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University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary,

e-mail: tamas.kornel@gt3.bme.hu

KEYWORDS

Discrete element method, Soil model calibration, Ge-
netic algorithm, Cone penetration test, Direct shear
box test

ABSTRACT

The investigation and mechanical modeling of agri-
cultural soil play an important role in studying the
interaction between soil and tillage tools. One of the
possible numerical methods for soil modeling is the
discrete element method (DEM). Achieving reliable
numerical soil-tool interaction studies poses a signifi-
cant challenge in calibrating various soil models. Cali-
bration of soil models based on physical measurements
is feasible. The general aim of calibration is to match
as many behavioural mechanical properties of a soil
model as possible with the macromechanical proper-
ties of the actual soil. Calibration based on physical
measurements has previously been an extensive pro-
cess because during calibration, the micromechanical
parameters of the DEM soil model can not be mea-
sured directly during physical tests. This research aims
to calibrate complex and automated DEM soil model
using a genetic algorithms based on penetration and
laboratory direct shear box tests. The research results
demonstrate that the parameters of the appropriate
DEM soil model can be effectively adjusted using ge-
netic algorithms based on the soil’s macromechanical
properties determined by physical measurements.

ABBREVIATIONS

CPT Cone Penetration Test
DBST Direct Shear Box Test
DEM Discrete Element Method
GA Genetic Algorithm
PyGAD Python Genetic Algorithm

NOMENCLATURE

ACP Projected area of cone [m2]
CPR Cone Penetration Resistance [Pa]
δ Relative error [%]
f Fitness value [1]
FCP Force of cone penetration [N]
FShear Shear force [N]
index avg Average
index k Normal load variable in DSBTs
index m Measurement
index s Simulation

INTRODUCTION

Mechanical soil tillage has played a significant role in
agricultural crop production for centuries. The main
aims of mechanical soil tillage is to prepare the soil
in a condition where crops can grow optimally. The
condition of the soil significantly influences crop yield.
Proper soil tillage is therefore crucial for sustainable
food production. All of this provides reason for in-
tensive research in the numerical modeling of agri-
cultural soils. Some researchers, model soil with the
aim of drawing conclusions about soil-tool interac-
tions with minimal physical experimentation. Con-
sequently, tasks related to soil tillage optimization,
such as the geometry, arrangement, or parameters of
tillage tools, can be performed based on numerical
simulations (Aikins et al., 2021). One suitable method
for numerical modeling of soil tillage is the discrete
element method (DEM). Calibration of various soil
models poses the foremost difficulty during numerical
simulations, which is feasible based on physical mea-
surements. The aim of this process is to ensure that
the macroscopic properties of the numerical granular
material model, parametrized with micromechanical
characteristics, closely approximate the macroscopic
properties of real materials determined during phys-
ical measurements. Calibration of soil material has
previously been a challenging, slow, and empirical
”trial and error” process, but current research increas-
ingly emphasizes the automatic calibration of DEM
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models using optimization algorithms. Do et al. 2017
compared the genetic algorithm (GA) with the DI-
RECT (Jones et al., 1993) optimization technique for
setting the micromechanical parameters of quartz sand
in DEM. They found that both methods are capable
of accurately adjusting the micromechanical parame-
ters of the DEM model with relatively few iterations.
They concluded that the application of these meth-
ods can reduce calibration costs. The GA is an op-
timization technique used in unknown search areas,
inspired by Darwin’s theory of evolution. It evolves
the individuals of an initial population over genera-
tions (iteratively). In each generation, each individual
is tested based on a fitness function, and the charac-
teristics of the best-performing individuals are passed
on to the next generation’s individuals through parents
selection, crossover, and mutation operators. The opti-
mization task can be as completed considered based
on various criteria. Do et al. 2018 has introduced a
universal framework for the automated calibration of
microscopic properties of modeled granular materi-
als. NSGA-II (Non-dominated Sorting Genetic Algo-
rithm II) was employed to solve two material model
optimization problems with conflicting objective func-
tions based on a database containing the macroscopic
material responses of previous DEM simulations and
containing experimental data. Mohajeri et al. 2020 suc-
cesfully calibrated the Elasto-Plastic Adhesive DEM
model using a Non-dominated Sorting Genetic Al-
gorithm. The macroscopic mechanical properties of
carbon powder in DEM were determined based on ring
shear test. It is highlighted that the calibration method
using the genetic algorithm is independent of the cho-
sen contact model and model parameters. Researchers
often employ cone penetration test (CPT) results and
laboratory direct shear box test (DSBT) results for cal-
ibrating soil models (Kotrocz et al., 2016; Aikins et al.,
2023). Safranyik et al. 2017 has already addressed the
calibration of DEM soil models using GA based on
the results of DBSTs. It was not found any examples
in the literature where DEM and GA were applied for
the automatic calibration of agricultural soil models
based on CPT and DSBT combined test results. The
aim of the research is to demonstrate the automatic
calibration process of the DEM soil model based on
the results of CPT and DSBT conducted on a specific
soil.

