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Abstract

We obtain a strong renewal theorem with infinite mean beyond regular variation,
when the underlying distribution belongs to the domain of geometric partial attraction a
semistable law with index α ∈ (1/2, 1]. In the process we obtain local limit theorems for
both finite and infinite mean, that is for the whole range α ∈ (0, 2). We also derive the
asymptotics of the renewal function for α ∈ (0, 1].

1 Introduction

Strong renewal theorems (SRT) with infinite mean that have regularly varying (with param-
eter α ∈ [0, 1]) underlying renewal distributions are nowadays completely understood. The
SRT in the one-sided lattice case with α ∈ (1/2, 1) has been obtained by Garsia and Lam-
perti [10] and it was later generalized to the nonarithmetic case by Erickson [9]. The latter
also treats the case α = 1. As noted in [10], the mere regular variation is insufficient in the
range α ∈ (0, 1/2). The problem of finding necessary and sufficient conditions has recently
been solved by Caravenna and Doney [6] directly in the two-sided case. For more information
on improved sufficient conditions for this problematic range we refer to [6]. For a complete
treatment of the two-sided α = 1 case we refer to Berger [3]. Very recently, Uchiyama [22] ob-
tained asymptotic results for the renewal function for relatively stable variables with infinite
mean. A nonnegative random variable is relatively stable if and only if its truncated mean
is slowly varying. This roughly corresponds to the case α = 1, but the tail is not necessarily
regularly varying. To the best of our knowledge, Uchiyama’s paper is the only one where the
infinite mean case in the absence of regular variation is treated. We also remark that renewal
theory with no moments (roughly, the α = 0 case) has been dealt with in [2].

In this paper we are interested in SRT with infinite mean beyond regular variation.
More precisely, we focus on distributions in the domain of geometric partial attraction of
a semistable law. The class of semistable laws, introduced by Paul Lévy, is a natural ex-
tension of stable laws. They are the limits of appropriately centered and normed sums of
iid random variables along geometrically increasing subsequences. Analytically, the tail of
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the Lévy measure of the non-Gaussian stable laws are x−α, for some α ∈ (0, 2), while for
semistable laws an additional logarithmically periodic factor appears. The same logarith-
mically periodic function appears in the characterization of the domain of geometric partial
attraction. A brief background on semistable laws is provided in Section 3. For definitions,
properties, and history of semistable laws we refer to Sato [19, Chapter 13], Megyesi [16],
Csörgő and Megyesi [8], and the references therein.

Our main results on SRT for the case of one-sided α ∈ (1/2, 1) semistable renewal distri-
butions are Theorem 4 (arithmetic case) and Theorem 5 (nonarithmetic and nonlattice cases).
Unlike in [10] and [9], we cannot use the precise asymptotic of the characteristic function.
Although the characteristic function asymptotic in Theorem 1 is an important ingredient of
our proofs, the strategy is the systematic use of local limit theorems (LLT). The LLTs for
semistable laws that we obtain here for both finite and infinite mean, that is for the whole
range α ∈ (0, 2), are new. These are Theorem 2 (lattice case) and Theorem 3 (nonlattice
case).

Note that concerning LLT lattice and nonlattice distributions have to be treated sep-
arately, while concerning renewal theorems arithmetic and nonarithmetic distributions are
different. Our proof of the SRT relies on the LLT. For arithmetic distributions we use the
lattice LLT, while for nonlattice distributions we use the nonlattice LLT. In the proof of the
remaining case for nonarithmetic lattice distributions, we use the lattice LLT together with
the fact that the irrational rotation is uniquely ergodic, therefore it smooths out the mass
at infinity. In particular, our proof in the nonarithmetic case is different from Erickson’s [9]
method.

As clarified in [6, Section 4.1] via probabilistic arguments, local limit results (namely,
LLT and Local Large Deviation) are sufficient to prove SRT for the regularly varying case
in range α ∈ (1/2, 1). An analytic proof of this fact is absent in the literature. Our proof of
Theorem 4 does precisely this while answering the current question on SRT in the semistable
setting. In the process we show that the proofs in [10] and [9] can be written using just the
LLT together with a ‘rough’ asymptotics of the characteristic function.

While the characteristic function asymptotics for α = 1 in Theorem 1, are considerably
more difficult than for the range α ∈ (0, 1), the proof of the SRT (Theorem 6) is in fact
simpler, and was obtained in a more general setup in [22].

In Theorem 7 we obtain the asymptotics of the renewal function for α ∈ (0, 1] semistable
renewal distributions. Previous similar, partial results are obtained in Kevei [13, Theorem 2.1]
and in the authors’ previous paper [15, Theorem 2], which provide a Karamata type theorem
in the absence of strict regular variation. The basic observation used in the proof of Theorem 7
is that the semistable limit theorem obtained in [8] in terms of characteristic functions (but
not LLT) together with an inversion formula can be used to obtain the asymptotics of the
renewal function. This type of argument is not needed (although it makes sense) in the
regular variation setting because the Karamata Tauberian theorem gives the desired result.

All the proofs are gathered together in Section 7.
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2 Characteristic function asymptotics

Let X be a random variable with distribution function F (x) = P(X ≤ x). Put F (x) =
1− F (x). For r > 1 introduce the set of logarithmically periodic functions

Pr =
{
p : (0,∞)→ (0,∞) : inf

x∈[1,r]
p(x) > 0, p is bounded,

right-continuous, and p(xr) = p(x), ∀x > 0
}
.

Assume that for some r > 1, α ∈ (0, 1), and a slowly varying function `

lim
n→∞

(rnz)α

`(rn)
F (rnz) = p0(z), z ∈ Cp0 , (1)

where the limit p0 is not identically 0. Then the appearing function p0 is necessarily log-
periodic, i.e. p0(rx) = p0(x), and since F is monotone, p0(x)x−α is nonincreasing. Then F is
called regularly log-periodic. A stronger assumption is

F (x) = `(x)x−αp0(x), with p0 ∈ Pr,

which follows from (1) if p0 is continuous.
Let U(x) =

∑∞
n=0 F

∗n(x) be the corresponding renewal function, where ∗n stands for the
usual convolution power. If (1) holds then a slight generalization of [15, Theorem 2] (with
the identical proof) shows that

lim
n→∞

U(rnz)`(rn)

(rnz)α
= p1(z),

where p1 can be determined explicitly, see [15, Theorem 2].
For finer results we first need the asymptotic behavior of the characteristic function of

X. In what follows, oscillatory integrals appear naturally. The notation
∫∞−
0 means that the

integral is understood as improper Riemann integral, and not as Lebesgue integral on [0,∞).
Assume that

F (x) =
`(x)

xα
h(x),

F (−x) =
`(x)

xα
k(x), x > 0,

(2)

where α ∈ (0, 2), the function ` is a slowly varying, and h and k are either identically 0, or
positive bounded functions with strictly positive infimum, and at least one of them is not
identically zero. Let

ϕ(t) = EeitX =

∫
R
eitxdF (x).

We write < for the real part and = for the imaginary part.
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Theorem 1. Assume that (2) holds. If α ∈ (0, 1) then

lim sup
t→0

|1− ϕ(t)|
|t|α`(1/|t|)

<∞.

Furthermore, if h(x)x−α and k(x)x−α in (2) are ultimately nonincreasing then as t→ 0

1− ϕ(t) ∼ −isgn(t) |t|α`(1/|t|)p2(t),

where

p2(t) =

∫ ∞−
0

y−α
[
h(y/|t|)eiysgn(t) − k(y/|t|)e−iysgn(t)

]
dy.

If α ∈ (1, 2) then as t→ 0

1 + itEX − ϕ(t) ∼ −isgn(t) |t|α`(1/|t|)p2(t),

where

p2(t) =

∫ ∞
0

y−α
[
h(y/|t|)(eiysgn(t) − 1)− k(y/|t|)(e−iysgn(t) − 1)

]
dy.

If α = 1

lim sup
t→0

<(1− ϕ(t))

|t|`(1/|t|)
<∞ and lim sup

t→0

|=ϕ(t)|
|t|L(1/|t|)

<∞,

where

L(x) =

∫ x

1

[
F (u) + F (−u)

]
du

is a slowly varying function such that L(x)/`(x) → ∞ as x → ∞. In the one-sided case,
i.e. if k ≡ 0 then

|=ϕ(t)| ∼ |t|L(1/|t|),
also holds. Furthermore if h(x)/x and k(x)/x are ultimately nonincreasing then

<(1− ϕ(t)) ∼ |t|`(1/|t|)
∫ ∞−
0

sin y

y
(h(y/|t|) + k(y/|t|)) dy.

Finally, for any α ∈ (0, 2)

lim inf
t→0

<(1− ϕ(t))

|t|α`(1/|t|)
> 0.

Remark 1. For α ∈ (0, 1) some monotonicity conditions are needed for the finiteness of the im-
proper integral in p2. Indeed, it is easy to construct examples such that

∫∞−
0 `(x)x−α cosx dx

does not exist and limx→∞ `(x) = 1. On the other hand, for α > 1 the function p2 is defined
as a Lebesgue integral.

