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Abstract: To model the growth of a bacterial population in the presence of antibiotics
we use the stochastic model from Bogdanov et al. [2]. We assume that bacterial cells
either die or duplicate, with probabilities p0(c) and p2(c), where p2(c) = 1/(1 + αcβ) for
some α, β, where c stands for the antibiotic concentration. Using measurements based
on colony counting method we obtain weakly consistent, asymptotically normal estimator
both for (α,β) and for the minimal inhibitory concentration (MIC), a relevant parameter
in pharmacology.

Keywords: Galton–Watson process, extinction probability, asymptotically normal esti-
mator, MIC

AMS subject classification: 92C40, 60J80

1 Introduction

The correct estimation of bactericidal potency is a critical issue for the safe and proper use
of antibiotics. In Bogdanov et al. [2] we worked out a Bienaymé–Galton–Watson branch-
ing model for the growth of the bacterial population, and we obtained weakly consistent
asymptotically normal estimators for the relevant parameters when for the biological mea-
surements quantitative PCR (qPCR) method is used. In [2] we found that the 2-parameter
model fits very well to real biological data. In the present note we provide an estimator
under the same model assumptions but for different biological data: we assume that the
experimental data was obtained using colony counting method. The qPCR method mea-
sures the total bacterial genom, which is the total number of dead and alive bacterial
cells multiplied by a constant. On the other hand, colony counting gives an estimator for
the extinction probability. The basic experiment is the following. Originally, x0 bacterial
cells (e.g. Escherichia coli) are inoculated onto agar plates containing a series of antibiotic
concentration, and after the incubation period all the viable colonies are enumerated, see
e.g. Liu et al. [1].

As in [2] we assume that the bacterial population is homogeneous, in particular, there
is no resistant type. Long-term evolution of bacterial populations with both resistant and
susceptible types was investigated in several papers using deterministic models, see Svara
and Rankin [4], Paterson et al. [3], and the references therein. Closest to our model is
the deterministic model given by Liu et al. [1], where the biological measurements were
obtained by colony counting. In [1] a deterministic expression for the number of colony
forming units was obtained in terms of the antibiotic concentration.
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Next we describe the mathematical model. We consider a simple Galton–Watson
branching process where each bacterium either dies (leaves no offspring) or divides
(leaves 2 offsprings) with respective concentration dependent probabilities p0 = p0(c) and
p2 = p2(c) = 1 − p0(c). Let f(s) = fc(s) = p0 + p2s

2 denote the offspring generating
function and m = m(c) = 2p2(c) the offspring mean if the antibiotic concentration is c.
The process starts with a single ancestor X0;c = 1, and

Xn+1;c =

Xn;c�

i=1

ξ
(n)
i;c ,

where {ξc, ξ(n)
i;c : i ≥ 1, n ≥ 1} are independent and identically distributed (iid) random

variables with generating function fc. We further assume that the offspring distribution
is given by

p2(c) =
1

1 + αcβ
, (1)

where α > 0, β > 0 are unknown parameters. Note that as m = 2p2 this is the same
assumption as in [2]. Under this model the minimal inhibitory concentration (MIC), the
smallest antibiotic concentration preventing bacterial growth, is the smallest c for which
m(c) = 1, that is α−1/β .

If m ≤ 1 then the process dies out almost surely, while if the process is supercritical,
i.e. m > 1 then the probability of extinction is the smaller root of fc(q) = q, which is in
our setup

q(c) =

�
1−p2(c)
p2(c)

, if p2(c) > 1/2,

1, if p2(c) ≤ 1/2.
(2)

2 Estimation of the parameters

Assume that the initial number of bacterial cells is x0, that is we observe x0 independent
copies of the Galton–Watson process (Xn;c). Then the number Yc of living colonies has
binomial distribution with parameters x0 and 1 − q(c). Therefore, the natural estimator
for q(c) is �q(c) = 1− Yc

x0
. The law of large numbers and the central limit theorem implies

that �q(c) is a weakly consistent estimator and as x0 → ∞
√
x0�

q(c)(1− q(c))
(�q(c)− q(c))

D−→ N (0, 1), (3)

where
D−→ stands for convergence in distribution.

From (2) we see that we can estimate p2(c) only if q(c) < 1, or equivalently m(c) > 1,
in which case

�p2(c) = 1

1 + �q(c) . (4)

We assume that the offspring mean as a function of c satisfies (1) for some unknown
parameters α > 0, β > 0. Rewriting (1)

logα+ β log c = log

�
1

p2(c)
− 1

�
.
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Assume that we have measurements for K ≥ 2 different concentrations c1 < c2 < . . . < cK ,
such that m(cK) > 1. As in (4), we obtain the estimator �p2(ci) at different concentrations,
from which, using simple least squares estimator we obtain the estimator

�β =
K

�K
i=1 fi�i −

�K
i=1 fiL1

KL2 − L2
1

,

�α = exp

��K
i=1 fi − �βL1

K

�
,

where to ease notation we write

fi = log

�
1

�p2(ci)
− 1

�
, �i = log ci,

and L1 =
�K

i=1 �i, L2 =
�K

i=1 �
2
i . By the Cauchy–Schwarz inequality the denominator of

�β is strictly positive for K ≥ 2.
Under the assumption (1) the MIC equals ϑ = α−1/β , therefore its natural estimator

is
�ϑ = �α−1/�β .

