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Three-dimensional (3D) echocardiography-derived right ventricular (RV) ejection fraction (EF) and 
global longitudinal strain (GLS) are valuable RV functional markers; nevertheless, they are sub
stantially load-dependent. Global myocardial work index (GMWI) is a novel parameter calculated by 
the area of the RV pressure-strain loop. By adjusting myocardial deformation to instantaneous pres
sure, it may reflect contractility. 

To test this hypothesis, we enrolled 60 patients who underwent RV pressure-conductance cathe
terization to determine load-independent markers of RV contractility and ventriculo-arterial coupling. 
Detailed 3D echocardiography was also performed, and we calculated RV EF, RV GLS, and using the 
RV pressure trace curve, RV GWMI. 

While neither RV EF nor GLS correlated with Ees, GMWI strongly correlated with Ees. In contrast, 
RV EF and GLS showed a relationship with Ees/Ea. By dividing the population based on their Reveal 
Lite 2 risk classification, different characteristics were seen among the subgroups. 

RV GMWI may emerge as a useful clinical tool for risk stratification and follow-up in patients with 
RV dysfunction.
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Myocardial contractility represents the intrinsic ability of 
the myocardium to shorten independently of loading condi
tions and, as such, is the target feature of ventricular perfor
mance for patient evaluations. In clinical practice, the 
assessment of myocardial function is most commonly per
formed using echocardiography with a constantly augmenting 
technical toolkit. Importantly, even advanced echocardio
graphic metrics, such as 3-dimensional (3D) echocardio
graphy-derived ejection fraction (EF) or global longitudinal 
strain (GLS) are heavily dependent on loading conditions; 
therefore, they can not be considered reliable markers of 
contractility.1 Increased afterload can significantly diminish 
the value of GLS despite maintained or even increased con
tractile function; thus, GLS rather reflects ventriculo-arterial 
coupling (Ees/Ea).1 To mitigate the afterload dependency of 
left ventricular (LV) GLS, the concept of myocardial work by 
adjusting strain to the instantaneous LV pressure has been 
validated and subsequently introduced in clinical prac
tice.2 Previous experimental work demonstrated that the 
global myocardial work index (GMWI) correlates with gold- 
standard pressure-volume analysis-derived measures of con
tractility in different hemodynamic overload conditions, 
whereas EF or GLS is not.3 Importantly, the issue of load- 
dependency may culminate in the right side of the heart: right 
ventricular (RV) systolic performance is even more intensely 
exposed to alterations in afterload, yet the concept of myo
cardial work has not been thoroughly tested in its context. 
Available data are based on a 2-dimensional (2D) echo
cardiography, which carries significant limitations due to the 
RV’s complex shape, contraction pattern, and hemodynamics, 
impeding an identical approach to the LV.

Accordingly, our present study aimed to calculate RV 
myocardial work using 3D echocardiography-derived RV 
GLS and examine its relationship with the gold-standard 
invasive measurement of RV contractility.

This research constitutes a post-hoc analysis of data 
collected from the EXERTION study (ClinicalTrials.gov
Identifier: NCT04663217). The study adhered to the prin
ciples outlined in the Declaration of Helsinki and was ap
proved by the local Ethics Committee of the Faculty of 
Medicine at the University of Giessen (Approval Number: 
117/16). Written informed consent was obtained from all 
participating patients. Subjects were either undergoing an 
initial invasive diagnostic evaluation for suspected pul
monary hypertension or were already diagnosed with pul
monary hypertension. All patients underwent 3D 
echocardiography and RV pressure-conductance catheter
ization. The median duration between the pressure-con
ductance catheterization and echocardiography was 1 day. 
Importantly, no therapeutic modifications were applied 
between the 2 examinations. Using the Reveal Lite 2 risk 
stratification score, low- (n = 23), intermediate- (n = 20), or 
high-risk (n = 17) groups were identified. The technical 
details of the echocardiographic examinations and the RV 
pressure-conductance catheterization were described in 
detail previously.4 Briefly, 3D echocardiography datasets 
were analyzed using the 4D RV-Function 2 software 
(TomTec Imaging GmbH, Unterschleissheim, Germany) to 

calculate RV volumes and EF. The reader of the 3D 
echocardiographic data was blinded to the clinical char
acteristics and the Reveal Lite 2 risk categories of the pa
tients. Intra- and interobserver variability of the most 
relevant echocardiographic parameters were previously as
sessed, confirming good reproducibility.5 To assess the 3D 
GLS, reconstructed 3D mesh models were imported into the 
ReVISION software (Argus Cognitive, Inc., Lebanon, NH, 
USA), employing a previously reported methodology.6

Subjects also underwent RV pressure-conductance ca
theterization (CA-No. 41063, CD Leycom, Zoetermeer, 
Netherlands). The multi-beat method was used to calculate 
Ees and Ea as described previously.5 First, sequential 
resting pressure-volume loops were recorded. Then, pa
tients were instructed to perform a Valsalva maneuver to 
achieve preload reduction and a progressive leftward shift 
of the pressure-volume loop. The end-systolic pressure- 
volume points were connected by a regression line to de
termine the end-systolic pressure-volume relationship, and 
Ees was defined as the slope of that line. Ea was calculated 
as the ratio of RV systolic pressure (RVSP) to stroke vo
lume. End-diastolic elastance (Eed) was measured as the 
slope of the end-diastolic pressure-volume relationship. 
Using these measures, we also quantified Ees/Ea. Two ex
pert readers performed data analysis and interpretation.