We note that the α = 1 case is more complicated, as usual. The main difficulty is that
the order of the real and imaginary parts are different and in general, the imaginary part is
larger. However, for symmetric distributions the imaginary part disappears. For a treatment
of α = 1 in the regular variation case we refer to [1]. See also Lemma 2 by Erickson [9], or
Pitman [18]. For the corresponding result in the regularly varying case see Theorem 2.6.5 in
Ibragimov and Linnik [11], for results on more general integral transform see also Theorem
4.1.5 in Bingham et al. [5].
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Let X be a random variable with distribution function F . Assume that

F (x) = `(x)x−αpR(x), F (−x) = ˜̀(x)x−αpL(x), `(x) ∼ ˜̀(x),

`, ˜̀ slowly varying, α ∈ (0, 2), pR, pL ∈ Pr ∪ {0}, pL + pR 6= 0.
(3)

Notice that, due to the logarithmic periodicity of pR and pL the functions pR(x)x−α and
pL(x)x−α are both nonincreasing. Therefore the following is an immediate consequence of
Theorem 1.

Corollary 1. Assume that (3) holds, and if E|X| < ∞ then EX = 0. Then, for α 6= 1, as
t→ 0

1− ϕ(t) ∼ −isgn(t) |t|α`(1/|t|)p2(t),

where

p2(t) =


∫∞−
0 y−α

[
pR( y|t|)e

iysgn(t) − pL( y|t|)e
−iysgn(t)

]
dy, α < 1,∫∞

0 y−α
[
pR( y|t|)(e

iysgn(t) − 1)− pL( y|t|)(e
−iysgn(t) − 1)

]
dy, α > 1.

While for α = 1

<(1− ϕ(t)) ∼ |t|`(1/|t|)
∫ ∞
0

sin y

y
(pR(y/|t|) + pL(y/|t|)) dy.

3 Semistable laws

Semistable laws are limits of centered and normed sums of iid random variables along subse-
quences kn for which

kn < kn+1 for n ≥ 1 and lim
n→∞

kn+1

kn
= c > 1 (4)

hold. Since c = 1 corresponds to the stable case ([16, Theorem 2]), we assume that c > 1. In
what follows we let c be as defined in (4).

The characteristic function of a non-Gaussian semistable random variable V has the form

ψ(t) = EeitV = exp

{
ita+

∫ ∞
−∞

(eitx − 1− itxI{|x| ≤ 1}) Λ(dx)

}
, (5)

with I{·} standing for the indicator function, where a ∈ R, and for the Lévy measure Λ, we
have Λ((x,∞)) = MR(x)x−α, Λ((−∞,−x)) = ML(x)x−α, where MR,ML ∈ Pc1/α ∪{0}, such
that not both of them are 0. We further assume that V is nonstable, that is either MR or
ML is not constant.

In the following X,X1, X2, . . . are iid random variables with distribution function F (x) =
P(X ≤ x). Let Sn = X1 + . . . + Xn denote the partial sum. We fix a semistable random
variable V = V (R,M) with distribution function G and characteristic function ψ in (5). The
random variable X belongs to the domain of geometric partial attraction of the semistable
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law G if there is a subsequence kn for which (4) holds, and a norming and a centering sequence
An, Cn, such that ∑kn

i=1Xi − Ckn
Akn

→d V, (6)

where →d means convergence in distribution. By [16, Theorem 3], without loss of generality
we may assume that

An = n1/α`1(n), Cn = n

∫ 1−1/n

1/n
Q(s) ds, (7)

with some slowly varying function `1, where Q(s) = inf{x : F (x) ≥ s}, s ∈ (0, 1) is the
quantile function of F .

In order to characterize the domain of geometric partial attraction we need some further
definitions. As kn+1/kn → c > 1, for any x large enough there is a unique kn such that
Akn ≤ x < Akn+1 . Define

δ(x) =
x

Akn
.

Note that the definition of δ does depend on the norming sequence. Finally, let

x−α`(x) = sup{t : t−1/α`1(1/t) > x}.

Then Ax = A(x) = x1/α`1(x) and B(y) = yα/`(y) are asymptotic inverses of each other, i.e.

A(B(x)) ∼ B(A(x)) ∼ x as x→∞, (8)

and x1/α`1(x) ∼ inf{y : x−1 ≥ y−α`(y)}. Thus ` and `1 asymptotically determines each other.
For properties of asymptotic inverse of regularly varying functions we refer to [5, Section 1.7].

By Corollary 3 in [16] (6) holds on the subsequence kn with norming sequence Akn if and
only if

F (x) =
`(x)

xα
[MR(δ(x)) + hR(x)],

F (−x) =
`(x)

xα
[ML(δ(x)) + hL(x)],

(9)

where hR, hL are right-continuous functions such that limn→∞ hR/L(Aknx) = 0, whenever x
is a continuity point of MR/L. Moreover, if MR/L is continuous, then limx→∞ hR/L(x) = 0.

Clearly, (9) implies (2). Thus if F belongs to the domain of geometric partial attraction
of a semistable law, then Theorem 1 applies.

Conditions (3) and (9) are similar, but the δ function in (9) complicates the asymptotics.
In the special case `1 ≡ 1 and kn = bcnc, the function δ(x) can be replaced by x in (9). Then
(3) with ` ∼ 1 is equivalent to (9) with hR/L(x)→ 0 as x→∞. In general, (3) is a stronger
condition.

Lemma 1. Assume (3). Then there exists a subsequence (kn) satisfying (4) with c = rα

such that (9) holds with MR = pR and ML = pL.
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Proof. Recall the definition of A and B. Define kn = B(cn/α). For notational ease we
suppress the integer part. Since B is regularly varying with index α, condition (4) holds. By
(8) we have Akn ∼ cn/α. Writing

F (x) =
`(x)

xα
[pR(δ(x)) + (pR(x)− pR(δ(x)))] ,

we only have to show that limn→∞ hR(Aknx) = 0 holds whenever x is a continuity point of
pR, for hR(x) = pR(x)− pR(δ(x)). For simplicity fix x ∈ (1, c1/α) to be a continuity point of
pR. Then Akn ≤ Aknx < Akn+1 for large n, thus δ(Aknx) = Aknx/Akn = x. On the other
hand, by the logarithmic periodicity of pR

pR(Aknx) = pR(c−n/αAknx)→ pR(x),

which implies that hR(Aknx)→ 0. Clearly, the same argument works for F (−x).

It is easy to give examples that show that the converse is not true. Choose α = 1, c = 2,
`(x) = `1(x) = log2 x, kn = 2n, pR = 2{log2 x}, pL ≡ 0, where log2 stands for the base-2
logarithm, and {·} is the fractional part. Define for x > 3

F (x) = 2−blog2 x−log2 log2 xc =
log2 x

x
2{log2 x−log2 log2 x}.

Some lengthy but straightforward calculation shows that (9) holds, but (3) does not.

For x > 0 (large) we define the position parameter as

γx = γ(x) =
x

kn
, where kn−1 < x ≤ kn. (10)

We say un circularly converges to u ∈ (c−1, 1], un
cir→ u, if u ∈ (c−1, 1) and un → u in the usual

sense, or u = 1 and (un) has limit points c−1, or 1, or both. From Theorem 1 [8] we see that (6)

holds along a subsequence (nr)
∞
r=1 (instead of kn) if and only if γnr

cir→ λ ∈ (c−1, 1] as r →∞.
In this case, by [8, Theorem 1] (or directly from the relation −Rλ(x) = limr→∞ nrF (Anrx))
the Lévy measure of the limit

Λλ((x,∞)) = x−αMR(λ1/αx)

Λλ((−∞,−x)) = x−αML(λ1/αx), x > 0.

For any λ > 0 let Vλ be a semistable random variable with characteristic and distribution
function

ψλ(t) = EeitVλ = exp

{
itaλ +

∫ ∞
−∞

(
eitx − 1− itxI{|x| ≤ 1}

)
Λλ(dx)

}
Gλ(x) = P(Vλ ≤ x),

(11)

where aλ ∈ R, for its precise form see [8, Theorem 1]. Thus, whenever γnr
cir→ λ,∑nr

i=1Xi − Cnr
Anr

→d Vλ as r →∞.
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To ease notation we define Λλ, Gλ for any λ > 0, but note that Λcλ ≡ Λλ, Gcλ ≡ Gλ, so
these functions, distributions are different for λ ∈ (c−1, 1].

Let X,X1, X2, . . . be iid random variables with distribution function F such that (9)
holds. Csörgő and Megyesi [8, Theorem 2] showed the following merging result:

lim
n→∞

sup
x∈R

∣∣∣∣P(Sn − CnAn
≤ x

)
−Gγn(x)

∣∣∣∣ = 0. (12)

The main theorem in [7] implies that Gλ is C∞, in particular its density function gλ exists.

4 Local limit theorems for semistable laws

We prove local limit theorems for the distributions in the domain of geometric partial at-
traction of semistable laws. As usual we have to distinguish between lattice and nonlattice
distributions. We first consider the lattice case.

A random variable, or its distribution is called lattice, if it is concentrated on the set
{a+hZ} for some a ∈ R and h > 0. If a = 0 the distribution is called arithmetic, or centered
lattice. The largest possible h is the span of the lattice distribution. We assume that a = 0
and h = 1, i.e. the distribution is integer valued with span 1. We prove the analogue of
Gnedenko’s Local Limit Theorem ([5, Theorem 8.4.1], [11, Theorem 4.2.1]). The statement
can be readily extended to the general lattice case.

