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Abstract

We determine the tail asymptotics of the stationary distribution of a branching
process with immigration in a random environment, when the immigration dis-
tribution dominates the offspring distribution. The assumptions are the same
as in the Grincevičius–Grey theorem for the stochastic recurrence equation.
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1. Introduction and the main result

A branching process with immigration in a random environment is a usual
Galton–Watson process with immigration, where the offspring and immigra-
tion distribution in each generation is governed by an independent identically
distributed (iid) sequence of probability measures. Let ∆ denote the set of
probability measures on N = {0, 1, . . .}, and consider the Borel-σ-algebra on
it induced by the total variation distance. Let ξ, ξ0, ξ1, . . . be an iid sequence
in ∆2, the components ξn = (νξn , ν

◦
ξn
) represent the offspring and immigration

distribution in the consecutive generations. Let X0 = x ∈ N, and

Xn+1 =

Xn∑
i=1

A
(n+1)
i +Bn+1 =: θn+1 ◦Xn +Bn+1, n ≥ 0, (1)

where conditioned on the environment E = σ(ξ0, ξ1, . . .), the variables {A(n)
i ,

Bn : n ∈ N, i ≥ 1} are independent, and for n fixed, (A
(n)
i )i≥1 are iid with

distribution νξn , and Bn has distribution ν◦ξn . Note that given the environment
the random variables are independent however, νξ and ν◦ξ may depend. The

variable A
(n)
i is the number of offsprings of the ith element in the (n − 1)st

generation, and Bn is the number of immigrants in the nth generation. To ease

notation we write θn ◦ x =
∑x

i=1 A
(n)
i .
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For a random measure ξ = (νξ, ν
◦
ξ ) in ∆2 let A has distribution νξ condi-

tionally on ξ, and denote

m(ξ) =

∞∑
i=1

iνξ({i}) = E[A|ξ],

the conditioned expectation of its offspring distribution. Our standing assump-
tion is that for some κ > 0

E(m(ξ)1∨κ) < 1, E(A(1∨κ)+δ) < ∞, E(Bδ) < ∞, for some δ > 0, (2)

where a ∨ b = max{a, b}. Then, by the Jensen inequality the process is sub-
critical, i.e. E(logm(ξ)) < 0, which implies that the corresponding branching
process in a random environment without immigration dies out almost surely,
see e.g. the recent monograph by Kersting and Vatutin [12, Section 2.2]. Fur-
thermore, by the conditional Jensen’s inequality m(ξ)(1∨κ)+δ ≤ E[A(1∨κ)+δ|ξ],
thus (2) also implies that E(m(ξ)κ+δ) < ∞, which is used implicitly later.

By Lemma 3 below under condition (2) the Markov chain (1) has a unique
stationary distribution X∞, which using backward iteration can be represented
as

X∞
D
=

∞∑
i=0

θ0 ◦ θ1 ◦ . . . ◦ θi−1 ◦Bi, (3)

where
D
= stands for equality in distribution. The stationary distribution X∞

satisfies the distributional fixed point equation

X
D
=

X∑
i=1

Ai +B,

where (ξ,B,A1, A2, . . .) and X on the right-hand side are independent, and
conditionally on ξ the variables B,A1, A2, . . . are independent, and A1, A2, . . .
are iid νξ, and B has distribution ν◦ξ .

The main result of the paper characterizes the regular variation of the sta-
tionary distribution.