In myocardial work analysis, we followed previously 
published principles.2 GLS curves and invasively-acquired 
RV pressure recordings were exported and analyzed using our 
custom-made software. The isovolumetric phases were iden
tified using the second derivative squared method by expert 
consensus reading on the RV pressure tracing. By inspecting 
the RV volume curve, isovolumetric phases were also iden
tified by expert consensus reading, and corresponding time 
points were applied to the GLS curve. Due to the different 
temporal resolutions of the datasets, the timestamps of the 
pressure and strain tracings were normalized in each section, 
and strain values were interpolated for the timestamps of the 
RV pressure recording. Then, the 4 sections of each recording 
were concatenated, and pressure–strain loops were constructed 
and plotted. The instantaneous power was calculated by 
multiplying the inverse of the strain rate (obtained by differ
entiating the strain curve) and the instantaneous RV pressure. 
GMWI was computed by integrating the power over time 
from the beginning of isovolumetric contraction until the end 
of isovolumetric relaxation.

The normal distribution of the variables was confirmed 
using the Shapiro-Wilk test. Pearson’s correlation coeffi
cient was used for correlation analysis. ANOVA, followed 
by Tukey’s post-hoc test, was used to compare the different 
risk categories. A p value  <  0.05 was considered statisti
cally significant.

The study included 60 patients, with an average age of 
65  ±  14 years, and 65% were female.

RV EF (r = −0.143, p = 0.275) and GLS (r = −0.067, 
p = 0.611) did not correlate with Ees, but rather with Ees/Ea 
(RVEF: r = 0.552, p  <  0.001; GLS: r = 0.460, p  <  0.001). 
In contrast, GMWI inversely correlated with Ees/Ea 
(r = −0.439, p  <  0.001) but, importantly, showed a strong 

The Journal of Heart and Lung Transplantation, Vol 43, No 7, July 2024  1184  



direct correlation with Ees (r = 0.669, p  <  0.001) (Figure 1). 
RV EF (r = −0.517, p  <  0.001) and GLS (r = −0.446, 
p  <  0.001) correlated inversely with Eed, whereas GMWI 
correlated directly with Eed (r = 0.356, p = 0.005).

By dividing the patients based on their Reveal Lite 2 risk 
classification, every 3D echocardiographic and invasive 
hemodynamic marker showed significant differences 
(Table 1). By post-hoc analysis, the low-risk group had 
comparable EF and GLS to intermediate patients, while 
GMWI was significantly higher in the latter group. Ees/Ea 
significantly decreased in the intermediate group, while 

RVSP was higher. High-risk patients significantly differed 
in every measure compared to the low-risk group. By 
comparing intermediate and high risk, EF and GLS were 
significantly lower in the latter, while GMWI and the in
vasive hemodynamic measures did not differ (Table 1). 
Representative cases of each group are depicted in Figure 2.

Our findings indicate that similarly to the observations in 
the LV, RV EF and GLS reflect ventriculo-arterial coupling 
rather than myocardial contractility. On the other hand, the 
fusion of 3D echocardiography-derived GLS with in
stantaneous RV pressures allows the quantification of RV 

Fig. 1 Global myocardial work index significantly correlated with end-systolic elastance. The patients’ Reveal Lite 2 risk classification 
is shape and color-coded (blue square: low risk, green square: intermediate risk, yellow circle: high risk).

Table 1    Three-Dimensional Echocardiographic and Invasive Hemodynamic Data of the Patients by Reveal Lite 2 Risk Categories 

Low risk (n = 23) Intermediate risk (n = 20) High risk (n = 17) p value

EF (%) 48.8  ±  6.6 44.0  ±  9.4a 35.0  ±  7.8b < 0.001
GLS (%) -18.6  ±  3.6 -17.0  ±  4.5a -13.3  ±  3.9b < 0.001
GMWI (mm Hg%) 550  ±  267c 831  ±  361 797  ±  265b < 0.01
Ees (mm Hg/ml) 0.61  ±  0.36 0.79  ±  0.28 0.85  ±  0.28b < 0.05
Ees/Ea 1.53  ±  0.49c 1.16  ±  0.30 1.01  ±  0.31b < 0.001
RVSP (mm Hg) 33.7  ±  13.0c 60.6  ±  29.0 77.1  ±  25.4b < 0.001

Ees, end-systolic elastance; Ees/Ea, ventriculo-arterial coupling; EF, ejection fraction; GLS, global longitudinal strain; GMWI, global myocardial work 
index; RVSP, right ventricular systolic pressure.

The values are mean  ±  standard deviation.
a Intermediate vs. high p  <  0.05.
b Low vs. high p  <  0.05.
c Low vs. intermediate p  <  0.05. 
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GMWI, which strongly correlates with the gold standard 
measure of RV contractility. GMWI can display the RV’s 
increased contractile state during RV-PA uncoupling, making 
it an appealing tool for more precise risk stratification and 

follow-up for patients with pulmonary hypertension. Further 
developments should aim at the accurate and non-invasive 
estimation of the individual RV pressure tracing to allow the 
everyday clinical use of the RV myocardial work concept.4

Fig. 2 Representative cases of each Reveal Lite 2 risk category. The low-risk patient demonstrates the lowest end-systolic elastance 
(Ees) and global myocardial work index while having maintained global longitudinal strain (GLS) and ejection fraction (EF). Higher Ees 
and GMWI can be observed in the intermediate-risk patient, while both GLS and EF show moderate impairment. In the high risk patient, 
while Ees and GMWI are numerically comparable to the intermediate patient, EF and GLS are heavily deteriorated. Significant chamber 
dilation can also be observed as a sign of ventriculoarterial uncoupling (Ees/Ea = 0.67). GMWI, global myocardial work index.
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