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Abstract

Denote Sn(p) = k−1n
∑kn
i=1 (log(Xn+1−i,n/Xn−kn,n))

p
, where p > 0, kn ≤ n is

a sequence of integers such that kn → ∞ and kn/n → 0, and X1,n ≤ . . . ≤
Xn,n are the order statistics of iid random variables X1, . . . , Xn with regularly
varying upper tail of index 1/γ. The estimator γ̂(n) = (Sn(p)/Γ(p + 1))1/p is
an extension of the Hill estimator. We investigate the asymptotic properties of
Sn(p) and γ̂(n) both for fixed p > 0 and for p = pn →∞. We prove consistency
for γ̂(n) and limit theorem for γ̂(n) − γ under appropriate assumptions. We
obtain both Gaussian and non-Gaussian (stable) limit depending on the growth
rate of the power sequence pn. Applied to real data we find that for larger p
the estimator is less sensitive to the change in kn than the Hill estimator.

Keywords: tail index, Hill estimator, residual estimator, regular variation,
power sum, stable distribution
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1. Introduction

Let X,X1, X2, . . . be independent identically distributed (iid) random vari-
ables with common distribution function F (x) = P(X ≤ x), x ∈ R. For
each n ≥ 1, let X1,n ≤ . . . ≤ Xn,n denote the order statistics of the sample
X1, . . . , Xn. Assume that

1− F (x) = x−1/γL(x),

where L is a slowly varying function at infinity and γ > 0. This is equivalent to
the condition

Q(1− s) = s−γ`(s), (1)

where Q(s) = inf{x : F (x) ≥ s}, s ∈ (0, 1), stands for the quantile function,
and ` is a slowly varying function at 0. For p > 0 introduce the notation

Sn(p) =
1

kn

kn∑
i=1

(
log

Xn+1−i,n

Xn−kn,n

)p
. (2)
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The main object of the present paper is the estimate

γ̂(n) =

(
Sn(p)

Γ(p+ 1)

) 1
p

(3)

of the tail index, where Γ is the usual gamma function. In what follows we
always assume that 1 ≤ kn ≤ n is a sequence of integers such that kn →∞ and
kn/n→ 0.

As a special case for p = 1 we obtain the well-known Hill estimator of the
tail index γ > 0 introduced by Hill in 1975 [21]. For p = 2 the estimator was
suggested by Dekkers et al. [15], where they proved that Sn(2)→ 2γ2 a.s. or in
probability, depending on the assumptions on kn, and they proved asymptotic
normality of the estimator as well. For general p > 0 the properties of the
estimator γ̂(n) in (3) were investigated by Gomes and Martins [19]. Under
second-order regular variation assumption they proved weak consistency and
asymptotic normality of the estimator γ̂(n). Segers [28] considered more general
estimators of the form

1

kn

kn∑
i=1

f

(
Xn+1−i,n

Xn−kn,n

)
, (4)

for a nice class of functions f , called residual estimators. Segers proved weak
consistency and asymptotic normality under general conditions. More recently,
Ciuperca and Mercadier [7] investigated weighted version of (2). The residual
estimator of Segers was further analyzed for special function classes. Paulauskas
and Vaičiulis [23] considered estimators of the form (4) with f(x) = xr(log x)p.
The classical Hill estimator can be considered as the logarithm of the geometric
mean of the variables Xn+1−i,n/Xn−k,n. Based on this interpretation, Brilhante
et al. [5] introduced the mean of order p tail index estimator, Beran et al. [2]
introduced the harmonic moment tail index estimator, while very recently Pe-
nalva et al. [24] introduced the Lehmer mean-of-order-p extreme value index
estimator. For a general overview on the generalizations of the Hill estimator
we refer to [24].

To the best of our knowledge the possibility p = pn → ∞ in (3) was not
considered before, which is the main focus of our paper. The estimate γ̂(n)
can be considered as pn → ∞ as the limit law for the norm of the extremal
sample. In this direction Schlather [27], Bogachev [4], and Janßen [22] proved
limit theorems for norms of iid samples.

In the present paper we investigate the asymptotic properties of Sn(pn) and
γ̂(n) both for p > 0 fixed and for p = pn →∞. Although the focus of the paper
is to obtain asymptotics for large p, in the course we obtain new results for p
fixed. In Section 2 in Theorem 2.1 we prove strong consistency of the estimator
for p fixed. Strong consistency was only obtained by Dekkers et al. [15] for
p = 1 and p = 2, thus our result is new for general p. Asymptotic normality
was obtained in several papers for different generalizations of the Hill estimator,
see e.g. Gomes and Martins [19], Segers [28], Paulauskas and Vaičiulis [23], and
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Penalva et al. [24] for more general estimators. In all these results second-
order regular variation is assumed. In Theorem 2.4 our assumptions on the
slowly varying function ` are weaker, therefore the asymptotic normality in
this generality is new. Our main results are contained in Section 3, where we
obtain weak consistency and asymptotic normality when p = pn → ∞. Under
appropriate assumptions on the power sequence pn we prove non-Gaussian stable
limit theorems. Section 4 contains a small simulation study and data analysis.
Here we show that for larger values of p the estimator is not so sensitive to the
choice of kn, which is a critical property in applications. The use of larger p
values was already suggested in [19] for p > 0 fixed. We illustrate this property
on the well-known dataset of Danish fire insurance claims, see Resnick [26] and
Embrechts et al. [17, Example 6.2.9]. Some auxiliary results and the proofs
for fixed p are contained in Section 5. In Section 6 we analyze the asymptotic
behavior of the power sums. These results are extensions of Bogachev’s results
in [4], and are needed to prove the limit properties of γ̂(n) as pn →∞. Finally,
the proofs of the large p asymptotics are in Section 7.

