
ymer films. The crystallinity of the pristine PVA film was 
estimated at 37%, whereas with the gradually increasing 
extent of modification (from 0 to 7.12%), the crystallinity 
of the samples systematically decreased up to 8%.

To further assess the changes in the crystallinity of the 
polymer films, the full width at half maximum (FWHM) 
values of the peaks obtained by deconvolution were deter-
mined for every sample and the ratio of the FWHM values 
of the crystalline peaks to the sum of the FWHM values 
of all peaks was calculated. The FWHM ratios decreased 
as the degree of functionalization increased, suggesting 
an increasing structural disorder of the polymer chains 
(Fig. 4).

Thermal properties

In dry state

The thermal properties of polymer films prepared from the 
pristine (physically cross-linked) PVA and modified poly-
mers (chemically cross-linked) were partly investigated with 
DSC and TGA techniques, the results of which were pub-
lished in a previous publication [28]. DSC measurements 
carried out in a wider temperature range (Fig. 5a) showed 
that the extent of functionalization had a significant effect 
on the thermal properties of the polymer films: the melt-
ing peaks  (Tm) of polymer films with increasing nominal 
degree (0.89–7.12%) of functionalization broadened gradu-
ally (Fig. 5a) and shifted to lower temperature values (from 
194 to 161 °C), whereas in the case of the sample with the 
highest degree of functionalization (7.12%), the peak cor-
responding to the melting transition could not be observed 
(Fig. 6a).

The enthalpy of melting (ΔHm) values were also deter-
mined by the integration of the melting peaks which showed 
a declining trend as the extent of modification increased 

Fig. 3  Deconvoluted XRD pat-
terns of the pristine PVA film 
(a) and the modified polymer 
film with a nominal degree of 
functionalization of 7.12% (b)
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(Fig. 6a and c). Both the changes of melting peaks (broad-
ening, shifting) and the corresponding enthalpies, as also 
described by J.S. Park et al. [32], suggested the gradual 
amorphization of the samples. Moreover, with increasing 
degree of functionalization, new peaks  (Tcrd) with growing 
enthalpy values appeared (Fig. 5a), which indicates that 
more and more energy must be supplied in order to break the 
imine cross-links formed between the introduced aldehyde 
and amino groups (Fig. 6a and b).

From the DSC curves (Fig. 5a), the degrees of crystal-
linity of the modified PVA films were determined. ΔHms of 
the samples were divided by the ΔHm of 100% crystalline 
PVA (138.6 J  g−1, hypothetical value [46]). The crystallinity 
obtained for the pristine PVA film was 36% which gradu-
ally decreased (from 36 to 0%) as the extent of modification 
increased. In the case of the sample with a nominal degree 
of functionalization of 7.12%, no ΔHm could be calculated 
and therefore the degree of crystallinity was considered to be 
0%. The degree of crystallinity values determined this way 
(36–0%) correspond well with the values obtained from the 
XRD measurements (37–8%).

Furthermore, it could also be observed that the presence 
of pendant aldehyde and amino functional groups and the 
formed reversible covalent network also influenced the  Tgs 
of the polymers (Fig. 5b and c).

By investigating the obtained heating curves (Fig. 5b), 
the  Tgs of the samples could be located (Fig. 7). The pris-
tine PVA possessed the highest  Tg (65.3 °C), whereas those 
of the modified polymer films decreased as the nominal 
degree of functionalization increased. The introduction of 
new moieties into the PVA disrupted the polymer’s ordered 
hydrogen-bonded/crystalline regions, which led to the low-
ering of  Tgs (from 65.3 to 35.0 °C) due to the enhanced 
chain mobility.

As mentioned above, the DSC heating curve of pristine 
PVA displayed a  Tm at 194 °C, whereas the melting peaks 

of the modified samples shifted to lower temperatures with 
increasing nominal degree of functionalization (Fig. 5a 
and b). The DSC cooling curves of the polymer films, 
shown in Fig.  5c, exhibited characteristic exothermic 
transitions related to crystallization. In the case of each 
sample, the crystallization process occurred in a consider-
ably lower temperature range (60–110 °C) compared to the 
melting transition (194–161 °C). This is because crystalli-
zation is a thermodynamic transition governed by kinetics, 
whereas melting is a purely thermodynamic process. In 
order for the polymers to crystallize, the macromolecular 
chains have to arrange themselves into ordered structures, 
and since it is a sluggish process, it causes crystallization 
to occur at lower temperatures. Moreover, with the intro-
duction of bulky side groups, the arrangement of polymer 
chains was further impeded, hindering the crystallization 
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of the samples. In accordance with that, the enthalpies of 
crystallization (ΔHc) determined from the cooling curves 
showed a decreasing trend with increasing extent of modi-
fication (Fig. 8). It could also be observed that the crystal-
lization process systematically diminished as the extent of 
modification increased. For the samples with degrees of 
functionalization of 3.56 and 7.12%, no distinct exother-
mic transitions related to crystallization could be detected, 
so the ΔHc values were only estimated.