Theorem 2. Let X,X1, . . . be integer valued iid random variables with span 1, such that (9)
holds. Then

lim
n→∞

sup
k
|AnP(Sn = k)− gγn((k − Cn)/An)| = 0.

The Fourier analytic proof relies on the inversion formula

P(Sn = k) =
1

2π

∫ π

−π
e−itkϕ(t)n dt, (13)

and on the merging result (12).
In the nonlattice case we extend Stone’s local limit theorem [20], see also [5, Theorem

8.4.2].

Theorem 3. Let X,X1, . . . be iid nonlattice random variables such that (9) holds. Then for
any h > 0

lim
n→∞

sup
x

∣∣∣∣An2h
P(Sn ∈ (x− h, x+ h])− gγn((x− Cn)/An)

∣∣∣∣ = 0.

The difficulty in the nonlattice setup is the lack of a simple inversion formula as (13).
Instead, in the usual Fourier inversion formula one has to take limits. The standard trick to
overcome this is to add a small continuous random variable with compactly supported char-
acteristic function. Fix T > 0 and let Y be a random variable with density and characteristic
function

j(x) =
1− cos(Tx)

πTx2
, η(t) =

{
1− |t|T , for t ∈ [−T, T ],

0, otherwise.
(14)
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Then the inversion formula gives

P(Sn + Y ∈ (x− h, x+ h]) =
h

π

∫ T

−T

sin th

th
e−itxϕn(t)

(
1− |t|

T

)
dt. (15)

Having this formula the proof goes as in the lattice case, only at the end we have to get rid
of the small perturbation.

5 Strong renewal theorem in the semistable setting

In what follows, we consider only nonnegative random variables with infinite mean in the
domain of geometric partial attraction of a semistable law. In particular, α ∈ (0, 1]. For
α ∈ (0, 1) there is no need for centering, i.e. in (7) we choose Cn ≡ 0.

Using the local limit theorems, we obtain the analogue of [10, Theorem 1.1] in the
semistable setting, that is assuming (9). Unlike in [10], we cannot use the precise asymptotic
of (1−ϕ(t))−1. Instead, we heavily exploit the LLT, namely Theorems 2 and 3 together with
the asymptotic of (1− ϕ(t))−1 obtained in Theorem 1.

We start with the arithmetic case, and assume that X is integer valued with span 1. With
the same notation as in [10] introduce the renewal sequence

un =

∞∑
k=0

P(Sk = n) =
1

π
<
∫ π

0
(1− ϕ(t))−1 e−int dt, (16)

where we used the inversion (13).

Theorem 4. Assume that X is a nonnegative integer valued random variable with span 1
and (9) holds with α ∈ (1/2, 1). Set B(x) = xα`(x)−1. Then

lim
n→∞

∣∣∣n1−α`(n)un − α
∫ ∞
0

gγ(B(n)x−α)(x)x−α dx
∣∣∣ = 0.

The estimate of the main term above holds in the whole range α ∈ (0, 1), and it is treated
separately in the following statement. It is the analogue of Lemma 2.2.1 in [10].

Lemma 2. Assume that X is a nonnegative integer valued random variable with span 1 and
(9) holds with α ∈ (0, 1). For any L > 1

lim sup
n→∞

∣∣∣n1−α`(n)

B(nL)∑
k=B(n/L2)

P(Sk = n)− α
∫ L2

L−1

gγ(B(n)y−α)(y)y−α dy
∣∣∣ ≤ L−1.

Recall that the renewal function is denoted by U(y) :=
∑

n F
n∗(y). The next result gives

the SRT in the semistable nonarithmetic case.

Theorem 5. Assume that X is a nonnegative nonarithmetic random variable and (9) holds
with α ∈ (1/2, 1). Set B(x) = xα`(x)−1. Then for any h > 0,

lim
y→∞

∣∣∣y1−α`(y)

2h
(U(y + h)− U(y − h))− α

∫ ∞
0

gγ(B(y)x−α)(x)x−α dx
∣∣∣ = 0.
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In the nonarithmetic lattice case without loss of generality we assume that X has span
1, and that X ∈ a+ N, where a ∈ (0, 1) is irrational. The proof of Theorem 5 in this case is
essentially the same as the proof of Theorem 4, except for the treatment of the leading term.
To make this precise we introduce the following notation.

Let X̃ = X − a denote the centered version of X, and S̃k = Sk − ka. Fix 0 < h < 1/2.
Define

Ik,y =

{
1, if (y − ka− h, y − ka+ h] contains an integer,

0, otherwise,

and let 〈y − ka〉 denote the unique integer in the interval (y − ka− h, y − ka+ h] if Ik,y = 1,
and 0 otherwise. Then

P(Sk ∈ (y − h, y + h]) = P(S̃k ∈ (y − ka− h, y − ka+ h]) = Ik,yP(S̃k = 〈y − ka〉)

and

U(y + h)− U(y − h) =

∞∑
k=0

P(Sk ∈ (y − h, y + h]) =

∞∑
k=0

Ik,yP(S̃k = 〈y − ka〉). (17)

Lemma 3. Assume that X is a nonnegative, nonarithmetic and lattice with span 1. Suppose
that (9) holds with α ∈ (0, 1). Then for any h ∈ (0, 1/2)

lim sup
y→∞

∣∣∣y1−α`(y)

B(yL)∑
k=B(y/L2)

Ik,yP(S̃k = 〈y − ka〉)− 2hα

∫ L2

L−1

gγ(B(y)x−α)(x)x−α dx
∣∣∣ ≤ L−1.

In the proof of the nonlattice case of Theorem 5 we first apply the ideas of the arithmetic
case to the smoothed version as in (15), then ‘unsmooth’ the limit.

The case α = 1 is different, already in the regularly varying framework. However, the
difference is more apparent in the semistable setup, since the usual limit result holds. We
assume that EX = ∞, because if it was finite, the classical renewal theorem would work.
Our results are special cases of Lemma 67 in Uchiyama [21] and Corollary 2 in [22]. For
completeness, we state the results.

Now, instead of (16) we use the inversion formula

un =
2

π

∫ π

0
W (t) cosntdt, (18)

see Lemma 3.1.1 in [10] or (2.5) in [9], where

W (t) = < 1

1− ϕ(t)
=
<(1− ϕ(t))

|1− ϕ(t)|2
.

The expectation ‘almost exists’ in the sense that the truncated first moment

L(x) =

∫ x

1
F (u)du

is slowly varying. The key ingredient is Lemma 1 in [22], the slow variation of the integral of
W . The regularly varying version is Lemma 3 in [9].
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Lemma 4 (Lemma 1 in [22]). Assume that X is a nonnegative random variable such that
(9) holds with α = 1, and EX =∞. Then as x→∞∫ 1/x

0
W (t) dt ∼ L(x)−1

π

2
.

The arithmetic version of the next result is a special case of Lemma 67 in [21], and the
nonarithmetic version is a special case of Corollary 2 in [22]. The proof is based on Lemma
4 and on the argument in [9].

Theorem 6. Assume that X is a nonnegative random variable such that (9) holds with
α = 1, and EX =∞. If X is integer valued with span 1 then

lim
n→∞

L(n)un = 1,

while if X is nonarithmetic then for any h > 0

lim
y→∞

L(y)(U(y + h)− U(y − h)) = 2h.

6 Renewal function in the semistable setting

In this section we determine the asymptotic of U(y), as y →∞ for any α ∈ (0, 1). This time
we will not exploit the LLT, but simply the merging result (28) in terms of the characteristic
function. In short, the basic observation is that the semistable limit theorem, equivalently
the merging result (28), is the only thing one needs to obtain the asymptotic of U(y) for both
arithmetic and nonarithmetic semistable distributions. This type of argument is not needed
(although it makes sense) to obtain the asymptotic of U(y) in the regularly varying (stable)
setting where Karamata’s Tauberian theorem gives immediate results.

Recall that Gγk is the semistable distribution defined in (11). We note that∫ ∞
0

Gγ(B(y)x−α)(x)x−α−1 dx <∞.

At ∞ this is clear, while at 0 this follows from the fact that Gγ(x) is exponentially small
around 0, see Theorem 1 by Bingham [4] (or Lemma 2 in [15]).

Theorem 7. Assume that X is a nonnegative random variable and (9) holds with α ∈ (0, 1).
Set B(x) = xα`(x)−1. Then

lim
y→∞

∣∣∣y−α`(y)U(y)− α
∫ ∞
0

Gγ(B(y)x−α)(x)x−α−1 dx
∣∣∣ = 0.

As a consequence of Theorem 6 we obtain for α = 1 the following.

Corollary 2. Assume that X is a nonnegative random variable such that (9) holds with
α = 1 and EX =∞. Then, as y →∞

U(y) ∼ y

L(y)
.
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It is natural to expect that under some additional assumption the SRT in Theorems 4 and
5 remains true for α ∈ (0, 1/2]. The problem to find the necessary and sufficient conditions
for the SRT in the regularly varying setup was open for more than 50 years, and was solved
recently by Caravenna and Doney [6]. In the regularly varying setup, already in the first
papers [10, 9] it was pointed out that for α ∈ (0, 1/2] the results hold with lim inf instead of
lim, moreover the exceptional set is negligible in the sense that has density 0.