2. Results for fixed p

In what follows, U,U1, U2, . . . are iid uniform(0, 1) random variables, and
U1,n ≤ U2,n ≤ . . . ≤ Un,n stand for the corresponding order statistics. To ease
notation we frequently suppress the dependence on n and simply write k = kn.
Define X = Q(1 − U), Xi = Q(1 − Ui) for i = 1, 2, . . .. According to the well-
known quantile representation, X,X1, X2, . . . is an iid sequence with common
distribution function F , which implies that Sn in (2) can be written as

Sn(p) =
1

k

k∑
i=1

(
log

Q(1− Ui,n)

Q(1− Uk+1,n)

)p
for each n ≥ 1, a.s. (5)

First we show strong consistency for Sn(p). Our assumption on the sequence kn
is the same as in Theorem 2.1 in [15]. This is not far from the optimal condition
kn/ log log n → ∞, which was obtained by Deheuvels et al. [14] for p = 1. In
what follows any nonspecified limit is meant as n→∞.

Theorem 2.1. Assume that (1) holds and kn/n→ 0, (log n)δ/kn → 0 for some
δ > 0. Then Sn(p)→ γpΓ(p+ 1) a.s., that is for p > 0 fixed the estimator γ̂(n)
is strongly consistent.

Weak consistency holds under weaker assumptions on kn. The following re-
sult is a special case of Theorem 2.1 in [28], and it follows from the representation
(5) and from the law of large numbers.

Theorem 2.2. Assume that (1) holds, and the sequence (kn) is such that kn →
∞, kn/n→ 0. Then Sn(p)

P−→ γpΓ(p+ 1), that is for p > 0 fixed the estimator
γ̂(n) is weakly consistent.
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To prove asymptotic normality we use representation (5) where the sum-
mands are independent and identically distributed conditioned on Uk+1,n. In-
deed, conditioned on Uk+1,n

(U1,n, . . . , Uk,n)
D
=
(
Ũ1,kUk+1,n, . . . , Ũk,kUk+1,n

)
, (6)

where Ũ1, Ũ2, . . . are iid uniform(0, 1) random variables, independent of Uk+1,n,

and Ũ1,k < . . . < Ũk,k stands for the order statistics of Ũ1, . . ., Ũk.
To state the result, we need some notation. Introduce the variable for v ∈

(0, 1)

Y (v) = log
Q(1− Uv)

Q(1− v)
, (7)

where U is uniform(0, 1), and Y (0) = −γ logU . Note that Y (v) is ‘continuous’
in v at 0, that is Y (0) = limv↓0 Y (v), since for the slowly varying function ` in
(1) we have limv↓0 `(vU)/`(v) = 1 a.s. Define

mp,γ(v) = mp(v) = E [(Y (v))p] , σ2
p,γ(v) = σ2

p(v) = Var [(Y (v))p] , (8)

and the corresponding limiting quantities

mp = mp,γ = E [(−γ logU)p] = γpΓ(p+ 1),

σ2
p = σ2

p,γ = Var[(−γ logU)p] = γ2p
(
Γ(2p+ 1)− Γ2(p+ 1)

)
.

(9)

Note that these quantities depend on the parameter γ. However, since the value
γ > 0 is fixed, to ease notation we suppress γ.

A central limit theorem with random centering was obtained in Theorem 4.1
in [28]. Next, we spell out this result in our case. In the special case p = 1 we
obtain Theorem 1.6 by Csörgő and Mason [9]. The key observation in the proof
is representation (6). Recall the definition of the centering sequence from (8).

Theorem 2.3. Assume that (1) holds, and kn →∞, kn/n→ 0. Then√
kn (Sn(p)−mp(Uk+1,n))

D−→ N(0, σ2
p).

To obtain asymptotic normality for the estimator, that is, to change the
random centering mp(Uk+1,n) to mp, we have to show that√

kn(mp(Uk+1,n)−mp)
P−→ 0.

Since Uk+1,nn/k → 1 in probability, this is the same as the deterministic con-
vergence √

kn(mp(k/n)−mp)→ 0;

see the proof of Theorem 2.4 for the precise version. In the case of the Hill
estimator (p = 1) Csörgő and Viharos [10] obtained optimal conditions under
which the random centering mp(Uk+1,n) in Theorem 2.3 can be replaced by the
deterministic one, mp(k/n). For the general residual estimator this was obtained
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in Theorem 4.2 in [28]. In Theorem 4.5 in [28] assuming that the slowly varying
function ` belongs to the de Haan class Π, conditions were obtained which ensure
that the random centering can be replaced by the limit mp. Our assumptions
are weaker, but some second-order conditions are necessary.

Assume that there exist a regularly varying function a and a Borel set B ⊂
[0, 1] of positive measure such that

lim
v↓0

a(v)

`(v)
= 0, lim sup

v↓0

|`(uv)− `(v)|
a(v)

<∞ for u ∈ B. (10)

By Theorem 3.1.4 in Bingham et al. [3] condition (10) implies that the limsup
in (10) is finite uniformly on any compact subset of (0, 1]. However, in general,
uniformity cannot be extended to [0, 1].

We emphasize that we do not need exact second-order asymptotics for `,
only bounds. In particular, if ` belongs to the de Haan class Π (defined at 0)
then the condition (10) holds; see Appendix B in de Haan and Ferreira [12], or
Chapter 3 in Bingham et al. [3]. Therefore, even in the special case p = 1, that
is, for the Hill estimator, our next result is a generalization of Theorem 3.1 in
[15]. The asymptotic normality of various generalizations of the Hill estimator
are obtained under second-order regular variation for `, see Theorem 4.5 in [28],
formula (2.7) in [19], or Theorem 2 in [23]. Our conditions in the next result
are weaker.

