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I n recent years, the confluence of technology and
medicine has yielded remarkable advancements
that were once relegated to the realm of science

fiction. From genomics to telemedicine, the health
care landscape is continuously evolving, with artifi-
cial intelligence (AI) emerging as a transformative
force. With this fast-paced development, are we
approaching a world like that portrayed in Star
Wars, where only droid medics deliver care?
Although this is a very unlikely scenario, AI-
powered machines will undoubtedly play an
increasing role in health care, not as a replacement
but rather as a valuable supplement to health care
professionals. Considering the high volume of studies
ordered, echocardiography would significantly
benefit from AI-powered solutions. Such tools have
the potential to optimize scheduling, aid image acqui-
sition, automate the assessment of routine echocar-
diographic parameters, and improve diagnostics and
prognostication.1-7 With the first blinded, randomized
trial proving that initial assessment of left ventricular
ejection fraction (LVEF) by AI is noninferior to assess-
ment by sonographers, the interest has recently
surged in automated echocardiogram interpretation
tools, especially in deep learning (DL) models for pre-
dicting routine echocardiographic parameters.8
ISSN 0735-1097/$36.00

*Editorials published in the Journal of the American College of Cardiology

reflect the views of the authors and do not necessarily represent the

views of the Journal of the American College of Cardiology or the American

College of Cardiology.

From the Heart and Vascular Center, Semmelweis University, Budapest,

Hungary.

The authors attest they are in compliance with human studies commit-

tees and animal welfare regulations of the authors’ institutions and Food

and Drug Administration guidelines, including patient consent where

appropriate. For more information, visit the Author Center.
In this issue of the Journal of the American College
of Cardiology, Lau et al9 proposed 2 DL-based echo-
cardiogram interpretation models, DROID-LA and
DROID-LV, to automate the assessment of standard
measurements of left atrial (LA) and left ventricular
(LV) structure and function. The DROID models were
trained, tested, and internally validated on 64,028
echocardiographic studies of 27,135 patients included
in the Enterprise Warehouse of Cardiology (EWOC)
sample and externally validated on 9,248 studies
from the Community Care Cohort Project (C3PO)
cohort and more than 10,000 studies from the
EchoNet-Dynamic and EchoNet-LVH data sets.4,5,10

The investigators designed fully automated end-to-
end models that, after performing view classifica-
tion, video type identification, and image quality and
axis assessment for all echocardiographic videos in
the given study, predict LVEF, LV end-diastolic and
end-systolic dimensions, interventricular septal and
posterior wall thicknesses, and LA anteroposterior
dimension at the study level. In the C3PO external
validation set, DROID-LA and DROID-LV accurately
predicted LA and LV linear measures (R2 values
ranging from 0.59 to 0.82) and LVEF (mean absolute
error: 4.23 percentage points, R2 ¼ 0.74), whereas
their performance was slightly lower but still
acceptably accurate in the EchoNet-Dynamic and
EchoNet-LVH data sets. Moreover, the DROID-
derived LA and LV measurements were found to be
independently associated with incident cardiovascu-
lar outcomes, including heart failure, atrial fibrilla-
tion, myocardial infarction, and all-cause death, in a
subset of the C3PO cohort.

Several DL models have recently been proposed to
predict LV measurements from echocardiographic
videos.4,5,11-21 Many of these models perform image
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FIGURE 1 Evolution of Studies Developing DL Models for Automated Echocardiogram Interpretation
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The first published deep learning (DL) models for the automated measurement of echocardiographic parameters were developed in

single-center databases and were validated only internally. With the increasing recognition of its importance and the growing number of

public data sets, external validation has been included in more and more recently published studies. Nevertheless, only a few have proved the

association of the predicted echocardiographic parameters with outcomes so far. Although the DROID models have passed these first 3

stages, further validation will be required through prospective studies and randomized controlled trials. Moreover, impact analyses should

also be performed to investigate whether applying these DL models improves patient outcomes and cost efficiency. Only after successfully

completing these stages and obtaining the required approvals from the corresponding agencies (eg, U.S. Food and Drug Administration) could