We do not know what happens for α ∈ (0, 1/2]. We only point out the essential difficulty
to obtain further asymptotics. By Lemma 2 for any α ∈ (0, 1)

lim inf
n→∞

[
n1−α`(n)un − α

∫ ∞
0

gγ(B(n)y−α)(y)y−α dy

]
≥ 0. (19)

In the regularly varying case (19), together with Theorem 7, is enough to conclude that for
α ∈ (0, 1/2] the liminf in (19) is 0, moreover the limit exists and equals 0 except in a set of
density 0; see [10, Theorem 1.1], [9, Theorem 2], or [5, Theorem 8.6.6]. If G is any distribution
function of a nonnegative random variable with density g, then simply

α

∫ ∞
0

G(x)x−α−1 dx =

∫ ∞
0

g(x)x−α dx.

In our case the distribution function itself depends on x, thus the argument above does not
work.

7 Proofs

7.1 Proof of Theorem 1

Case 1: α ∈ (0, 1). Integration by parts shows

1− ϕ(t) =

∫
[0,∞)

(eitx − 1) dF (x) +

∫
(0,∞)

(e−itx − 1) dF (−x)

= −it
(∫ ∞−

0
F (x)eitx dx−

∫ ∞−
0

F (−x)e−itx dx

)
= −isgn(t)|t|α

∫ ∞−
0

`(
y

|t|
)y−α

(
h(
y

|t|
)eisgn(t)y − k(

y

|t|
)e−isgn(t)y

)
dy.

(20)

To ease notation we write x = |t|−1. We consider the first term in the integral above, and
assume t > 0. For any 0 < a < b <∞ by the uniform convergence theorem for slowly varying
functions as x→∞

1

`(x)

∫ b

a
h(yx)`(yx)y−αeiydy −

∫ b

a
h(yx)y−αeiydy → 0.

Next we show that the contribution of the integral on (0, a), and on (b,∞) is negligible.
Indeed, by Karamata’s theorem∣∣∣∣∫ a

0
h(yx)`(yx)y−αeiydy

∣∣∣∣ ≤ C xα−1 ∫ ax

0
`(u)u−α du

∼ C a1−α`(x) as x→∞.
(21)
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In the following C > 0 is always a finite positive constant, which may be different from line
to line, and its actual value is not important for us. On (b,∞) we consider only the real part.
Since the function F (x) = `(x)h(x)x−α is nonincreasing, by the second mean value theorem
for definite integrals we obtain∣∣∣∣∫ ∞−

b
h(yx)`(yx)y−α cos y dy

∣∣∣∣ ≤ h(bx)`(bx)b−α sup
z>b

∣∣∣∣∫ z

b
cos y dy

∣∣∣∣
≤ C `(x)b−α.

(22)

Clearly, the inequalities (21) and (22) hold true for the second term in (20), therefore∣∣∣∣ 1− ϕ(t)

|t|α`(1/|t|)

∣∣∣∣ ≤ C (a1−α + b−α +

∫ b

a
y−α dy

)
,

showing the first part of the theorem.

For the more precise asymptotic first note that with the extra monotonicity condition the
function p2 is well-defined. This follows from the Leibniz criterion for the finiteness of an
alternating series, recalling the fact that h(y)y−α and k(y)y−α are ultimately nonincreasing.
Moreover, the inequalities (21) and (22) hold true with `(x) ≡ 1. Therefore∣∣∣∣ 1

`(x)

∫ ∞−
0

h(xy)`(xy)y−αeiy dy −
∫ ∞−
0

h(xy)y−αeiy dy

∣∣∣∣
≤ C(a1−α + b−α) +

∣∣∣∣ 1

`(x)

∫ b

a
h(yx)`(yx)y−αeiy dy −

∫ b

a
h(yx)y−αeiy dy

∣∣∣∣ ,
and the statement follows by letting x = 1/|t| → ∞, then a→ 0 and b→∞.

Case 2: α ∈ (1, 2). In this case EX exists, and by subtracting, and using that EeitX =
1 + itEX + o(t) as t ↓ 0, we may and do assume that EX = 0. Similarly as in (20)

1− ϕ(t) =

∫
R

(
1− eitx + itx

)
dF (x)

= −isgn(t)|t|α
∫ ∞
0

`(y/|t|)
yα

(
(eisgn(t)y − 1)h(y/t)− (e−isgn(t)y − 1)k(y/t)

)
dy.

As above, for any 0 < a < b <∞ as x = |t|−1 →∞

1

`(x)

∫ b

a
h(yx)`(yx)y−α(eiy − 1) dy −

∫ b

a
h(yx)y−α(eiy − 1) dy → 0.

Next we show that the contribution of the integral on (0, a) and on (b,∞) is negligible. For
y small enough eiy − 1 ∼ iy, thus by Karamata’s theorem∣∣∣∣∫ a

0
h(yx)`(yx)y−α(eiy − 1) dy

∣∣∣∣ ≤ C ∫ a

0
`(yx)y1−α dy

∼ C a2−α`(x) as x→∞.
(23)
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Similarly, on (b,∞) we have∣∣∣∣∫ ∞
b

h(yx)`(yx)y−α(eiy − 1) dy

∣∣∣∣ ≤ C`(x)b1−α. (24)

Since the inequalities (23) and (24) hold with `(x) ≡ 1, therefore∣∣∣∣ 1

`(x)

∫ ∞
0

y−αh(xy)`(xy)(eiy − 1) dy −
∫ ∞
0

y−αh(xy)(eiy − 1) dy

∣∣∣∣
≤ C

(
a2−α + b1−α

)
+

∣∣∣∣ 1

`(x)

∫ b

a
h(yx)`(yx)y−αeiy dy −

∫ b

a
h(yx)y−αeiy dy

∣∣∣∣ ,
and statement follows by letting x = 1/|t| → ∞, then a→ 0 and b→∞.

Case 3: α = 1. In this case the calculations are more troublesome. Using that∫
(−1,1]

x dF (x) =

∫ 1

0
[F (x)− F (−x)] dx− F (1) + F (−1)

and that eitx − 1− itx = O(t2) for x ∈ [−1, 1], straightforward calculation shows

1− ϕ(t) =

∫
R

(1− eitx) dF (x)

=−it
∫ ∞−
1

(
F (x)eitx−F (−x)e−itx

)
dx− it

∫ 1

0
[F (x)− F (−x)]dx+O(t2)

= −isgn(t)|t|
∫ ∞−
|t|

`(y/|t|)
y

[
h(y/|t|)eisgn(t)y − k(y/|t|)e−isgn(t)y

]
dy

− it

∫ 1

0
[F (x)− F (−x)] dx+O(t2).

(25)

In this case the order of the real and imaginary parts are different. As sin y ∼ y at 0, using
the arguments in (21) and (22) we have∣∣∣∣∣ 1

`(1/|t|)

∫ ∞−
|t|

sin y

y
`(y/|t|)h(y/|t|) dy −

∫ b

0

sin y

y
h(y/|t|) dy

∣∣∣∣∣ ≤ Cb−1,
for t small enough, for some C > 0. Moreover, if h(y)y−1 is ultimately monotone this can be
strengthened to∣∣∣∣∣ 1

`(1/|t|)

∫ ∞−
|t|

sin y

y
`(y/|t|)h(y/|t|) dy −

∫ ∞−
0

sin y

y
h(y/|t|) dy

∣∣∣∣∣→ 0

as t→ 0. Thus the statement for the real part follows.
For the imaginary part in (25) we obtain as in (22)∣∣∣∣∫ ∞−

1

cos y

y
`(y/|t|)h(y/|t|) dy

∣∣∣∣ ≤ C`(1/|t|),
14



while ∫ 1

|t|

cos y

y
`(y/|t|)h(y/|t|) dy ∼

∫ 1/|t|

1

`(y)h(y)

y
dy =: Lh(1/|t|).

If h is nonzero then Lh(x)/`(x)→∞ as x→∞. To see this write

lim inf
x→∞

Lh(x)

`(x)
≥ lim inf

x→∞

∫ x

εx

`(u)

`(x)

h(u)

u
du ≥ inf h log ε−1,

as ε ↓ 0 the claim follows. Moreover, Lh is slowly varying. Indeed, for λ > 1 fixed

Lh(λx)− Lh(x) =

∫ λx

x

`(u)h(u)

u
du

∼ `(x)

∫ λx

x

h(u)

u
du ≤ `(x) log λ suph.

Since `(x)/Lh(x) → 0, we have Lh(λx)/Lh(x) → 1, that is, Lh is slowly varying. The same
argument shows that L is slowly varying too. (We note that in (2.6.34) in [11] it is wrongly
stated that Lh(x) ∼ `(x) log x.) The bound for the imaginary part follows from the inequality
Lh(x) ≤ CL(x). Finally, if k ≡ 0 then Lh ≡ L.