Theorem 2.4. Assume that (10) holds for `, and kn is such that kn → ∞,
kn/n→ 0, and √

kn
a(kn/n)

`(kn/n)
→ 0. (11)

Then, with σ2
p = γ2p(Γ(2p+ 1)− Γ2(p+ 1)),

√
kn
σp

(Sn(p)− γpΓ(p+ 1))
D−→ N(0, 1),

and
p
√
kn
γ

(
Γ(2p+ 1)

Γ2(p+ 1)
− 1

)−1/2
(γ̂(n)− γ)

D−→ N(0, 1).

The asymptotic variance of γ̂(n) is the same as obtained in (2.7) in [19].
We point out that the growth condition (11) of the subsequence is the same

as in Theorem 4.5 in [29] and in the special case p = 1 in de Haan [11]. Assuming
second-order regular variation, the asymptotic normality of the estimator was
proved under the less restrictive condition√

kn
a(kn/n)

`(kn/n)
→ λ, λ ∈ R,

by de Haan and Peng [13, Theorem 1] (see also [17, Theorem 6.4.9]) for the Hill
estimator, and in [19] for general p. For more general estimators the asymptotic
normality was proved under the condition above, see Theorem 2 in [23], Theorem
2 in [2], Theorem 2 in [5].
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3. Asymptotics for large p

Conditioned on Uk+1,n the sum knSn(pn) in (5) is the sum of kn iid ran-
dom variables distributed as Y (Uk+1,n). This allows us to use the appropriate
uniform version of the results in [4] for power sums. These results are spelled
out and proved in Section 6. As a consequence, we obtain limit theorems with
random centering and norming for Sn(pn). In order to change to deterministic
centering a precise analysis is needed.

First we need some notation. Let

fv(x) = xγ`(v/x), v ∈ (0, 1], f0(x) = xγ , x > 1.

Note that Y (v) is defined for v ∈ [0, 1), while fv is defined for v ∈ [0, 1]. Then fv
is a left-continuous, nondecreasing, regularly varying function at infinity with
index γ. Its inverse

gv(y) = inf{x : fv(x) > y} = vg1(y/vγ), v ∈ (0, 1], g0(y) = y1/γ ,

is regularly varying with index 1/γ, see Theorem 1.5.12 in [3]. Write f = f1
and g = g1. Then, g(x) = x1/γ ˜̀(x), for a slowly varying function ˜̀ such that

`(1/x)1/γ ˜̀(xγ`(1/x)) ∼ 1 as x→∞. (12)

The latter follows from the fact f(g(x)) ∼ g(f(x)) ∼ x. In fact, ˜̀(x)γ is the de
Bruijn conjugate of `(1/x1/γ), see [3, Section 1.7].

Using that fv(x) > y if and only if x > gv(y), for v ∈ (0, 1] fixed the tail of
Y (v) is

P(Y (v) > x) = P
(

logU−γ
`(Uv)

`(v)
> x

)
= P(U−γ`(Uv) > `(v)ex)

= P(U−1 > gv(`(v)ex))

= e−x/γ
[
`(v)1/γ ˜̀(v−γ`(v)ex)

]−1
,

and for v = 0 we have P(Y (0) > x) = e−x/γ . Thus, we obtain that the log-tail
distribution function

hv(x) := − logP(Y (v) > x) =

{
x
γ + log

(
`(v)

1
γ ˜̀(v−γ`(v)ex)

)
, v ∈ (0, 1],

x
γ , v = 0.

(13)
For any fixed v ∈ [0, 1] we have that hv(x) ∼ x/γ. In particular, it is regularly
varying with index 1. Following [4], for ζ > 0 let us define ηv as the unique
solution to

hv(ηv(x)) = ζx. (14)
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3.1. Weak laws and Gaussian limit

It is pointed out in [4] that the proper rate of the power sequence pn is log kn.
Let us define the parameter ζ as

ζ = lim inf
n→∞

log kn
pn

. (15)

For ζ ≤ 2 we need a precise assumption on the power sequence, and we assume
that

kn ∼ eζpn . (16)

Note that we have different definitions for ζ depending on its range. In the
results below we always state which of the two conditions we assume.

For the truncated moments for v ∈ [0, 1) put

m1
p(v) = E[(Y (v))pI(Y (v) ≤ ηv(p))]

σ1
p(v) =

(
E
[
(Y (v))2pI(Y (v) ≤ ηv(p))

])1/2
,

where I stands for the indicator function. Recall (8) and define the centering
and norming functions for v ∈ [0, 1)

m̃p(v) =


0, ζ ∈ (0, 1),

m1
p(v), ζ = 1,

mp(v), ζ > 1,

σ̃p(v) =

{
σp(v), ζ > 2,

σ1
p(v), ζ = 2.

(17)

To ease notation put m1
p = m1

p(0), σ1
p = σ1

p(0), m̃p = m̃p(0), and σ̃p = σ̃p(0).
Weak consistency holds for ζ ≥ 1, while asymptotic normality holds for

ζ ≥ 2. Note that in the borderline cases ζ = 1, 2 the norming is different, and
the condition on the subsequence pn is stronger.