Theorem. Assume that there is a κ > 0 such that (2) holds. Let ℓ be a slowly
varying function. Then

P(B > x) ∼ ℓ(x)

xκ
, as x → ∞, (4)

if and only if

P(X∞ > x) ∼ ℓ(x)

xκ

1

1− E(m(ξ)κ)
, as x → ∞. (5)

The implication (4) ⇒ (5) was investigated in deterministic environment, in
which case m(ξ) ≡ E(A) ∈ (0, 1) is deterministic. Then we obtain a generaliza-
tion of Theorem 2.1.1 in Basrak et al. [4], where it is assumed that κ ∈ (0, 2), and
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if κ ≥ 1 then E(A2) < ∞. (In fact for κ < 1 we need that E(A1+δ) < ∞ for some
δ > 0, whereas in [4] only E(A) < 1 is needed.) Theorems 2.1 and 2.2 by Foss
and Miyazawa [9] covers more general tail behavior, not only regular variation.
If E(B) < ∞ then their Theorem 2.1 implies our result, while if E(B) = ∞ it is
assumed in [9, Theorem 2.2] that either E(A2) < ∞, or 1 −

∫∞
x

P(A > u)du is

subexponential. In the latter case, we only require that E(A1+δ) < ∞ for some
δ, which does not seem to imply the subexponential condition (on a related
question, on the subexponential property of the integrated tail distribution, see
Section 1.4 in Embrechts et al. [7]). Therefore, in some cases our results are
new even in the deterministic setup. To the best of our knowledge, the converse
implication (5) ⇒ (4) was not treated earlier.

In the random environment setup the tail behavior was studied in [3] under
a different assumption. In [3], the main assumptions are Cramér’s condition

E(m(ξ)κ) = 1, for some κ > 0, (6)

and E(Aκ) < ∞, E(Bκ) < ∞. If further weak assumptions are satisfied, then
the tail of X∞ is regularly varying with index −κ, that is P(X∞ > ·) ∈ RV−κ.
Therefore, in [3] the tail behavior is governed by the offspring distribution, while
in the present paper the tail is determined by the immigration.

The main idea of the proof is very simple. If a random sum
∑B

i=1 Ai is
large, where the summands are small, then, by the law of large numbers, it
is asymptotically BE(A), see [9, Remark 2.4]. More precisely, we rely on the
similarity between the asymptotic behavior of the branching process (Xn) in (1)
and the stochastic recurrence equation defined by Y0 = y ≥ 0,

Yn+1 = Cn+1Yn +Dn+1, n ≥ 0, (7)

where (C,D), (C1, D1), . . . are iid random vectors, with nonnegative compo-
nents. For recent monographs on the stochastic recurrence equation we refer
to Buraczewski et al. [5], and to Iksanov [11]. The tail behavior of the sta-
tionary distribution, or, which is the same the solution to the corresponding
stochastic fixed point equation, is well-understood, see e.g. [5, Section 2.4]: If
E(Cκ) = 1, and E(Dκ) < ∞ then by the Kesten–Grincevičius–Goldie theorem
(called Kesten–Goldie theorem in [5]) the tail is asymptotically kx−κ, for some
k > 0. For an extension of this result see Kevei [13]. While, if E(Cκ) < 1
and E(Cκ+δ) < ∞ for some δ > 0, then by the Grincevičius–Grey theorem
P(D > ·) ∈ RV−κ if and only if P(Y∞ > ·) ∈ RV−κ, where Y∞ is the stationary
distribution of (7).

The regular variation of the stationary distribution of a Markov chain has a
lot of consequences. Then, the well-known theory of regularly varying time series
apply, see e.g. the recent monograph by Kulik and Soulier [16]. The conditions
to apply the general theory, that is ergodicity, anticlustering, and vanishing
small values were all established in [3]. In particular, if (2) and (5) hold then
all the results in Section 3 in [3] hold true in the current setup, because in the
proofs only the regular variation of the stationary distribution was used, and
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that E(m(ξ)α) < 1, E(Bα) < ∞, for some α > 0. In particular, the tail process
of (Xn), the convergence of the point process, and the central limit theorems
are given in Theorems 3–5 in [3].