Figure 9 summarizes the estimated degrees of crys-
tallinity of the polymer films determined by ATR-FTIR 
spectroscopic, XRD and DSC techniques. The trends in 
crystallinity were found to be in good accord with each 
other. The differences between the calculated values might 
have arisen from the application of different analytical 
techniques.

Thermal properties of swollen hydrogels

In order to determine the amounts of heat required to remove 
the water content of the swollen hydrogels, i.e. enthalpy of 
desorption/vaporization (ΔHvap), the thermoanalytical prop-
erties of the polymers were also investigated in their swol-
len states. Figure 10a shows the DSC curves of the swol-
len polymer films as well as that of the pure distilled water 
which served as a reference. The ΔHvap values, which are 
equal to the areas beneath the peaks, are also displayed in 
the figure. The pristine PVA-based hydrogel had a similar 
ΔHvap value (39.30 kJ  mol−1) to that obtained for pure water 
(40.89 kJ  mol−1), indicating the good mobility of water in 
the loose structure of the physically cross-linked hydrogel. 
When the extent of modification, and, thus, the cross-linking 
density were increased, the water desorption enthalpies of 

the hydrogels increased (Fig. 10b) and all of the cross-linked 
samples showed higher (41.68–45.47 kJ  mol−1) values than 
the pristine PVA (39.30 kJ  mol−1). The reason for this is that 
the cross-linked polymers with stronger and more compact 
gel structures bound water molecules more strongly.

Conclusions

The functionalization of PVA with aldehyde and amino 
groups yielded polymer films cross-linked by dynamic 
imine bonds. These reversible covalent bonds endowed the 
polymers with self-healing ability and altered their ther-
moanalytical properties, crystalline structure and swell-
ing behaviour. ATR-FTIR spectroscopic investigations 
(imine peak area) suggested a gradual increase in cross-
linking density with increasing degree of functionalization 
(0.89–7.12%). XRD studies showed the gradual amorphiza-
tion of the polymer samples as the extent of modification 
increased. DSC analysis was utilized to locate the  Tgs of the 
dry polymer films. The modified samples possessed lower 
 Tgs (39.0–35.0 °C) than the pristine PVA (65.3 °C) because 
the introduced functional groups disrupted the hydrogen-
bonded regions of the neat polymer. In the temperature 
range of 234–250 °C, the appearance of new endothermic 
peaks  (Tcrd) with increasing ΔHcrd values (0–16.4 J  g−1) was 
observed. By heating the modified samples in the above-
mentioned temperature range, the breaking of cross-links, 
i.e. the de-cross-linking of the dynamic polymer network 
occurred. The crystallization behaviour of the dry materials 
was also influenced by the chemical modification: with the 
introduction of aldehyde and amino moieties, the arrange-
ment of polymer chains into ordered structures was impeded 
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Fig. 10  a DSC curves of the swollen pristine PVA and the modified 
polymer samples with different nominal degrees of functionalization 
(temperature range: 25–200 °C, heating rate: 5 °C  min−1,  N2 atmos-
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sented; b dependence of the ΔHvap of the equilibrium-swollen hydro-
gels on the nominal degree of functionalization
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and therefore the crystallization process of PVA was hin-
dered. For the samples with degrees of functionalization of 
3.56 and 7.12%, no distinct exothermic transitions related to 
crystallization could be detected, which indicated that the 
modified polymers became more thermoset-like compared 
to the pristine, thermoplastic PVA. The swelling properties 
of the modified polymers were also investigated. The gel 
structure is significantly affected by the degree of function-
alization and binds water with varying strength based on 
the cross-linking density. The ΔHvap values of the samples 
were higher (41.68–45.47 kJ  mol−1) than that of the pristine 
PVA (39.30 kJ  mol−1), indicating a stronger, cross-linked 
hydrogel structure. The degree of crystallinity values of 
the dry, modified PVA films obtained by employing three 
different techniques varied between 0 and 46% and unani-
mously showed that the cross-linking density greatly affects 
the formation of crystalline structures of the samples, thus 
influencing the thermal characteristics (location of  Tg,  Tm, 
 Tc) and swelling behaviour of the materials.
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