Theorem 3.1. Assume that kn → ∞, kn/n → 0, and pn → ∞. If ζ > 1 in
(15) or ζ = 1 in (16) then

(m̃pn(Ukn+1,n))
−1

Sn(pn)
P−→ 1. (18)

In both cases γ̂(n) is weakly consistent. Furthermore, if ζ > 2 in (15) or ζ = 2
in (16) then

√
kn

σ̃pn(Uk+1,n)
(Sn(pn)− m̃pn(Uk+1,n))

D−→ N(0, 1), (19)

and √
knm̃pn(Uk+1,n)

σ̃pn(Uk+1,n)
pn

[(
Sn(pn)

m̃pn(Uk+1,n)

)1/pn

− 1

]
D−→ N(0, 1). (20)
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Note that both the centering and the norming are random. To change to
deterministic values m̃pn and σ̃pn further assumptions are needed. We always
assume that for the slowly varying function (10) holds. For sequences, kn →∞,
kn/n→ 0, and pn →∞ introduce the notation

β2 = lim sup
n→∞

−p−1n log
a(kn/n)

`(kn/n)
≥ lim inf

n→∞
−p−1n log

a(kn/n)

`(kn/n)
= β1, (21)

allowing β1 =∞, and let

β =


β1, if β1 ≥ 1,

β2, if 0 < β1 ≤ β2 ≤ 1

1, otherwise.

(22)

Put a ∨ b = max{a, b}, a ∧ b = min{a, b}. Introduce the notation

H(u) = u− 1− log u, u > 0, (23)

and for x ∈ (0,∞]
νx = x−1H(2 ∨ 2x), ν∞ = 2.

Then ν is decreasing on (0, 1], and increasing on [1,∞).

Theorem 3.2. Assume that for the slowly varying function ` (10) holds and
β1 > 0. If ζ > 1 in (15) or ζ = 1 in (16) then

(m̃pn)
−1
Sn(pn)

P−→ 1. (24)

If ζ > 2 in (15) or ζ = 2 in (16) then assume additionally that for some ε > 0

lim sup
n→∞

p−1n log

(√
kn

(
a(kn/n)

`(kn/n)

)(νβ−ε)∧1
)
< log 2.

Then √
kn
σ̃pn

(Sn(pn)− m̃pn)
D−→ N(0, 1), (25)

and √
knm̃pn

γσ̃pn
pn (γ̂(n)− γ)

D−→ N(0, 1). (26)

If ζ > 2 then m̃p = mp and σ̃p = σp, where the latter quantities are defined in
(9). A simple application of the Stirling formula gives that mp/σp ∼ 2−p(pπ)1/4

as p→∞.
Under stronger assumptions on the slowly varying function ` it is possible

to weaken the conditions on kn and pn. A stronger condition on ` is that the
limsup in (10) is finite uniformly in u ∈ (0, 1], that is there exists a regularly
varying function a such that

lim
v↓0

a(v)

`(v)
= 0, lim sup

v↓0
sup

u∈(0,1]

|`(uv)− `(v)|
a(v)

=: K1 <∞. (27)
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Theorem 3.3. Assume that for the slowly varying function ` (27) hold. Fur-
thermore, kn →∞, kn/n→ 0, and pn →∞ such that

pn
a(kn/n)

`(kn/n)
→ 0.

If ζ > 1 in (15) or ζ = 1 in (16) then (24) holds. If ζ > 2 in (15) or ζ = 2 in
(16), and

lim sup
n→∞

p−1n log

(√
kn
a(kn/n)

`(kn/n)

)
< log 2

then (25) and (26) hold.

3.2. Non-Gaussian stable limits

Next, we explore the regime ζ < 2. Here we need the precise asymptotic
assumption (16) on the power sequence pn. We obtain non-Gaussian limits,
where the characteristic exponent of the stable law equals ζ, coming from the
growth rate of the power sequence pn. Therefore, in what follows we use the
notation ζ = α.

Let Zα denote a one-sided α-stable random variable with characteristic func-
tion

EeitZα =

{
exp

{
−Γ(1− α)|t|αe−iπα2 sgn(t)

}
,

exp
{
it(1− a)− π

2 |t|
(
1 + isgn(t) 2

π log |t|
)}
,

where a = 0.577 . . . stands for the Euler–Mascheroni constant.

Theorem 3.4. Assume that kn → ∞, kn/n → 0, and pn → ∞ such that (16)
holds for some ζ = α ∈ (0, 2). Then

kn
ηUkn+1,n

(pn)pn
(Sn(pn)− m̃pn(Uk+1,n))

D−→ Zα.

Moreover, for ζ = α ∈ (0, 1)

pn

(
[knSn(pn)]1/pn

ηUkn+1,n
(pn)

− 1

)
D−→ logZα, (28)

in particular,

γ̂(n)
P−→ γ αe1−α. (29)

While for α ∈ [1, 2)

pn
knm̃pn(Ukn+1,n)

ηUkn+1,n
(pn)pn

[(
Sn(pn)

m̃pn(Ukn+1,n)

)1/pn

− 1

]
D−→ Zα. (30)

In order to use deterministic norming and centering we need further assump-
tions on the slowly varying function. Note that by (14) with ζ = α we obtain
η0(x) = αγx. Recall (21) and (22).
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Theorem 3.5. Assume (16) and that (10) holds. Furthermore, kn → ∞,
kn/n→ 0, and ˜̀(nγ`(k/n)) ∼ ˜̀((n/k)γ`(k/n)) (31)

and for α ∈ [1, 2) assume that

νββ1 > α− 1− logα = H(α). (32)

Then for α ∈ (0, 2)

kn
(αγpn)pn

(Sn(pn)− m̃pn)
D−→ Zα. (33)

For the estimator γ̂(n) if α ∈ (0, 1)

eα−1

αγ
pn

[
γ̂(n)

(
1 +

log pn
2pn

)
− γαe1−α

]
D−→ logZα −

log 2π

2
. (34)

while for α ∈ (1, 2)
√

2π

γ
epn(α−1−logα)p3/2n [γ̂(n)− γ]

D−→ Zα, (35)

and for α = 1 √
2π

2γ
p3/2n

[
γ̂(n)

(
1 +

log 2

pn

)
− γ
]
D−→ Z1. (36)

Condition (31) is rather implicit, since already ˜̀ is implicit. However, from
the proof it will be clear that this is exactly what is needed. In some natural
special cases it can be checked. For example, (27) implies (31). Under some

general growth conditions the de Bruijn conjugate, and so ˜̀ can be determined
explicitly, see [3, Corollary 2.3.4].