DL models be considered for incorporation into clinical guidelines. RCT ¼ randomized controlled trial.
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segmentation on echocardiographic video frames and
then calculate the target echocardiographic parame-
ters from these segments.5,11-15 Nevertheless, there is
a growing number of solutions that do not rely on
such an intermediate segmentation step.16-21

Although segmentation-based algorithms produce
clinically interpretable intermediate results by
delineating the regions of interest and provide an
opportunity for quality control as erroneous seg-
mentations can be easily identified and corrected,
segmentation-free approaches have several advan-
tages over them, including but not limited to their
ability to learn global features and latent information
within the entire image rather than relying on specific
boundaries or regions. By recognizing these
strengths, the investigators opted for a segmentation-
free design.

But what makes the DROIDs stand out from the
other previously published DL models predicting LV
echocardiographic parameters? First, they were
trained on a well-curated data set—the EWOC, a
retrospective multi-institutional ambulatory cardiol-
ogy electronic health record sample, which is 1 or
even 2 magnitudes larger than the data sets used to
train the previously published models. Second, the
DROIDs have a unique 2-component architecture
intentionally designed to mimic the clinical workflow
of echocardiogram interpretation: they encode
important information from all available echocardio-
graphic videos via 3-dimensional convolutional neu-
ral networks (ie, MoViNet-A2) and then they use
attention heads to translate the encoded information
from the most relevant videos within the same study
into study-level predictions. Thus, the DROID models
are very flexible as they can simultaneously process
up to 40 parasternal long-axis, apical 4-chamber, and
apical 2-chamber view videos from the same echo-
cardiographic study, and they can estimate left heart
measurements even if only 1 of 3 views is available.
Moreover, fusing this innovative architecture with
the extensive EWOC data set yielded a robust model
that even surpassed the EchoNet-Dynamic model’s
performance in predicting LVEF within the C3PO
external validation set. Third, as a cherry on top, the
investigators also showed that the DL-derived LV
measurements are associated with cardiovascular



J A C C V O L . 8 2 , N O . 2 0 , 2 0 2 3 Tokodi and Kovács
N O V E M B E R 1 4 , 2 0 2 3 : 1 9 4 9 – 1 9 5 2 Deep Learning-Based Echocardiogram Interpretation

1951
outcomes, which has been only done in a handful of
studies focusing on the DL-based assessment of
echocardiographic parameters.22

There are 2 other important aspects of the study
that should be pointed out: the investigators made
the source code along with the model weights
publicly available and placed emphasis on the
explainability of the model by determining which
echocardiographic videos contribute the largest
attention weights, and also by overlaying saliency
maps on top of the echocardiographic videos to
highlight anatomical structures with the greatest
impact on the predictions.23 The former enables other
groups of researchers to validate the DROID models
independently, whereas the latter provides insights
into the prediction process and increases trans-
parency. Both are critical to earning the trust of
physicians and patients and enabling the widespread
use and clinical adoption of DL models.

This elegant study represents a major step forward
in the evolution of clinical investigations targeting
the development and evaluation of DL models for
the automated interpretation of echocardiograms
(Figure 1). Considering the remarkable performance of
the DROID models during external validation, one of
the logical next steps would be conducting prospec-
tive randomized trials and impact analyses to inves-
tigate whether applying these models improves
patient outcomes and cost efficiency. Another direc-
tion worth exploring would be training the proposed
model architecture to predict additional echocardio-
graphic measurements, especially right heart
parameters (eg, right ventricular diameters or frac-
tional area change), which has been targeted by only a
very limited number of studies so far.22,24

In conclusion, although the vision of health care
dominated by droid medics remains firmly in the
realm of science fiction, the reality of AI’s role is
evolving rapidly. Echocardiography, as shown by the
success of the DROID models, is poised to reap sub-
stantial benefits from these advancements. As we
move forward, we should embrace these AI-powered
tools as invaluable partners, enhancing our ability to
provide exceptional care to our patients. The force of
innovation is with us, and together, we can shape a
future where artificial and human intelligence work
synergistically to transform cardiology and improve
the lives of countless patients.
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