2. Proof

For the analysis of the stationary distribution we need the tail behavior
of randomly stopped sums of identically distributed, conditionally independent
summands, where the number of terms dominates the summands. Such re-
sults for independent summands were subject of intensive investigations, see
e.g. Barczy et al. [2, Proposition D.3], Aleškevičienė et al. [1, Theorem 1.2],
Faÿ et al. [8, Proposition 4.3], Robert and Segers [17]. In the iid case the next
statement coincides with Proposition D.3 in [2] for κ ≥ 1, while for κ < 1 we
need E(A1+δ) < ∞ for some δ > 0, whereas in [2] only E(A) < 1 is assumed.

Lemma 1. Let A,A1, . . . be identically distributed random variables, indepen-
dent given the random element ζ, and put m(ζ) = E[A|ζ]. Let B be an non-
negative integer-valued random variable, independent of the A’s and ζ. Assume

that P(B > x) = ℓ(x)
xκ , E(A(1∨κ)+δ) < ∞, for some κ > 0, δ > 0, and a slowly

varying function ℓ. Then, as x → ∞

P (θ ◦B) = P

(
B∑
i=1

Ai > x

)
∼ P(B > x)E(m(ζ)κ).

The reason for the change in the terminology from ξ to ζ is that we want to
use the result for more generations when ζ = (ξ0, ξ1, . . . , ξi−1).

Proof. To ease notation write Ãi = Ai −m(ζ).
First we prove that as x → ∞ for some α > κ

P

(
B∑
i=1

Ãi > x

)
= o(x−α). (8)

In what follows, nonspecified limits are meant as x → ∞, and c is finite positive
constant, whose value is irrelevant, and may change from line to line.

By the assumption on B, for any β ∈ (0, κ) we have E(Bβ) < ∞. Assume
that κ > 1. Then by [3, Lemma 2 (ii)], for κ < α < κ + δ < 2κ there exists
c = c(α) depending only on α, such that for any n ≥ 1

E

(∣∣∣∣∣
n∑

i=1

Ãi

∣∣∣∣∣
α)

≤ cn1∨α
2 E
(
E[|Ã|α|ζ]

)
≤ cn1∨α

2 E(Aα).

Thus

E

(∣∣∣∣∣
B∑
i=1

Ãi

∣∣∣∣∣
α)

≤ cE(B1∨α
2 )E(Aα) < ∞. (9)
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For κ ≤ 1, choose α and η such that α− η < κ < α < κ+ δ, 2η ≤ α < 1+ η,
and α

α−η < 1+δ. This is clearly possible, if α is close enough to κ and η is small.

Then, by [3, Lemma 2 (i)] (the exponent α− η is missing in the statement, but
it appears in the proof)

E

(∣∣∣∣∣
n∑

i=1

Ãi

∣∣∣∣∣
α)

≤ cnα−η E
(
(E[|Ã|

α
α−η |ζ])α−η

)
≤ cnα−η (E(A

α
α−η ))α−η,

implying that

E

(∣∣∣∣∣
B∑
i=1

Ãi

∣∣∣∣∣
α)

≤ cE(Bα−η) (E(A
α

α−η ))α−η < ∞. (10)

In both cases (8) follows.
Next

P

(
B∑
i=1

Ai > x

)
= P

(
B∑
i=1

Ãi +Bm(ζ) > x

)

≤ P

(
B∑
i=1

Ãi > εx

)
+ P(Bm(ζ) > (1− ε)x)

∼ E(m(ζ)κ) (1− ε)−κ P(B > x),

(11)

by (8), a version of Breiman’s lemma (see e.g. [5, Lemma B.5.1]) and the
regular variation of P(B > x). Breiman’s lemma is indeed applicable, as
E(m(ζ)(1∨κ)+δ) ≤ E(A(1∨κ)+δ) < ∞. Similarly, for the lower bound

P

(
B∑
i=1

Ai > x

)
≥ P

(
Bm(ζ) > (1 + ε)x,

B∑
i=1

Ãi > −εx

)

≥ P(Bm(ζ) > (1 + ε)x)− P

(∣∣∣∣∣
B∑
i=1

Ãi

∣∣∣∣∣ ≥ εx

)
∼ E(m(ζ)κ) (1 + ε)−κ P(B > x).