Using (3), as in [2] we can prove that these estimators are asymptotically normal. Introduce
the notation

ki =
p2(ci)

1− p2(ci)

�
q(ci)(1− q(ci)), i = 1, 2, . . . ,K.

Proposition 1. Assume that c1 < . . . < cK are given concentrations such that m(cK) >

1. Then as x0 → ∞, �α, �β, and �ϑ are weakly consistent estimators of the corresponding
quantities. Furthermore, as x0 → ∞

√
x0(�α− α, �β − β)

D−→ (U, V ),

where (U, V ) is a two-dimensional normal random vector with mean 0 and covariance

matrix

�
σ2
α σαβ

σαβ σ2
β

�
, where

σ2
α =

α2

(KL2 − L2
1)

2

K�

i=1

k2
i (L2 − L1�i)

2,

σαβ =
α

(KL2 − L2
1)

2

K�

i=1

k2
i (K�i − L1)(L2 − L1�i),

σ2
β =

1

(KL2 − L2
1)

2

K�

i=1

k2
i (K�i − L1)

2 ,

and
√
x0(�ϑ− ϑ)

D−→ N (0,σ2
ϑ) as x0 → ∞, with

σ2
ϑ =

ϑ2 (logα)2

β2(KL2 − L2
1)

2

K�

i=1

k2
i

�
L2 − L1�i

logα
− K�i − L1

β

�2

.
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3 Simulation study

If m(cK) > 1, then regardless of the fixed values c = (c1, . . . , cK) the estimate (�α, �β)
is weakly consistent and asymptotically normal as x0 → ∞. However, the asymptotic
variances in Proposition 1 do depend on the specific choice of K ≥ 2 and the values
c1 < . . . < cK . Intuitively, it is clear that we should choose values for the concentrations
where the derivative of m is large, that is m is close to 1, see Figure 1.

Figure 1: m(c) in a logarithmic scale (solid (α,β) = (10, 1), dashed (α,β) = (100, 2))

As in [2] we compare two rather different biologically relevant scenarios: (α, β) = (10, 1)
and (α,β) = (100, 2). In Figure 1 we see the mean function for these two cases. Note
that in both cases ϑ = 0.1. Table 1 contains the theoretical variances given in Proposition
1 for different choices of the concentrations. For the steeper function ((α,β) = (100, 2))
the variances of α and β are significantly larger, however the variance of the MIC is of
the same order. We also see that a wrong choice of the concentrations might result much
larger variations. For c3 all the concentrations are small, the antibiotic does not have any
effect, so we cannot make a good estimate from observations at these concentrations.

concentrations σ2
10 σ2

1 σ2
0.1 σ2

100 σ2
2 σ2

0.1

c1 = (2−7, 2−4) 2424 2.87 0.015 2.98 · 106 38 0.0027
c2 = (2−5, 2−4.5, 2−3.4) 875 1.36 0.0016 3.54 · 105 5.5 0.0014
c3 = (2−9, 2−8, 2−7) 8.99 · 104 32 2.89 3.84 · 108 1448 29

Table 1: Asymptotic variances for (α,β) = (10, 1) and (α,β) = (100, 2).

Choosing the right antibiotic concentration is important to get a good estimate. The
larger variances above are not surprising, because in the present setup the estimator for the
mean m(c) works only for supercritical processes, that is for those c, for which m(c) > 1.
That is we can sample only from the upper part of the mean function m(c) in Figure 1.
This is in sharp contrast to the situation treated in [2], where the total number of dead
and alive bacteria was counted, and the estimator for the mean works for any c.
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x0 α β ϑ �σ2
α �σα,β �σ2

β �σ2
ϑ

50 11.25 1.01 0.101 1464 41 1.3 0.002
100 10.79 1.01 0.1004 1349 43 1.48 0.0019
300 10.23 1.003 0.1 981 36.2 1.44 0.0018
500 10.17 1.003 0.1 931 34.9 1.34 0.0016
∞ 10 1 0.1 875 34 1.36 0.0017

Table 2: Empirical mean and variances for (α,β) = (10, 1).

With α = 10, β = 1 and concentration vector c2 we simulate the process as follows.
For a given concentration ck, k = 1, . . . ,K, we calculate p2(ck) from (1). From each

measurement we calculate the estimation (�α, �β) as described in (2). We simulated the

measurements 1000 times. The resulting means and empirical variances of
√
x0(�α−α, �β−β)

and
√
x0(�ϑ−ϑ) are given in Table 2. We see that even for small initial number of bacteria

the empirical variances are close to the theoretical counterparts.
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