Strict positivity of the real part. The following argument works for any α ∈ (0, 2).
Let a0 > 0 be a small number, chosen later. Using that sin y > 2y/π for y ∈ (0, π/2) we have

<(1− ϕ(t)) =

∫ ∞
0

(1− cos tx)dF (x)

=

∫ ∞
0

2 sin2 tx

2
dF (x)

≥ 2

∫ π/t

a0/t

(
tx

π

)2

dF (x)

≥ 2

π2
a20
[
F (a0/t)− F (π/t)

]
≥ tα`(1/t)2a20

π2

[
h(a0/t)

aα0

`(a0/t)

`(1/t)
− h(π/t)

πα
`(π/t)

`(1/t)

]
.

Since ` is slowly varying `(λ/t)/`(1/t)→ 1 for any λ, therefore the expression in the bracket
is strictly positive for a0 > 0 small enough.

7.2 Local limit theorems

Before the proof of the LLTs we collect some important facts on the characteristic function
ϕ, which we use later.

Lemma 5. Let X be an integer valued random variable with span 1 such that (2) holds. Let
ϕ(t) = EeitX denote its characteristic function. Then there exist positive numbers ν1, ν2, ν3
such that
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(i) if α ∈ (0, 2) then |ϕ(t)| ≤ e−ν1|t|α`(1/|t|), for t ∈ [−π, π].

(ii) if α ∈ (0, 1) then |(1− ϕ(t))−1| ≤ ν2|t|−α`(1/t)−1, for t ∈ [−π, π];

(iii) if α ∈ (0, 1) then |ϕ(t+ h)− ϕ(t)| ≤ ν3|h|α`(1/|h|), for t ∈ R, h ∈ [−1, 1], and if α = 1
then |ϕ(t+ h)− ϕ(t)| ≤ ν3|h|L(1/|h|).

In the nonlattice case (i)–(iii) remain valid and (i)–(ii) can be extended to any compact
interval.

Proof Using that ϕ(t) = e< logϕ(t), and logϕ(t) ∼ ϕ(t) − 1 around zero, the first three
statements follows from Theorem 1 for |t| small. Possibly changing the constant, we can
extend the inequality to the desired interval.

The fourth inequality follows from (2) together with a classical argument; see, for in-
stance, [10, Proof of Lemma 3.3.2] or Lemma 5 in [9].
Proof of Theorem 2 Using the inversion formula (13) we have

P(Sn = k) =
1

2πAn

∫ Anπ

−Anπ
e−itk/Anϕ(t/An)n dt.

By the density inversion theorem the limiting density can be written as

gλ(x) =
1

2π

∫ ∞
−∞

e−itxψλ(t) dt. (26)

Thus
2π |An P(Sn = k)− gγn((k − Cn)/An)| ≤ I1 + I2 + I3 + I4,

where

I1 =

∫ K

−K

∣∣∣e−itCn/Anϕ(t/An)n − ψγn(t)
∣∣∣ dt

I2 =

∫
K≤|t|≤εAn

|ϕ(t/An)|n dt

I3 =

∫
εAn≤|t|≤πAn

|ϕ(t/An)|n dt

I4 =

∫
|t|>K

|ψγn(t)| dt,

(27)

where K > 0 is a large constant.
By Theorem 3.1 in [14] the merging relation (12) holds if and only if for any t ∈ R as

n→∞
Eeit(Sn−Cn)/An − EeitVγn = e−itCn/Anϕ(t/An)n − ψγn(t)→ 0. (28)

Moreover, since both ((Sn−Cn)/An)n and (Vγn)n are tight, the convergence in (28) is uniform
on any finite interval [−K,K]. Therefore I1 → 0 as n→∞ for any K > 0.
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To estimate I2 we use Lemma 5 (i) together with the Potter bounds. Using the inverse
relation (8) we have

n(t/An)α`(An/t) = ntα
`(An/t)

`(An)

`(An)

Aαn

∼ tα `(An/t)
`(An)

≥ 2−1tα
′
,

for any α′ ∈ (0, α), where the last inequality follows from the Potter bounds. Therefore, for
ε > 0 small enough

I2 ≤
∫ ∞
K

e−2
−1ν1 tα

′
dt,

which goes to 0 as K →∞.
Since X is lattice with span 1

|ϕ(t)| ≤ a < 1 for some a ∈ (0, 1) for |t| ∈ [ε, π]. (29)

Therefore I3 ≤ 2πAna
n, while ψγn(t) is uniformly integrable by (7) in [7], implying that

limK→∞ I4 = 0.
Proof of Theorem 3 We only sketch the proof, because the arguments needed to extend Stone’s
original proof to the semistable case are essentially contained in the proof of Theorem 2.

Changing variables and using (15) and (26), the difference

2π

∣∣∣∣An2h
P(Sn + Y ∈ (x− h, x+ h])− gγn((x− Cn)/An)

∣∣∣∣
can be bounded exactly as in (27), with TAn instead of πAn in I3. Now, I1, I2, and I4 can
be treated the same way as in the lattice case, while for I3 we use that by the nonlattice
condition sup|t|∈[ε,T ] |ϕ(t)| < 1 for any ε > 0 and T > 0. Thus as n→∞

sup
x∈R

2π

∣∣∣∣An2h
P(Sn + Y ∈ (x− h, x+ h])− gγn((x− Cn)/An)

∣∣∣∣→ 0. (30)

Using that Y concentrates at 0 as T →∞, one can get rid of the Y above as in [20]. For
completeness and later use, we include the argument here. Let h > 0 be fixed, and let δ > 0.
Putting h+ = (1 + δ)h we have by the independence of Y and Sn,

P(Sn ∈ (x− h, x+ h]) ≤ 1

P(|Y | ≤ δh)
P(Sn + Y ∈ (x− h+, x+ h+]). (31)

Thus

An
2h

P(Sn ∈ (x− h, x+ h])− gγn((x− Cn)/An)

≤
(
An
2h+

P(Sn + Y ∈ (x− h+, x+ h+])− gγn((x− Cn)/An)

)
+

An
2h+

P(Sn + Y ∈ (x− h+, x+ h+])

[
h+

hP(|Y | ≤ δh)
− 1

]
.
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By (30) the first summand tends to 0 as n→∞ for any δ and T . Using (30) again, and that
supλ>0,x∈R gλ(x) <∞,

sup
x∈R

An
2h+

P(Sn + Y ∈ (x− h+, x+ h+]) <∞.

Therefore, choosing first δ > 0 small then T large we obtain

lim sup
n→∞

sup
x∈R

An
2h

P(Sn ∈ (x− h, x+ h])− gγn((x− Cn)/An) ≤ 0. (32)

For the lower bound, putting h− = (1− δ)h, using also (32)

P(Sn + Y ∈ (x− h−, x+ h−]) =

∫
R
P(Sn + u ∈ (x− h−, x+ h−])j(u)du

≤ P(Sn ∈ (x− h, x+ h])P(|Y | ≤ δh) + 2 sup
λ>0,x∈R

gλ(x)
2h

An
P(|Y | > δh).

Therefore, with C = 4 supλ>0,x∈R gλ(x)

P(Sn ∈ (x− h, x+ h]) ≥ P(Sn + Y ∈ (x− h−, x+ h−])

P(|Y | ≤ δh)
− Ch P(|Y | > δh)

AnP(|Y | ≤ δh)
.

Thus

An
2h

P(Sn ∈ (x− h, x+ h])− gγn((x− Cn)/An)

≥ An
2h−

P(Sn + Y ∈ (x− h−, x+ h−])− gγn((x− Cn)/An)

+
An
2h−

P(Sn + Y ∈ (x− h−, x+ h−])

(
h−

hP(|Y | ≤ δh)
− 1

)
− CP(|Y | > δh)

P(|Y | ≤ δh)
.

Choosing again first δ > 0 small and then T > 0 large we obtain

lim inf
n→∞

inf
x∈R

An
2h

P(Sn ∈ (x− h, x+ h])− gγn((x− Cn)/An) ≥ 0,

completing the proof.
For later use, we note that the argument implies that for any ε > 0 there exists T > 0

such that for n large enough

sup
x∈R

An|P(Sn + Y ∈ (x− h, x+ h])− P(Sn ∈ (x− h, x+ h])| ≤ ε. (33)
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7.3 Strong renewal theorems

We need a continuity property of the densities gλ(x), in λ. Recall the definition of the
constant c > 0 in (4). In the following result the interval [c−2, c] could be replaced by any
compact interval of (0,∞). For our purpose anything larger than (c−1, 1] would suffice.

Lemma 6. There exists ν4 > 0 such that for any λ1, λ2 ∈ [c−2, c]

sup
x∈R
|gλ1(x)− gλ2(x)| ≤ ν4 |λ1 − λ2|.

Moreover,

sup
λ∈(c−1,1]

sup
x∈R

∂

∂x
gλ(x) <∞. (34)

Proof Introduce the notation ψλ(t) = EeitVλ = eyλ(t). By formula (2.6) in [12]

yλ(t) = λy1(t/λ
1/α)− itcλ, (35)

with

cλ = λ(α−1)/α
∫ 1/λ

1
[ψ2(s)− ψ1(s)] ds,

where ψ1(s) = inf{−x : ML(x)x−α > s}, ψ2(s) = inf{−x : MR(x)x−α > s}. For any λ > 0
the function eλy1(t), t ∈ R, is a characteristic function. Let G(x;λ) denote its distribution
function, i.e. eλy1(t) =

∫
R e

itxG(dx;λ). Csörgő [7] proved that these functions are infinitely
many times differentiable with respect to both variables. Let g(x;λ) be the density of G(x;λ).