(12)

Letting ε → 0 in (11) and (12), the result follows.

As an immediate consequence, we obtain the following.

Corollary. For any i ≥ 0 as x → ∞

P(θ0 ◦ . . . ◦ θi−1 ◦Bi > x) ∼ P(B > x)(E(m(ξ)κ))i. (13)

Next we need the existence of the moments of a branching process in a
random environment and a bound for their decay. To ease notation write θ0◦. . .◦
θi−1 = Θi−1, and m(ξ0) . . .m(ξi−1) = Πi−1, i = 0, 1, 2, . . ., with the convention
Θ−1 ◦ B0 = B0 and Π−1 = 1. Let Z0 = 1 and Zn = Θn−1 ◦ 1, thus Zn is a
branching process in a random environment without immigration.
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Lemma 2. If E(Aα) < ∞ and E(m(ξ)α) < ∞ then E(Zα
n ) < ∞ for any n ≥ 0.

Furthermore, if E(m(ξ)α) < 1, then there exist ρ ∈ (0, 1), and c > 0, such that
for any n ≥ 0

E(Zα
n ) ≤ cρn. (14)

If α ≤ 1 or α > 1 and E(m(ξ)α) > E(m(ξ)), then under further assumptions
Lemma 3.1 by Buraczewski and Dyszewski [6] gives precise asymptotics. Fur-
thermore, Proposition 3.1 in the first arXiv version of [6] states the necessary
bound. For completeness, we sketch the proof as given in the first arXiv version
of [6].

Proof. If α ≤ 1, then (14) with c = 1 and ρ = E(m(ξ)α) follows from the
conditional Jensen inequality, proving both statements.

Let α > 1. For any ε > 0 there exists C = C(α, ε) > 0 such that (x+ y)α ≤
(1 + ε)xα + Cyα for x > 0, y > 0. Therefore, we have by (9)

E(Zα
n ) = E

(Zn−1m(ξn−1) +

Zn−1∑
i=1

(A
(n−1)
i −m(ξn−1))

)α


≤ (1 + ε)E(m(ξ)α)E(Zα
n−1) + cE

(
Z

1∨α
2

n−1

)
E(Aα),

(15)

proving the first statement.
Assume now that E(m(ξ)α) < 1. Choose ε > 0 small enough so that ρ̃ :=

(1 + ε)E(m(ξ)α) < 1. Then by (15)

E(Zα
n ) ≤ ρ̃E(Zα

n−1) + cE(Z1∨α
2

n−1 ). (16)

For α ≤ 2, we obtain

E(Zα
n ) ≤ ρ̃E(Zα

n−1) + c (E(m(ξ)))n,

which after iteration implies (14) with ρ > max{ρ̃,E(m(ξ))}. Once we have
the exponential decrease for α ∈ (1, 2], by (16) we have it for α ∈ (2, 4], and
similarly (14) follows for any α by induction. Here, we used that the function
λ(α) = E(m(ξ)α) is convex, λ(0) = 1, and λ′(0) < 0 (by subcriticality).

The following statement on the existence and uniqueness of the stationary
distribution appeared implicitly in the proof of [3, Lemma 3]. In the multitype
setting Theorem 3.3 in Key [15] gives conditions for the existence of a limiting
distribution.

Lemma 3. Assume that E(Aα) < ∞, E(m(ξ)α) < 1, and E(Bα) < ∞ for some
α > 0. Then the Markov chain in (1) has a unique stationary distribution X∞
defined in (3).