MATERIALS AND METHODS

Soil measurements

In this study, clay loam soil was subjected to CPT
and DSBT, which were used to calibrate a DEM soil
model using a genetic algorithm (GA). The soil was
previously calibrated based on the same physical mea-
surement results using manual methods by Tamás and
Bernon 2021. The penetrometer field tests were con-
ducted at the Hungarian Institute of Agricultural En-
gineering (NARIC) in Gödöllő, Hungary. Prior to
testing, the soil was prepared using a rotary disc har-

row to reduce significant surface unevenness caused
by clods.

Penetrometer test

During the CPT, the force acting on a conical tool with
a projected cross-sectional area of 1cm2 was measured
as a function of penetration depth according to the
NEN 5140:1996 standard. The CPTs were conducted
along with soil moisture measurements. In the studied
area, tests were performed at 10 arbitrarily selected
points to a depth of 800 mm at a speed lower than
20 mms−1. The GPS coordinates were recorded for
each tested point using the Eijkelkamp penetrometer.

The cone penetration resistance (CPR) was deter-
mined by dividing the measured force by the projected
area of the cone. Based on the 10 measurements, the
average CPR values were determined as a function of
depth, along with the soil’s average volumetric mois-
ture content, which was found to be 21.3% based on
the measurements.

Direct shear box test

The soil samples collected from the field were ana-
lyzed at the Soil Mechanics Laboratory of the Bu-
dapest University of Technology and Economics
(NAT-1-1743/2014). To conduct the DSBT (ISO/TS
17892–2:2004), the moisture content of the samples
was adjusted in the laboratory to examine variations in
cohesion and internal friction angle for evaluating the
DEM models of the soils. The dry based water con-
tent was determined using a drying oven (KAPACITÍV
KKT. PKL-2002A) at 105°C for 24 hours. During the
shear tests, the shear force was measured as a function
of relative displacement of the two halves of the 60x60
mm cross-sectional area box up to 6.5 mm displace-
ment. A displacement rate of 0.5 mm/min was applied
during the tests, and measurements were conducted
under three different normal loads (50 kPa, 100 kPa,
150 kPa) to determine apparent cohesion and friction.

Simulations

For modeling CPT and DSBT, the simulation software
based on the Yade-DEM open-source sotware was
utilized (Smilauer et al., 2023). To perform automatic
soil calibration, a genetic algorithm available in the
PyGad library, written for the Python programming
environment, was employed (Gad, 2021).

The flowchart illustrating the soil model calibration
process using GA is depicted in Figure 1. To run the
simulations, a HP Z620 computer with two 20-thread
processors was utilized. In order to utilize computer
resources more efficiently, simulations were executed
in parallel, grouped into generations. Each generation
involved testing a total of 38 soil models, with four
simulations running for each tested soil model (one
of a CPT and three of DSBTs with different normal
preloads). The results of the four simulations with
identical parameters were collectively evaluated.



Figure 1: Flowchart of the automated calibration pro-
cess.

The settings of the GA, which allow the algorithm
to generate individuals performing better based on
the previous generation, by apply parents selection,
crossover, and mutation operators, are provided in
Table 1.

Table 1: The settings of the GA.
Name of parameter Value of parameter
Number of solutions per popu-
lation 38

Number of generation 10
Number of parents mating 8
Number of genes 4
Mutation percent of genes [%] 1.5

Simulation environments were developed separately
for both CPT and DSBT modeling as shown in Fig-
ure 2. In both simulations, the arrangement of mea-
surements and geometric conditions were modeled to
correspond to real physical measurements. For CPT
modeling, a 140x140 mm cross-sectional area, 300
mm high box was created, into which the elements
were settled gravitationally. After settling, the surface
of the assembly was cut, and a penetrometer with a
projected cross-sectional area of 250 mm2 was placed
4.5 mm above the top element, in the center of the box,
and uniformly pushed into the assembly at a speed

of 0.5 ms−1. In the simulated DSBT, a box with a
cross-sectional area of 60x60 mm was created. The
height of the bottom part was 15 mm, and the height of
the top part was 240 mm. The granular assembly was
deposited gravitationally in this box. After deposit-
ing, the surface of the assembly was cut at a height
of 45 mm from the bottom of the lower box, and then
an utilsbox element was released onto the top of the
assembly. This element provided the normal preload,
with only the vertical degree of freedom was allowed.
The dimensions of the utilsbox were tailored to the
cross-sectional area of the shear box, with a height of
20 mm determined for this purpose. The density of the
material of the utilsbox used to define the preload was
determined such that it exerted a normal pressure on
the assembly consistent with physical measurements.