If β = β1 then νββ1 = H(2 ∨ 2β) ≥ H(2) > H(α), that is condition (32) is
automatic.

Under stronger assumptions on ` the result can be simplified.

Theorem 3.6. Assume (16) and that (27) holds. Furthermore, kn → ∞,
kn/n→ 0, and for α ∈ [1, 2) assume that β1 > H(α). Then (33), and depending
on the value α, (34), (35), or (36) hold.

3.3. Examples

We spell out our results in three special cases. First, we consider the exact
Pareto model, when ` ≡ 1. Next, we consider the Hall model, when (27) holds.
Finally, we consider the nonconstant slowly varying function `(s) = − log s.

Example 1. The simplest special case is the strict Pareto model, when in (1)
` ≡ 1. Then mp(v) ≡ mp = γpΓ(p+ 1), thus the centering and norming do not
depend on v. Furthermore, there is no other restriction on the sequence, only
kn → ∞. In fact, kn = n is possible. Assume that eζpn ∼ kn. Then, a direct
consequence of Proposition 10.4 in [4] is that depending on the value ζ, (26),
(34), (35), or (36) hold.
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Example 2. Assume that the slowly varying function ` in (1) has the form

`(u) = c+O(uδ) with c > 0, δ > 0.

The asymptotic normality of the Hill estimator was proved for this subclass by
Hall [20]. Condition (27) is satisfied with a(u) = uδ. By Proposition 5.5, for
some C > 0

|mpn(u)−mpn | ≤ CΓ(pn + 1)γpnuδ.

Let pn = ζ−1 log kn. For ζ ≥ 2 assume

lim sup
n→∞

1

pn
log

k
1/2+δ
n

nδ
< log 2, (37)

and for ζ ∈ [1, 2) assume

lim inf
n→∞

− 1

pn
log

kδn
nδ

> H(ζ). (38)

Then depending on the value ζ, (26), (34), (35), or (36) hold. It is easy to see
that both (37) and (38) are satisfied if log kn = o(log n).

Example 3. Finally, let `(s) = − log s. Assume that kn = (log n)d for some d >
0, and pn = ζ−1 log kn. Then simple calculation shows that β = β1 = β2 = ζ

d .

Furthermore ˜̀(x) = (γ/ log x)
1/γ

, and condition (31) holds.
If ζ ≥ 2 assume ζ/2 −H(2 ∨ (2ζ/d))/ζ < log 2. If ζ ∈ [1, 2) then condition

(32) always holds. Then depending on the value ζ, (26), (34), (35), or (36) hold.

4. Simulation study

The purpose of this small simulation study is to show that understanding
the behavior of γ̂(n) for large values of p is not only a mathematical challenge.
The use of larger p values is beneficial in practical situations, which was already
pointed out by Gomes and Martins [19]. However, we do not intend to provide
neither a theoretical nor a practical comparison of the various tail index esti-
mators. For a comprehensive simulation study, as well as for a practical criteria
for the choice of k and p, we refer to [19].

Note that for p = 1 we obtain the usual Hill estimator. In Theorem 5.1 Segers
[28] proved the optimality of the Hill estimator among residual estimators. We
also see from (26) that the asymptotic variance increases with p. However, in
practical situation higher p values turns out to be useful.

In the simulations below n = 1000 and we repeated the simulations 5000
times. In all the figures the mean and mean squared error (MSE) are plotted as
a function of k in the range [5, 200]. For k ≥ 200 the estimators do not change
much, and we have to estimate from a negligible portion, that is kn/n→ 0. In
Figures 1–3 we plotted the mean and MSE for 3 quantile functions with γ = 1
and 2 in each case, and for p = 1 (solid), 5 (dashed), and 10 (dotted).

11



Figure 1: Mean (left) and MSE (right) for Q(1 − s) = s−γ with γ = 1 (top), 2 (bottom).

In Figure 1 we see that the Hill estimator is the best in the strict Pareto
model. In this case Q(1− s) = s−γ . For p = 10 we also see that the estimator
is not consistent, as ζ = (log k)/10 � 1. In fact we see the graph γ · ζe1−ζ =
γk−1/10 log k e/10. Note that e5 ≈ 150, so loosely speaking the estimator for
p = 5 is weakly consistent only for k ≥ 150, while e10 ≈ 22, 000, so asymptotic
normality starts to hold for k ≥ 22, 000. Therefore, for k ≤ 200 smaller p values
should be used. We chose larger values to illustrate better the difference. We
also note that for large data sets we may use larger p values.

In practice it is very unusual to encounter data which fit to a nice distribu-
tion everywhere. It is more common that the large values fit to a Pareto-type
distribution, while the smaller values behave as a light-tailed distribution, see
e.g. [17, p.351] or Clauset et al. [8, p.662]. Consider the quantile function

Q(1− s) =

{
s−γ , if s ≤ 0.1,
10γ

log 10 log s−1, if s ≥ 0.1,
(39)

which is a mixture of an exponential and a strict Pareto quantile. The parameter
of the exponential is chosen such that Q is continuous. Figure 2 contain the
simulation results for γ = 1 and γ = 2. In this simple model we already see the
advantage of larger p values. Note that the Hill estimator is very sensitive to
the change of kn for those values where the quantile function changes. Indeed,
for kn ≤ 100 we basically have a sample from a strict Pareto distribution, and

12



Figure 2: Mean and MSE with quantile function (39) with γ = 1 (top), 2 (bottom).

for those values the Hill estimator is the best. For kn = 200 we already see the
exponential part of the sample, and the Hill estimator changes drastically (for
γ = 1 from 0.98 to 0.76), while for p = 5 the change is not as large (from 0.92
to 0.88).