Proof. We first show that E(Xα
∞) < ∞, implying the existence of a stationary

distribution. For α ≤ 1 by the conditional Jensen inequality

E[(Θi−1 ◦Bi)
α] = E(E[(Θi−1 ◦Bi)

α|ξ0, . . . , ξi−1, Bi])

≤ E((Bim(ξ0) . . .m(ξi−1))
α) = E(Bα)(E(m(ξ)α))i,
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while for α > 1 by Minkowski’s inequality and Lemma 2

E[(Θi−1 ◦Bi)
α] ≤ cE(Bα)ρi

for some ρ < 1. In both case E(Xα
∞) < ∞ follows, for α ≤ 1 by subadditivity,

for α > 1 by Minkowski’s inequality.
The uniqueness follows from the same argument as in the proof of [3, Lemma

3], showing the existence of an accessible atom.

For the implication (5) ⇒ (4) we need the random sum version of Lemma 2
in Grey [10].

Lemma 4. Let N be a nonnegative integer valued random variable for which
P(N > x) ∼ Cℓ(x)x−κ, with some C > 0, and a slowly varying function ℓ.
Let (ξ,B,A1, A2, . . .) be independent of N , and conditionally on ξ the variables
(B,A1, A2, . . .) are independent, A1, A2, . . . are iid νξ, and B has distribution
ν◦ξ . Assume condition (2). Then as x → ∞

P(B > x) ∼ ℓ(x)

xκ
⇐⇒ P

(
B +

N∑
i=1

Ai > x

)
∼ (1 + C E(m(ξ)κ))

ℓ(x)

xκ
.

Proof. The statement follows from Lemma 2 in [10], since the right-hand side
above is equivalent to

P(B +Nm(ξ) > x) ∼ (1 + C E(m(ξ)κ))ℓ(x)x−κ.

Indeed,

B +

N∑
i=1

Ai = B +Nm(ξ) +

N∑
i=1

Ãi,

where the sum on the right-hand side, by (9) or (10) has finite moment of order
α > κ, implying that its tail is o(x−α).

We are ready to prove the main result.

Proof of the Theorem. As in [10], implication (5) ⇒ (4) follows from Lemma 4
with the choice N = X∞ and C = 1/(1− E(m(ξ)κ)).

We turn to (4) ⇒ (5). We follow the proof of the Grincevičius–Grey theorem
in [5, Sect. 2.4.3].

For K > 1 we use the decomposition

X∞
D
=

(
K∑
i=0

+

∞∑
i=K+1

)
Θi−1 ◦Bi =: X̃K + X̃K .

For any i > j ≥ 0

P(Θi−1 ◦Bi > x,Θj−1 ◦Bj > x)

≤ P(Πi−1Bi > (1− ε)x,Πj−1Bj > (1− ε)x)

+ P(Θi−1 ◦Bi −Πi−1Bi > εx) + P(Θj−1 ◦Bj −Πj−1Bj > εx).

(17)
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We have by (2.4.52) in [5] that

P(Πi−1Bi > (1− ε)x,Πj−1Bj > (1− ε)x) = o(P(B > x)).

For the last two terms in (17) we apply (8). Indeed, the assumptions of Lemma
1 are satisfied with the random element ζ being i iid random environments,
ζ = (ξ0, . . . , ξi−1), and A having distribution Θi−1 ◦ 1 = Zi, with the notation

introduced before Lemma 2. By Lemma 2 we have E(Z(1∨κ)+δ
i ) < ∞, thus (8)

holds with some α > κ. Substituting back into (17) we obtain as x → ∞

P(Θi−1 ◦Bi > x,Θj−1 ◦Bj > x) = o(P(B > x)). (18)

Thus by [5, Lemma B.6.1] and (13)

P(X̃K > x) ∼ P(B > x)

K∑
i=0

(E(m(ξ)κ))i. (19)

The result follows from (19) with K → ∞, provided we show that

lim
K→∞

lim sup
x→∞

P(X̃K > x)

P(B > x)
= 0. (20)

We have

P(X̃K > x) ≤ P

( ∞∑
i=K+1

(Θi−1 ◦Bi −Πi−1Bi) >
x

2

)

+ P

( ∞∑
i=K+1

Πi−1Bi >
x

2

)
.