Using the density inversion formula and (35) we obtain

gλ(x) =
1

2π

∫ ∞
−∞

e−itxeyλ(t)dt

= λ1/α
1

2π

∫ ∞
−∞

e−isλ
1/α(x+cλ)eλy1(s)ds

= λ1/αg
(
λ1/α(x+ cλ);λ

)
.

(36)

By Lemmas 1 and 2 in [7] for each j, k

sup
λ∈[c−2,c]

sup
x∈R

∣∣∣∣ ∂j+k

∂xj∂λk
G(x;λ)

∣∣∣∣ <∞, (37)

which implies that for some constant C > 0, for any λ1, λ2 ∈ [c−2, c]

|g(x;λ1)− g(x;λ2)| ≤ C|λ1 − λ2|.

Using (36)

gλ1(x)− gλ2(x) = λ
1/α
1

[
g
(
λ
1/α
1 (x+ cλ1), λ1

)
− g
(
λ
1/α
1 (x+ cλ1), λ2

)]
+ λ

1/α
1

[
g
(
λ
1/α
1 (x+ cλ1), λ2

)
− g
(
λ
1/α
2 (x+ cλ2), λ2

)]
+
(
λ
1/α
1 − λ1/α2

)
g
(
λ
1/α
2 (x+ cλ2);λ2

)
.
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Using (37) with j = k = 1, j = 2, k = 0, and j = 1, k = 0 respectively, and for the second
term using also that cλ is Lipschitz in λ ∈ [c−2, c], we obtain

|gλ1(x)− gλ2(x)| ≤ C|λ1 − λ2|,

as claimed. The uniform boundedness of the derivatives in (34) follows simply from (36) and
(37).
Proof of Theorem 4 We estimate un via (16). This is possible due to Theorem 1, which
ensures that <

∫ π
0 (1− ϕ(t))−1dt is well defined. Let L > 1 be a large fixed number. To ease

notation, we suppress the b·c notation. Write

πun = <
∫ π

0
(1− ϕ(t))−1 e−int dt

=

 ∑
k<B(n/L2)

+

B(nL)∑
k=B(n/L2)

+
∑

k>B(nL)

< ∫ π

0
ϕ(t)k e−int dt

=: I1 + I2 + I3.

First, by Lemma 2,

lim sup
n→∞

∣∣∣∣∣n1−α`(n)I2 − πα
∫ L2

L−1

gγ(B(n)x−α)(x)x−α dx

∣∣∣∣∣ ≤ π

L
. (38)

Next we handle I3. By Theorem 2 for k large enough

sup
n

P(Sk = n) ≤ C A−1k ,

with C = 1+supγ,x gγ(x). Therefore, using Karamata’s theorem, the inverse relation (8) and
Potter’s bounds we obtain for any ε > 0

I3 ≤ π
∑

k≥B(nL)

C A−1k

∼ Cπ α

1− α
B(nL)1−1/α`1(B(nL))−1

≤ Cnα−1`(n)−1Lα+ε−1

(39)

Note that the estimate works for α ∈ (0, 1), the assumption α > 1/2 is not needed at this
point.

It remains to estimate I1. We have

|I1| ≤

∣∣∣∣∣∣
∑

k<B(n/L2)

∫ L/n

0
ϕ(t)k e−int dt

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

k<B(n/L2)

∫ π

L/n
ϕ(t)k e−int dt

∣∣∣∣∣∣
=: |I11 |+ |I21 | =: |I11 |+

∣∣∣∣∣∣
∑

k<B(n/L2)

I2,k1

∣∣∣∣∣∣ .
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Clearly, |I11 | ≤ B(n/L2) · L/n and using Potter’s bounds, for any α′ < α for n large enough

|I11 | ≤ 2nα−1`(n)−1L−(2α
′−1). (40)

Next, similarly to [10, Section 3.5], note that

I2,k1 =
1

2

(∫ π

π−π/n
+

∫ (L+π)/n

L/n

)
ϕ(t)k e−int dt

+
1

2

∫ π

(L+π)/n

(
ϕ(t)k − ϕ(t− π/n)k

)
e−int dt

=: Jk1 + Jk2 . (41)

Since, |Jk1 | ≤ π/n, for any α′ < α for large n,∣∣∣∣∣∣
∑

k<B(n/L2)

Jk1

∣∣∣∣∣∣ ≤ B(n/L2)
π

n
≤ 2nα−1`(n)−1L−2α

′
. (42)

Using Lemma 5 (iii)∣∣∣ϕ(t)k − ϕ(t− π/n)k
∣∣∣ ≤ |ϕ(t)− ϕ(t− π/n)|

k−1∑
j=0

|ϕ(t)j | |ϕ(t− π/n)k−j−1|

≤ 2ν3π
α n−α`(n)k (|ϕ(t− π/n)k−1|+ |ϕ(t)k−1|).

Thus, ∣∣∣∣∣∣
∑

k<B(n/L2)

Jk2

∣∣∣∣∣∣ ≤ Cn−α`(n)

B(n/L2)∑
k=0

k

∫ π

L/n
|ϕ(t)|k dt. (43)

Recall that limk→∞
k`(Ak)
(Ak)α

= 1. Using Lemma 5 (i), change of variables y → tAk, and Potter’s
bound we obtain ∫ π

L/n
|ϕ(t)|k dt ≤

∫ π

L/n
e−ν1kt

α`(1/t) dt

≤ 1

Ak

∫ πAk

LAk/n
e−ν1y

α k A−αk `(Ak/y) dy

≤ 1

Ak

∫ πAk

LAk/n
e−

ν1
2
yα`(Ak/y)`(Ak)

−1
dy

≤ 1

Ak

∫ ∞
0

e−C(yα−δ+yα+δ) dy ≤ C

Ak
,

(44)

for any δ > 0 and some C > 0. Recall (8). Substituting the bound (44) into (43), using
Karamata’s theorem and that α > 1/2, we have∣∣∣∣∣∣

B(n/L2)∑
k=0

Jk2

∣∣∣∣∣∣ ≤ Cn−α`(n)

B(n/L2)∑
k=0

k

Ak
≤ Cn−α`(n)

B(n/L2)2−
1
α

`1(B(n/L2))

≤ Cn
α−1

`(n)
L2−4α′ ,

(45)
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with α′ ∈ (1/2, α).
It is worth to note that this is the only part in the proof where we use that α > 1/2.

Seemingly, in (40) we also use this fact, but in that argument we can enlarge the power of L
in B(n/L2) to work for smaller α.

Putting (42) and (45) together, recalling that α′ < α ∈ (1/2, 1)

|I21 | =

∣∣∣∣∣∣
∑

k<B(n/L2)

I2,k1

∣∣∣∣∣∣ ≤ Cnα−1`(n)−1L−2α
′
,

which combined with (40) implies that for any α′ < α

|I1| ≤ Cnα−1`(n)−1L1−2α′ . (46)

To finish the proof we have to show that∫ ∞
0

sup
λ∈(c−1,1]

gλ(y)y−α dy <∞. (47)

This follows from Theorem 1 by Bingham [4] (see also Lemma 2 in [15]). By (47) we have

lim
L→∞

(∫ L−1

0
+

∫ ∞
L2

)
gγ(B(n)x−α)(x)x−α dx = 0.

Letting L → ∞ we see that the latter limit together with (38), (39), and (46) imply the
statement.
Proof of Lemma 2 With the same notation as in Theorem 2, we write

1

π

B(nL)∑
k=B(n/L2)

<
∫ π

0
ϕ(t)k e−int dt =

B(nL)∑
k=B(n/L2)

P(Sk = n)

=

B(nL)∑
k=B(n/L2)

gγk(n/Ak)

Ak
+

B(nL)∑
k=B(n/L2)

1

Ak
[AkP(Sk = n)− gγk(n/Ak)].

By Theorem 2, recalling that Cn ≡ 0 in our case, for any ε > 0, for n large enough, for all
k ≥ B(n/L2) we have

|AkP(Sk = n)− gγk(n/Ak)| < ε.