Next, we further add a nonconstant slowly varying function to the quantile.
A logarithmic factor in the tail of the random variable cannot be detected in
practice, but it makes significantly more difficult to determine the underlying
index of regular variation, see e.g. the ‘Hill horror plot’ on [17, p.194]. We
modify the construction in (39) and consider the quantile function

Q(1− s) =

{
s−γ(log s−1)3, if s ≤ 0.1,

10γ(log 10)2 log s−1, if s ≥ 0.1.
(40)

Note again that the function is continuous. We see from the simulation results
in Figure 3 that in this setup the estimators with larger p values work much
better than the Hill estimator. These estimators are not so sensitive for the
change in the nature of the quantile function. We also see that heavier tails are
in favor of larger p values.

It was pointed out in [19] that in various models under second-order regular
variation for a wide range of p values (usually p ∈ (1, 5]) the estimator γ̂(n) with
p fixed is more efficient than the Hill estimator. The variance of the estimator

13



Figure 3: Mean and MSE with quantile function (40) with γ = 1 (top), 2 (bottom).

has a unique minimum at p = 1 (the Hill estimator), but the bias decreases in
p, which is the decisive factor in some models, see Figures 3 and 4 in [19].

We also apply the estimator with different p values to real data. We chose
the data set of Danish fire insurance losses, which consists of 2167 fire losses
in millions of Danish Kroner. The data set is included in the R package evir,
and was analyzed in [26] and in [17, Example 6.2.9]. In Figure 4 we plotted the
estimate for 1/γ, i.e. we plotted 1/γ̂(n) against kn, to obtain the Hill plot in
[26] for p = 1. Resnick [26] used various techniques to obtain smoother plot. In
our setting larger p values naturally produces smoother plots.

5. Proofs and auxiliary results

5.1. Strong consistency

Lemma 5.1. Assume that kn/(log n)δ → ∞ for some δ > 0, and kn/n → 0.
Then

1

kn

kn∑
i=1

(
− log

Ui,n
Ukn+1,n

)p
−→ Γ(p+ 1) a.s.

Proof. Let Fn denote the empirical distribution function of the sample U1, . . .,

14



Figure 4: Hill type plots of γ̂(n)−1 for the Danish fire insurance claim with different p values.

Un. Then, integrating by parts, we have

1

k

k∑
i=1

(
− log

Ui,n
Uk+1,n

)p
=
n

k

∫
(0,Uk,n]

(
− log

u

Uk+1,n

)p
dFn(u)

=
n

k

[
Fn(Uk,n)

(
− log

Uk,n
Uk+1,n

)p
+

∫ Uk,n

0

Fn(u)
p

u

(
− log

u

Uk+1,n

)p−1
du

]

=

(
− log

Uk,n
Uk+1,n

)p
+ p

n

k

∫ Uk,n/Uk+1,n

0

Fn(Uk+1,ns)(− log s)p−1
1

s
ds.

(41)

Theorem 1 by Wellner [30] implies that

n

k
Uk,n → 1 a.s. whenever kn/ log log n→∞. (42)

Thus, the first term on the right-hand side of (41) tends to 0 a.s. For the second
term

n

k

∫ Uk,n/Uk+1,n

0

Fn(Uk+1,ns)(− log s)p−1s−1ds

=
n

k
Uk+1,n

∫ Uk,n/Uk+1,n

0

(− log s)p−1ds

+
n

k

∫ Uk,n/Uk+1,n

0

(Fn(Uk+1,ns)− Uk+1,ns)(− log s)p−1s−1ds

=: In + IIn.

Again by (42)

In →
∫ 1

0

(− log s)p−1ds = Γ(p) a.s. (43)
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For the second term, choosing ν ∈ (0, 1/2), we have

IIn ∼
∫ 1

0

Fn(Uk+1,ns)− Uk+1,ns

Uk+1,ns
(− log s)p−1ds

=

∫ 1

0

Fn(Uk+1,ns)− Uk+1,ns

(Uk+1,ns)1/2−ν
(− log s)p−1(Uk+1,ns)

−1/2−νds

≤ sup
u≤Uk+1,n

|Fn(u)− u|
u1/2−ν

U
−1/2−ν
k+1,n

∫ 1

0

(− log s)p−1s−1/2−νds

≤ C
(

log log n

k

)1/2
[(n

k

)ν ( n

log log n

)1/2

sup
u≤2k/n

|Fn(u)− u|
u1/2−ν

]
,

(44)

where C > 0 is a finite constant, not depending on n, kn. Using Theorem 1(ii)
by Einmahl and Mason [16] we see that the last term in (44) is a.s. bounded, if
kn ≥ (log n)(1−2ν)/(2ν), which holds if ν is close enough to 1/2. The first term
in (44) tends to 0. From (43), (44), and (41) the statement follows.

Proof of Theorem 2.1. By the Potter bounds ([3, Theorem 1.5.6]), for any A >
1, ε > 0 there exist x0 = x0(A, ε) such that

A−1(y/x)−ε ≤ `(x)

`(y)
≤ A(y/x)ε for any 0 < x ≤ y ≤ x0. (45)

Since k/n → 0, equation (42) implies Uk+1,n → 0 a.s. Therefore, for n large
enough a.s.