(21)

For the second term above, by the proof in the usual Grincevičius–Grey theorem,
see [5, (2.4.53)]

lim
K→∞

lim sup
x→∞

P
(∑∞

i=K+1 Πi−1Bi >
x
2

)
P(B > x)

= 0.

For the first term in (21), by Markov’s inequality for α > 0 to be specified later

P

( ∞∑
i=K+1

(Θi−1 ◦Bi −Πi−1Bi) >
x

2

)
≤ 2α

xα
E

∣∣∣∣∣
∞∑

i=K+1

(Θi−1 ◦Bi −Πi−1Bi)

∣∣∣∣∣
α

.

For κ > 1 choose α such that κ < α < κ+ δ < 2κ and E(m(ξ)α) < 1. Then
by (9)

E |Θi−1 ◦Bi −Πi−1Bi|α ≤ cE(B1∨α
2 )E[(Θi−1 ◦ 1)α)]

≤ cE(B1∨α
2 )ρi,
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for some ρ < 1, by (14). Therefore, using the Minkowski inequality

E

(∣∣∣∣∣
∞∑

i=K+1

(Θi−1 ◦Bi −Πi−1Bi)

∣∣∣∣∣
α)

≤

(
c[E(B1∨α

2 )]
1
α

∞∑
i=K+1

ρ
i
α

)α

≤ cρK .

For κ = 1 choose α > 0 and η > 0 such that α − η < 1 < α < 1 + δ,
2η ≤ α < 1 + η, α

α−η < 1 + δ, and E(m(ξ)α/(α−η)) < 1. This is possible by
choosing α close enough to 1 and η > 0 small enough. Using the Minkowski
inequality together with (10) and (14),

E

(∣∣∣∣∣
∞∑

i=K+1

(Θi−1 ◦Bi −Πi−1Bi)

∣∣∣∣∣
α)

≤

( ∞∑
i=K+1

[E (|Θi−1 ◦Bi −Πi−1Bi|α)]
1
α

)α

≤

(
c[E(Bα−η)]

1
α

∞∑
i=K+1

(
E((Θi−1 ◦ 1)

α
α−η )

)α−η
α

)α

≤ cE(Bα−η)ρK(α−η).

Finally, for κ < 1 choose α > 0 and η > 0 such that α − η < κ < α <
(κ+ δ)∧ 1, 2η ≤ α < 1+ η, α

α−η < 1+ δ, and E(m(ξ)
α

α−η ) < 1. This is possible
by choosing α close enough to κ and η > 0 small enough. First by subadditivity,
next by (10) and (14), for some ρ < 1

E

(∣∣∣∣∣
∞∑

i=K+1

(Θi−1 ◦Bi −Πi−1Bi)

∣∣∣∣∣
α)

≤
∞∑

i=K+1

E (|Θi−1 ◦Bi −Πi−1Bi|α)

≤ cE(Bα−η)

∞∑
i=K+1

(E((Θi−1 ◦ 1)
α

α−η ))α−η

≤ cE(Bα−η) ρK .

Therefore, (20) holds in each case, and thus the proof is complete.

Remark. The proof works in the deterministic environment case, however then
it is much simpler. Indeed, Πi−1 = µi, where µ = E(A), and (17) becomes
trivial because of the independence of Bi and Bj . Furthermore, for the second
term in (21) instead of referring to the proof of the Grincevičius–Grey theorem
in [5], by the Potter bounds we have for γ ∈ (µ, 1), ε = κ

2 ∧1, for x large enough

P

( ∞∑
i=K+1

µiBi >
x

2

)
≤

∞∑
j=0

P
(
µj+K+1Bj >

x

2
(1− γ)γj

)
≤ 2

∞∑
j=0

P(B > x)

(
(1− γ)γj

2µj+K+1

)−κ+ε

,
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implying the necessary bound. The first term in (21) can be handled the same
way, since (14) holds for α ≥ 1 by bound (11) in Kevei and Wiandt [14], while
for α < 1 it follows from Jensen’s inequality.
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