Hence, using (7), Karamata’s theorem and Potter’s bound, for any α′ < α, similarly as in
(39)

B(nL)∑
k=B(n/L2)

1

Ak
|AkP(Sk = n)− gγk(n/Ak)| ≤

∞∑
k=B(n/L2)

ε

Ak

≤ 2αε

1− α
nα−1`(n)−1 L2−2α′ ,

(48)
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where in the last inequality we also used the inverse relation A(B(n)) ∼ n in (8). For n large
enough and L fixed, we can take ε so small that

B(nL)∑
k=B(n/L2)

1

Ak
|AkP(Sk = n)− gγk(n/Ak)| ≤ 2−1 nα−1`(n)−1L−1. (49)

Next, we write
∑B(nL)

k=B(n/L2)
A−1k gγk(n/Ak) as a Riemann sum proceeding as in [10, Lemma

2.2.1] (see also [5, Proof of Th. 8.6.6]). More precisely, set xk = k `(n)nα . By definition, Ak is

the asymptotic inverse of n→ nα

`(n) = k
xk

. Thus

L−2α−δ ≤ B(n/L2)
`(n)

nα
≤ xk ≤ B(nL)

`(n)

nα
≤ Lα+δ (50)

with δ > 0 arbitrarily small. Using the uniform convergence theorem and the inverse relation

B(An) ∼ A(B(n)) ∼ n (as in [5, Proof of Th. 8.6.6]), we have x
−1/α
k ∼ n

Ak
as k, n → ∞,

uniformly in the relevant range of k, n. By (50) this is equivalent to

lim
n→∞

sup
B(n/L2)≤k≤B(nL)

∣∣∣∣x−1/αk − n

Ak

∣∣∣∣ = 0. (51)

Since xk+1 − xk = `(n)
nα and k = B(n)xk

B(nL)∑
k=B(n/L2)

gγk(n/Ak)

Ak
=

nα

n`(n)

B(nL)∑
k=B(n/L2)

n

Ak
gγk(n/Ak)

`(n)

nα

∼ nα−1

`(n)

∑
L−2α<xk<Lα

x
−1/α
k gγ(xkB(n))(x

−1/α
k ) (xk+1 − xk) ,

where in the last line we have used that by (51) and by (34) we have as n→∞

sup
B(n/L2)≤k≤B(nL)

|gγ(xkB(n))(n/Ak))− gγ(xkB(n))(x
−1/α
k )| → 0.

To finish the proof it is enough to show that

fn(x) := x−1/αgγ(xB(n))(x
−1/α) (52)

is uniformly Lipschitz on [L−2α, Lα]. Indeed, for uniformly Lipschitz fn the convergence of
the Riemann sums follows, i.e.

B(nL)∑
k=B(n/L2)

x
− 1
α

k gγ(xkB(n))(x
− 1
α

k ) (xk+1 − xk)

∼
∫ Lα

L−2α

x−
1
α gγ(B(n)x)

(
x−

1
α
)
dx

= α

∫ L2

L−1

gγ(B(n)y−α)(y)y−αdy.
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This together with (49) implies the statement.

Therefore, it only remains to show that the sequence (fn) in (52) is uniformly Lipschitz
on any compact subset of (0,∞). Recall (10) and for x > 0 large set b(x) to be the unique
index for which kb(x)−1 < x ≤ kb(x). Then γx = x/kb(x). For some large M fix the interval

I = [c−M , cM ], and let h > 0 be small enough such that 1 + hcM ≤
√
c. Then B(n)(x +

h) = B(n)x(1 + h/x) ≤ B(n)x
√
c, which implies that b(B(n)(x + h)) is either b(B(n)x), or

b(B(n)x) + 1. Both cases can be handled similarly, we consider only the former. Then

γ(B(n)(x+ h)) =
B(n)(x+ h)

kb(B(n)x)
= γ(B(n)x) + h

B(n)

kb(B(n)x)
.

The factor of h is O(1) since
B(n)

kb(B(n)x)
= x−1

B(n)x

kb(B(n)x)
,

where x ∈ I and the second factor is less than, or equal to 1. Thus by Lemma 6 the result
follows.

Before proceeding to the proof of Theorem 5, we prove Lemma 3.
Proof of Lemma 3 Recall that h ∈ (0, 1/2) is fixed. Proceeding as in the proof of Lemma 2,
the conclusion follows once we show that as y →∞,

y1−α`(y)

B(yL)∑
k=B(y/L2)

(Ik,y − 2h)
gγk(y/Ak)

Ak
→ 0. (53)

Let Ra denote the irrational rotation with −a, i.e.

Ra : R/Z→ [0, 1), y 7→ y − a mod 1.

Note that
Ik,y = 1[0,h)∪(1−h,1) ◦Rka(y).

Let ε > 0 be arbitrary. Because of the unique ergodicity property of Ra (see, for instance, [17,
Section 5]), there exists N = Nε such that for any n ≥ N

sup
m,y

∣∣∣∣∣
∑m+n

k=m+1 Ik,y

n
− 2h

∣∣∣∣∣ = sup
m,y

∣∣∣∣ 1n |{1 ≤ j ≤ n : Rj+ma (y) ∈ [0, h] ∪ (1− h, 1)}| − 2h

∣∣∣∣ ≤ ε.
(54)

Divide the interval [B(y/L2), B(yL)] into blocks [kj , kj+1) of length N . Let

ny =

⌊
bB(yL)c − dB(y/L2)e

N

⌋
and define

kj = dB(y/L2)e+ jN, j = 0, 1, 2, . . . , ny − 1, kny = bB(yL)c+ 1. (55)
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Then each block [kj , kj+1) has length N , except the last one, which might be longer, but at
most of size 2N .

By Lemma 6,

lim
y→∞

sup
B(y/L2)≤k≤B(yL)

∣∣gγk+1
(y/Ak+1)− gγk(y/Ak)

∣∣ = 0. (56)

Thus, for arbitrarily small ε0 there exists y sufficiently large, such that for any j = 0, 1, . . .,
ny − 1

|gγk(y/Ak))− gγkj (y/Akj )| ≤ ε0 for every k ∈ {kj , . . . , kj+1}.

Next, using properties of slowly varying function, we have that for arbitrarily small ε1, there
exists y large enough, such that for any j = 0, 1, . . . , ny − 1

1

Akj
− 1

Ak
≤
(
ε1 +

N

αkj

)
1

Akj
for every k ∈ {kj , . . . , kj+1}.

As N is fixed and y → ∞, for any ε2 > 0 there exists y large enough such that N/kj ≤ ε2.
Therefore, with ε3 = ε0 + ε1 + ε2, for every k ∈ {kj , . . . , kj+1 − 1},∣∣∣∣∣gγk(y/Ak)

Ak
−
gγkj (y/Akj )

Akj

∣∣∣∣∣ ≤ ε3
Akj

. (57)

Now,

B(yL)∑
k=B(y/L2)

(Ik,y − 2h)
gγk(y/Ak)

Ak

=

ny−1∑
j=0

kj+1−1∑
k=kj

(Ik,y − 2h)
gγkj (y/Akj )

Akj
+

ny−1∑
j=0

kj+1−1∑
k=kj

2h

(
gγkj (y/Akj )

Akj
− gγk(y/Ak)

Ak

)
=: S1 + S2.

Using (54), (57), and that Akj ∼ Ak uniformly in k ∈ {kj , . . . , kj+1}, we have

|S1| ≤ ε
ny−1∑
j=0

(kj+1 − kj)
gγkj (y/Akj )

Akj

≤ ε
ny−1∑
j=0

kj+1−1∑
k=kj

gγk(y/Ak) + ε3
Ak

.

(58)

While for S2 by (57) we obtain

|S2| ≤
B(yL)∑

k=B(y/L2)

2h
ε3
Ak

. (59)
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Since ε and ε3 are as small as we want, (58) and (59) imply

lim
y→∞

∑B(yL)
k=B(y/L2)

(Ik,y − 2h)A−1k gγk(y/Ak)∑B(yL)
k=B(y/L2)

A−1k gγk(y/Ak)
= 0,

thus (53) follows.
The proof below goes by and large as the proof of Theorem 4. In the lattice case we

combine Theorem 4 with Lemma 3. In the nonlattice case, we use Theorem 3 and the inversion
formula (15) used in the proof of Theorem 3, along with the approximation equations (31)
and (33). At some extent, our strategy resembles the one in [9] (suitable for the usual
stable/regular variation setting), but we do not use it a such.
Proof of Theorem 5

Nonarithmetic, lattice case. We continue from (17) and split the sum into I1, I2, I3
exactly as in the proof of Theorem 4. The terms I1 and I3 are negligible, which follows
exactly as in the proof of Theorem 4. The asymptotic of the term I2, which gives the exact
term, follows from Lemma 3.

Nonlattice case. We start from

U(y + h)− U(y − h) =

∞∑
k=0

P(Sk ∈ (y − h, y + h])

=

 ∑
k<B(y/L2)

+

B(yL)∑
k=B(y/L2)

+
∑

k>B(yL)

P(Sk ∈ (y − h, y + h])

=: E1 + E2 + E3.

For E2 and E3, using (33), (48) (choosing ε small enough) and (15),

E2 + E3 =

 B(yL)∑
k=B(y/L2)

+
∑

k>B(yL)

P(Sk + Y ∈ (y − h, y + h]) +O

(
yα−1

`(y)L

)

=

 B(yL)∑
k=B(y/L2)

+
∑

k>B(yL)

 h

π

∫ T

−T

sin th

th
e−ityϕ(t)k

(
1− |t|

T

)
dt+O

(
yα−1

`(y)L

)
=: I2 + I3 +O

(
L−1yα−1`(y)−1

)
.

The terms I2 and I3 can be treated as their analogues in the proof of Theorem 4 just writing
x instead of n and T instead of π. We skip the details, and continue with E1.