Sn(p) ≤ 1

k

k∑
i=1

(
−(γ + ε) log

Ui,n
Uk+1,n

+ logA

)p
. (46)

First let p ≤ 1. Using the subadditivity (a + b)p ≤ ap + bp, a, b > 0, by
Lemma 5.1 we obtain a.s.

lim sup
n→∞

Sn(p) ≤ (γ + ε)p lim sup
n→∞

1

k

k∑
i=1

(
− log

Ui,n
Uk+1,n

)p
+ (logA)p

= (γ + ε)pΓ(p+ 1) + (logA)p.

Letting A ↓ 1 and ε ↓ 0 we have a.s. lim supn→∞ Sn(p) ≤ γpΓ(p+ 1).
Next, let p > 1. The convexity of the function xp implies that for any ε′ > 0,

for a, b > 0

(a+ b)p ≤ (1 + ε′)ap +
(

1− (1 + ε′)−1/(p−1)
)−(p−1)

bp

=: (1 + ε′)ap + Cε′b
p.

Therefore, using Lemma 5.1 and (46), we obtain a.s.

lim sup
n→∞

Sn(p) ≤ (γ + ε)p(1 + ε′) lim sup
n→∞

1

k

k∑
i=1

(
− log

Ui,n
Uk+1,n

)p
+ Cε′(logA)p

= (γ + ε)p(1 + ε′)Γ(p+ 1) + Cε′(logA)p.
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As A ↓ 1, ε ↓ 0, ε′ ↓ 0, we have a.s. lim supn→∞ Sn(p) ≤ γpΓ(p+ 1).
With the analogous lower bound, the proof is complete.

5.2. Moment bounds

In order to replace the random centering sequence mp(Uk+1,n) in Theo-
rem 2.3, and the random centering m̃pn(Uk+1,n) and norming σ̃pn(Uk+1,n) and
ηUk+1,n

(pn) in Theorems 3.1 and 3.4 with the corresponding deterministic coun-
terparts, we need a bound for the difference |mp(v) − mp| as v ↓ 0, both for
p fixed and for p = pv → ∞. These highly technical bounds are given in
Propositions 5.5 and 5.6. First we need three simple auxiliary lemmas.

Lemma 5.2. For a ∈ (0, 1/2), b ∈ (−1/2, 1/2), and a+ b > 0 we have

|(a+ b)p − ap| ≤

{
p|b|, p ≥ 1,

2|b|ap−1, p ≤ 1.

Proof. Simply (a + b)p − ap = bpξp−1, with ξ being between a and a + b. If
b > −a/2 then ξ ∈ [a/2, 1], thus

|(a+ b)p − ap| ≤ |b|p
(
(a/2)p−1 ∨ 1

)
.

If b < −a/2 then ξ ≤ a, thus ξp−1 ≤ ap−1 for p ≥ 1, and

|(a+ b)p − ap| ≤ |b|pap−1.

While if b < −a/2 and p < 1

|(a+ b)p − ap| = (a− |b|+ |b|)p − (a− |b|)p ≤ |b|p

= |b||b|p−1 ≤ |b|(a/2)p−1.

Lemma 5.3. For x ≥ p > 0 we have∫ ∞
x

e−yypdy ≤ xp+1e−x(x− p)−1.

Proof. Simple calculation gives that∫ ∞
x

e−yypdy = xp+1e−x
∫ ∞
1

e−x(u−1)+p log udu

= xp+1e−x
∫ ∞
1

e−(x−p)(u−1)−p(u−1−log u)du

≤ xp+1e−x
∫ ∞
1

e−(x−p)(u−1)du

= xp+1e−x(x− p)−1.
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In the borderline cases α = 1 and α = 2 the centering and norming sequences
are different.

Lemma 5.4. For the truncated moments as p→∞ we have for ζ = 1 that

m1
p ∼

(γp
e

)p √pπ
√

2
,

and for ζ = 2 that

σ1
p ∼

(
2γp

e

)p
(pπ)1/4.

Proof. Since η0(p) = ζγp, for ζ = 1

m1
p = γp

∫ p

0

ype−ydy.

We have ∫ p

0

ype−ydy = pp+1e−p
∫ 1

0

e−p(x−1−log x)dx.

The exponent is negative and x− 1− log x ∼ (x− 1)2/2 as x ↑ 1. Thus∫ 1

0

e−p(x−1−log x)dx ∼
√
π/(2p),

and the result follows.
For ζ = 2 using the definition and the previous result

(σ1
p)2 = γ2p

∫ 2p

0

y2pe−ydy ∼
(

2γp

e

)2p√
pπ,

as claimed.

In what follows pv is a positive function of v.

Proposition 5.5. Assume (27) and that

lim
v↓0

pv
a(v)

`(v)
= 0. (47)

Then there exists v0 > 0 such that for all v ∈ (0, v0)

|mpv (v)−mpv | ≤ 2K1
a(v)

`(v)
γpv−1Γ(pv + 1).

Proof. To ease notation put

η(u, v) =

(
−γ log u+ log

`(uv)

`(v)

)p
− (−γ log u)

p
. (48)
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We have by (1)

mp(v)−mp = E
[(

log
Q(1− Uv)

Q(1− v)

)p
− (−γ logU)

p

]
= E

[(
−γ logU + log

`(Uv)

`(v)

)p
− (−γ logU)

p

]
=

∫ 1

0

η(u, v)du =: I1(δ) + I2(δ),

where I1, I2 are the integrals on (0, 1− δ), (1− δ, 1), with δ ∈ (0, 1/2).
First we deal with the integral on (0, 1− δ). By (45), for any ε > 0, A > 1,

there is v0 > 0 such that for v ≤ v0, u ∈ (0, 1)

A−1uε ≤ `(uv)

`(v)
≤ Au−ε, (49)

implying that uniformly on u ∈ (0, 1− δ]

log `(uv)
`(v)

− log u
→ 0 as v ↓ 0. (50)

Writing
`(uv)− `(v)