Figure 2: The arrangement of the a) DSBT and b) CPT
simulations. (Dimensions are in mm.)

In the simulations, quantities measured during phys-
ical experiments were recorded. In the simulated CPT,
the soil resistance acting on the cone was plotted as
a function of penetration depth. In the DSBT, the
summed forces acting on the lower part of the box
were recorded as a function of displacement. The
DSBT simulations were conducted with three different
preloads (50 kPa, 100 kPa, 150 kPa), consistent with
the physical measurements.

The calibration aim is to simultaneously approach
with as much accuracy as possible the values of quan-
tity pairs recorded during the physical measurements
in both CPT and DSBT simulations using identical sets
of relationship parameter settings. This necessitates
evaluating the soil models tested in each simulation
individually, and then collectively across simulations
with identical relationship parameter settings. It is im-
portant to employ an objective evaluation system that
equally weighs the results of the CPT and the three
DSBT simulations.

The results of each simulations were compared with



the results of the physical measurements. In the case
of CPT, relative errors were calculated for average
CPR values obtained from physical measurements and
simulated CPR values at equivalent depths, and the av-
erage of these errors was taken according to Equation
2.

CPR =
FCP

ACP
(1)

δ̄CPR =
1

n
·

n∑
i=1

|CPRs,i − CPRm,i|
CPRm,i

· 100 (2)

In the case of DSBT, relative errors were calculated
for shear force values obtained from physical measure-
ments and simulated shear force values at equivalent
displacements of the shear box, and the average of
these errors was taken according to Equation 3.

δ̄FShear
=

1

n
·

n∑
i=1

|FShear,s,i − FShear,m,i|
FShear,m,i

·100 (3)

The results of each simulation were evaluated with
a number between 0 and 1. The higher the value as-
signed to a simulation, the closer the result was found
to the physical measurements. In the case of CPT, to
the calculations, the relative error values were based
on, according to Equation 4.

fCPT = 1− δ̄CPR

100
(4)

Since three DSBT simulations were conducted with
identical parameters but different normal loads, the
results of the DSBT simulations were aggregated with
a weight of 1/3 each. In Equation 5, the index k refers
to the different normal loading cases.

fDSBT,k = 1− δ̄FShear

100
(5)

fDSBT =
1

3
·

3∑
k=1

fDSBT,k (6)

If the value of fDSBT,k or fCPT would take a neg-
ative value, it is replaced by 0.

The results of the CPT and DSBT tests were ag-
gregated according to Equation 9. This function rep-
resents the fitness function of the genetic algorithm.
In defining this function, efforts were made to reward
combinations with identical input parameters fCPT

and fDSBT more, and if either fCPT or fDSBT is 0,
the result should be 0.

fa = sin
(
fCPT · π

2

)
· sin

(
fDSBT · π

2

)
(7)

fb = (fCPT ·fDSBT )+(1−fCPT )·(1−fDSBT ) (8)

f = fa · fb (9)

A basic set of simulation settings and genetic
algorithm (GA) settings for calibrating the micro-
mechanical parameters of the soil model are provided
in Table 2. It also includes the four genes and value
intervals of the soil model.

Table 2: Simulation settings and contact parameters
of the modelled materials. The table includes also the
four genes and value intervals of the soil model as
variable parameters.

Name of parameter Value of parameter
Element type sphere
Micromechanical Young’s
Modulus of soil model [Pa] variable (106 - 107)

Rolling and twisting fric-
tion coefficient [1] variable (0.001 - 0.4)

Friction angle [°] variable (10 - 40)
Normal cohesion [Pa] variable (0 - 106)
Shear cohesion [Pa] 0.5·Normal cohesion
Density [kgm−3] 2700
Micromechanical Poisson-
coefficient [1] 0.4

Radius of sphere element
and uniform radius distribu-
tion [m]

0.003± 30% ,

Global damping during de-
position [1] 0.8

Global damping during sim-
ulated measurements [1] 0

Density of wall and tool el-
ements [kgm−3] 7850

Young’s Modulus of wall
and tool elements [Pa] 109

Micromechanical Poisson-
coefficient of wall and tool
elements [1]

0.3

Friction angle of wall and
tool elements [°] 40

Timestep during deposition
[s]

0.5·Rayleigh’s esti-
mated static time step

Timestep during simulated
measurements [s]

0.1·Rayleigh’s esti-
mated static time step

Initial unbalanced force [1] 0.02
Speed of penetrometer
[ms−1] 0.5

Speed of DSBT [ms−1] 0.05

RESULTS AND DISCUSSION

The automated DEM soil model calibration process
based on CPT and DSBT physical measurements using
GA appears promising, although adjustments in the
simulations need to be further refined to achieve better
results. Next, the results of the simulations will be
discussed. During the simulation studies, 408 CPT
and 3x408 DBST were examined with the contact
parameter combinations generated by GA, as shown
in Tables 1 and 2. Running all simulations with the
presented settings took 46 hours.