Using (31) with h+ = (1 + δ)h, for δ > 0 and also (15),

E1 ≤
1

P(|Y | ≤ δh)

∑
k<B(y/L2)

P(Sk + Y ∈ (y − h+, y + h+])

=
h+

P(|Y | ≤ δh)π

∑
k<B(y/L2)

∫ T

−T

sin th+

th+
e−ityϕ(t)k

(
1− |t|

T

)
dt

=:
h+

P(|Y | ≤ δh)π
I1.
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To ease notation put

β(t) =
sin(th+)

th+

(
1− |t|

T

)
.

Then β is uniformly Lipschitz on [−T, T ], thus there is a constant C for which

|β(t)− β(t+ s)| ≤ C s for any t, t+ s ∈ [−T, T ]. (60)

Splitting I1 further as in the arithmetic case, let

I1 =
∑

k<B(y/L2)

∫ T

−T
β(t)ϕ(t)ke−ity dt

=
∑

k<B(y/L2)

(∫
|t|≤L/y

+

∫
|t|∈(L/y,T )

)
β(t)ϕ(t)ke−ity dt =: I11 + I21 .

As in (40) we obtain that for any α′ < α for x large enough

|I11 | ≤ 2yα−1`(y)−1L−(2α
′−1). (61)

To estimate I21 , as in the arithmetic case (see also the proof of (5.11) in [9]) write∫ T

L/y
β(t)ϕ(t)ke−ity dt =

1

2

(∫ T

T−π/y
+

∫ (L+π)/y

L/y

)
β(t)ϕ(t)ke−ity dt

+
1

2

∫ T−π/y

L/y
e−ity

[
β(t)ϕ(t)k − β(t+ π/y)ϕ(t+ π/y)k

]
dt.

Using (60) and Lemma 5 (iii), as in the arithmetic case we obtain that for any α′ < α for x
large enough

|I21 | ≤ Cyα−1`(y)−1L−2α
′
.

Combining with (61) we have

lim
L→∞

lim sup
y→∞

|I1|
y1−α

`(y)
= 0,

proving the statement.

7.4 Renewal function asymptotics

Proof of Theorem 7 We first assume that X is integer valued with span 1. Let L > 1 be a
fixed large number. Using (16)

P(Sk ≤ n) =
n∑
`=0

P(Sk = `)

=
1

2π

∫ π

−π

n∑
`=0

e−i`tϕ(t)k dt

=
1

2π

∫ π

−π

1− e−i(n+1)t

1− e−it
ϕ(t)k dt,
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thus

U(n) =

∞∑
k=0

P(Sk ≤ n) =
1

2π

∫ π

−π

1− e−i(n+1)t

1− e−it
1

1− ϕ(t)
dt.

First we show that the main contribution in U(n) comes from the integral on [(nL)−1, L/n].
Indeed, for |t| ≥ L/n, using Lemma 5 (ii)∣∣∣∣∣

∫
L
n
≤|t|≤π

1− e−i(n+1)t

1− e−it
1

1− ϕ(t)
dt

∣∣∣∣∣ ≤ C
∫ π

L/n

1

t
t−α`(1/t)−1dt

≤ C nα

`(n)
L−α,

(62)

while for |t| ≤ 1/(nL)∣∣∣∣∣
∫
|t|≤(nL)−1

1− e−i(n+1)t

1− e−it
1

1− ϕ(t)
dt

∣∣∣∣∣ ≤ C
∫ (nL)−1

0
nt−α`(1/t)−1dt

≤ C nα

`(n)
Lα−1.

(63)

Therefore we need to consider the integral on [(nL)−1, L/n]. Write

∫
1
Ln
≤|t|≤L

n

1− e−i(n+1)t

1− e−it

B(n/
√
L)∑

k=0

+

B(nL2)∑
k=B(n/

√
L)

+
∑

k>B(nL2)

ϕ(t)k dt

=: I1 + I2 + I3.

The arguments below are somewhat similar to the ones in the proof of Theorem 4, but
simplified. For the first term for n large enough

|I1| ≤ C
∫ L/n

1/(Ln)

1

t
B(n/

√
L)dt ≤ CB(n/

√
L) logL ≤ C nα

`(n)
L−α/2 logL,

while for the third using Lemma 5 (i) and (ii) and the uniform convergence theorem for slowly
varying functions we obtain for n large enough

|I3| ≤ C
∫ L

n

1
Ln

1

t
e−ν1t

α`(1/t)B(nL2)t−α`(1/t)−1dt

≤ C 1

`(n)

∫ L
n

1
Ln

t−α−1e−
ν1
2
(nL2t)αdt

≤ C 1

`(n)

∫ 1

1
Ln

t−α−1 dt e−
ν1
2
Lα

≤ C nα

`(n)
Lαe−

ν1
2
Lα .
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It remains to estimate I2. For B(n/
√
L) ≤ k ≤ B(nL2) uniformly in k as n→∞ we have∫

1
Ln
≤|t|≤L

n

1− e−i(n+1)t

1− e−it
ϕ(t)k dt ∼

∫
1
Ln
≤|t|≤L

n

1− e−i(n+1)t

it
ϕ(t)k dt =: Ik2 .

Changing variables and using the usual inversion formula for characteristic functions

Ik2 =

∫
Ak
Ln
≤|u|≤LAk

n

1− e−i
n+1
Ak

u

iu
ϕ(u/Ak)

k du

=

∫ ∞
−∞

1− e−i
n+1
Ak

u

iu
ψγk(u) du

−

(∫
|u|≤Ak

Ln

+

∫
|u|≥LAk

n

)
1− e−i

n+1
Ak

u

iu
ψγk(u)du

+

∫
Ak
Ln
≤|u|≤LAk

n

1− e−i
n+1
Ak

u

iu

(
ϕ(u/Ak)

k − ψγk(u)
)

du

= Gγk

(
n+ 1

Ak

)
− Jk1 − Jk2 + Jk3 .

Since Ak/n ranges from L−1/2 to L2, it can be shown as in (50) that for any fixed L the
interval [Ak/(Ln), LAk/n] for B(n/

√
L) ≤ k ≤ B(nL2) is bounded away both from 0 and

from ∞ uniformly in k. The merging relation implies that (28) holds, therefore

lim
n→∞

sup
B(n/

√
L)≤k≤B(nL2)

Jk3 = 0. (64)

Since Gγ has a density gγ , the characteristic function ψγ is integrable, and as n→∞

LA(B(n/
√
L))

n
∼
√
L,

which tends to ∞ as L→∞, we have that

lim
L→∞

lim sup
n→∞

sup
B(n/

√
L)≤k≤B(nL2)

Jk2 = 0. (65)

Finally, for Jk1 note that for L large∣∣∣1− e−in+1
Ak

u
∣∣∣ ≤ 2

n+ 1

Ak
|u|

whenever |u| ≤ Ak/(Ln). Thus

|Jk1 | ≤ 2
n+ 1

Ak

Ak
Ln
≤ 3

L
. (66)
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Putting together (64), (65), and (66), we obtain that for any ε > 0 we can choose L large
enough such that for n large enough

sup
B(n/

√
L)≤k≤B(nL2)

∣∣∣∣Ik2 −Gγk (n+ 1

Ak

)∣∣∣∣ ≤ ε. (67)

Finally, as in the proof of Lemma 2 we obtain that

B(nL2)∑
k=B(n/

√
L)

Gγk

(
n+ 1

Ak

)
∼ nα

`(n)

∫ L2α

L−α/2
Gγ(B(n)x)(x

−1/α) dx

=
nα

`(n)
α

∫ √L
L−2

Gγ(B(n)u−α)(u)u−α−1 du.

This completes the proof in the arithmetic case.

The nonarithmetic case is similar. The only difference in this case is the expression of the
inversion formula. As in (15) (with Y defined in (14)),

P(Sk + Y ≤ y) =
1

2π

∫ T

−T

1− e−iyt

it
ϕ(t)k(1− |t|/T ) dt

which gives

∞∑
k=0

P(Sk + Y ≤ y) =
1

2π

∫ T

−T

1− e−iyt

it

1

1− ϕ(t)
(1− |t|/T ) dt.

Proceeding as in the argument above in the integer valued case with y instead of n, T instead
of π and it instead of 1− e−it, we obtain the analogues of (62), (63), and (67). Putting these
together,

lim
y→∞

∣∣∣y−α`(y)

∞∑
k=0

P(Sk + Y ≤ y)− α
∫ ∞
0

Gγ(B(y)x−α)(x)x−α−1 dx
∣∣∣ = 0.

To complete, we need to get rid of Y in the above equation. This can be done using (33).
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[19] K.-i. Sato. Lévy processes and infinitely divisible distributions, volume 68 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.

[20] C. Stone. A local limit theorem for nonlattice multi-dimensional distributionfunctions.
Ann. Math. Statist., 36(2):546–551, 04 1965.

[21] K. Uchiyama. Estimates of potential functions of random walks on z with
zero mean and infinite variance and their applications. Available on arXiv:
https://arxiv.org/abs/1802.09832.

[22] K. Uchiyama. A renewal theorem for relatively stable variables. Bull. Lond. Math. Soc.,
2020. To appear.

32


	Introduction
	Characteristic function asymptotics
	Semistable laws
	Local limit theorems for semistable laws
	Strong renewal theorem in the semistable setting
	Renewal function in the semistable setting
	Proofs
	Proof of Theorem 1
	Local limit theorems
	Strong renewal theorems
	Renewal function asymptotics