Results of CPT Simulations

Analyzing the results of the CPT simulations indepen-
dently of the DSBT results, it was observed that up
to a depth of 0.15 m, the δ̄CPR value was 40% in the
best case scenario. This value is quite high, indicating
that even in the best results, the simulated curve can
only follow the measured curve up to a depth of 0.1
m. Below 0.1 m depth, CPR values do not increase
further, lagging behind the measured values. This con-
firms the suggestion by Tamás and Bernon (2021) to
create multiple soil model layers with different sets of
micromechanical parameters in simulations.

Results of DSBT Simulations

Analyzing the results of the DSBT simulations inde-
pendently of the CPT results, it was observed that for
normal stresses of 50 kPa, 100 kPa, and 150 kPa, the
best-case δ̄FShear, k values were 8%, 16%, and 30%,
respectively. From this, it was concluded that as the
normal preload increases, the simulated curves are bet-
ter able to approximate the measured curves. However,
it is important to note that while a high level of agree-
ment is observed in the tests with a preload of 150
kPa, tests with preloads of 100 kPa and 50 kPa result
in higher errors. An example of this is the following
case. The best combined result obtained according to
Equation 10 during DSBT simulations was 22%. In
this case, for preloads of 50 kPa, 100 kPa, and 150
kPa, the δ̄FShear, k values were 8%, 27%, and 36%,
respectively.

δ̄FShear,avg =
1

3
·

3∑
k=1

δ̄DSBT,k (10)

It was also noted that in the best DSBT results, the
simulated curves typically approached the measured
curves from below.

Combined CPT and DSBT results

The soil model with the micromechanical parameters
listed in Table 3 achieved the best approximation of
simultaneously DSBT and CPT physical measurement
results. In this case, the δ̄FShear, avg value was
27%, and the δ̄CPR value was 41%.

Table 3: The contact parameters of the modeled clay
loam soil in the case of the best result.

Name of parameter Value of parame-
ter

Micromechanical Young’s
Modulus of soil model [Pa] 8.809 · 106

Rolling and twisting friction
coefficient [1] 0.1279

Friction angle [°] 18.85
Normal cohesion [Pa] 2.770 · 105

The results of the simulations conducted on the
soil model described by the parameters in Table 3
are shown in Figure 3.

Figure 3: The best result of automatic soil calibration
during the a) DSBTs and b) CPTs, utilizing the most
suitable soil model identified by the GA.

In Figure 4, using the ParaView software (Ahrens
et al., 2005), the velocities of the elements and the
normal forces between the elements were visualized
in the simulation of DSBTs (a) and CPTs (b). The soil
model was configured with the parameters listed in
Table 3 also for visualization.

Figure 4: The velocities of the elements and the nor-
mal forces between the elements have been visualized
in the simulation results of a) DSBTs and b) CPTs.

CONCLUSIONS

In this study, a method was developed for automat-
ically calibrating DEM soil models using a genetic



algorithm based on physical CPT and DSBT measure-
ment results. The calibration aim is to find microme-
chanical parameter combinations characteristic of a
DEM soil model, such that conducting CPTs and DS-
BTs with these parameters yields results similar to the
measured ones. An objective evaluation method was
established that equally considered the simulation re-
sults of CPT and DSBT tests compared to the physical
measurements. Throughout the research, the following
conclusions were drawn:

• The automatic calibration process proved to be
effective, with the GA finding better solutions as
generations progressed.

• During simulations, CPR values could only be
described with identical micromechanical param-
eter combinations up to a depth of 0.1 m.

• In DSBT tests, the measured values are typically
approached from below by the best simulated
solutions.

• In the best-case scenario, the δ̄FShear,avg value
was 27%, and the δ̄CPR value was 41%.

FURTHER TASKS

In the future, the following suggestions have been
proposed to refine the soil model:

• Since the variation of CPR values differs from the
variation of FShear in physical measurements, it
is recommended to take this into account when
calculating the fitness value by considering the
ratio of dispersions.

• It is suggested to run additional generations be-
yond 10.

• It is recommended to experiment with the appli-
cation of DEM models with additional contact
parameters (such as eg. damping) (Horváth et al.,
2019).
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351 New National Excellence Program of the Min-
istry for Culture and Innovation from the source of
the National Research, Development and innovation
Fund.” This paper was supported by the János Bolyai
Research Scholarship of the Hungarian Academy of
Sciences. The research reported in this paper is part of
project no. TKP-6-6/PALY-2021, implemented with
the support provided by the Ministry of Innovation
and Technology of Hungary from the National Re-
search, Development and Innovation Fund, financed
under the TKP2021-NVA funding scheme. This re-
search was supported by the ÚNKP, funded by the
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