`(v)
=
a(v)

`(v)

`(uv)− `(v)

a(v)
,

by (27) we see that the first factor tends to 0 and the second factor is bounded.
Therefore, uniformly in u ∈ [0, 1]

log
`(uv)

`(v)
∼ a(v)

`(v)

`(uv)− `(v)

a(v)
as v ↓ 0. (51)

By (50) and (51), if (47) holds then, uniformly on u ∈ [0, 1− δ],1 +
log `(uv)

`(v)

−γ log u

p

− 1 ∼ p (−γ log u)−1
a(v)

`(v)

`(uv)− `(v)

a(v)
. (52)

Thus,

I1(δ) ≤ pa(v)

`(v)

3

2
K1γ

p−1
∫ 1−δ

0

(− log u)
p−1

du. (53)

Next, we turn to I2. Note that (51) holds, but (50) does not, because log u
can be small. Choosing δ > 0 small enough we can achieve that −γ log(1− δ) ∈
(0, 1/2) and by (51) also that log `(uv)/`(v) ∈ (−1/2, 1/2) for v small and
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u ∈ [1 − δ, 1]. Therefore, we can apply Lemma 5.2 with a = −γ log u and
b = log(`(uv)/`(v)) together with (51) and (27), and we obtain for p ≤ 1

|η(u, v)| ≤ 2

∣∣∣∣log
`(uv)

`(v)

∣∣∣∣ (−γ log u)p−1

≤ a(v)

`(v)
2K1(−γ log u)p−1.

While, for p ≥ 1

|η(u, v)| ≤ p
∣∣∣∣log

`(uv)

`(v)

∣∣∣∣ ≤ pa(v)

`(v)
K1.

Summarizing,

I2(δ) ≤

{
a(v)
`(v) 2K1γ

p−1 ∫ 1

1−δ(− log u)p−1du, p ≤ 1,

pa(v)`(v)K1δ, p ≥ 1.
(54)

The bounds (53) and (54) imply the statement.

Proposition 5.6. Assume (10) and let

β2 := lim sup
v↓0

− log a(v)
`(v)

pv
≥ lim inf

v↓0

− log a(v)
`(v)

pv
:= β1, (55)

allowing β1 = ∞. Assume either β1 ≥ 1 or β2 ≤ 1, and define β as in (22).
Then for any ε > 0 there exists a K > 0 such that for v small enough

|mpv (v)−mpv | ≤ K
(
a(v)

`(v)

)(νβ−ε)∧1

(γ + ε)pv Γ(pv + 1).

Note that if p > 0 is fixed then β =∞ and we obtain the same bound as in
Proposition 5.5.

Proof. The difference compared to the previous proof is that (27) does not hold
uniformly in [0, 1], which implies that the integral of η(u, v) in (48) on the
interval [0, δ] has to be treated differently.

By Theorem 3.1.4 in [3] (translating the results from infinity to zero, by
defining `(x) = `(x−1), a(x) = a(x−1))

lim sup
v↓0

sup
u∈[δ,1]

|`(uv)− `(v)|
a(v)

=: K1(δ) <∞.

This implies that the bound (54) on [1 − δ, 1] remains true and on [δ, 1 − δ] as
in (53) we have∫ 1−δ

δ

η(u, v)du ≤ pa(v)

`(v)

3

2
K1γ

p−1
∫ 1−δ

δ

(− log u)
p−1

du. (56)
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Recall (48) and let

J1 =

∫ b(v)

0

η(u, v)du, J2 =

∫ δ

b(v)

η(u, v)du, (57)

where

b(v) =

(
a(v)

`(v)

)2

∧ e−2p. (58)

By Theorem 3.1.4 in [3] for any ε > 0 there is v0(ε) > 0 and K2(ε) > 0 such
that

|`(uv)− `(v)|
a(v)

≤ K2(ε)u−ε for all u ≤ 1, v ≤ v0(ε). (59)

By (58) and (55) for ε1 > 0 small enough

p
a(v)

`(v)
b(v)−ε1 → 0. (60)

Using (59), for u ≥ b(v)

|`(uv)− `(v)|
`(v)

≤ K2(ε1)
a(v)

`(v)
u−ε1 ≤ K2(ε1)

a(v)

`(v)
b(v)−ε1 → 0,

therefore ∣∣∣∣log
`(uv)

`(v)

∣∣∣∣ ∼ |`(uv)− `(v)|
`(v)

≤ K2(ε1)
a(v)

`(v)
u−ε1 .

By (60) for u ∈ [b(v), δ] the asymptotic equality in (52) holds, thus for J2 in
(57)

J2 ∼
∫ δ

b(v)

(−γ log u)pp(−γ log u)−1
a(v)

`(v)

`(uv)− `(v)

a(v)
du

≤ pa(v)

`(v)
K2(ε1)

∫ δ

b(v)

(−γ log u)p−1u−ε1 du

≤ pa(v)

`(v)
K2(ε1)(1− ε1)−pγp−1Γ(p),

(61)

where at the last inequality we used that∫ 1

0

(− log u)p−1u−ε1 du =

∫ ∞
0

yp−1e−(1−ε1)ydy

= (1− ε1)−p Γ(p).

On (0, b(v)) using (49), b(v) → 0, Lemma 5.3, and that − log b(v) − p ≥

21



(− log b(v))/2 we obtain for v small enough

J1 ≤ 2

∫ b(v)

0

(−(γ + ε) log u+ logA)p du

≤ 2(γ + 2ε)p
∫ b(v)

0

(− log u)p du

= 2(γ + 2ε)p
∫ ∞
− log b(v)

ype−ydy

≤ 2(γ + 2ε)p(− log b(v))p+1elog b(v)(− log b(v)− p)−1

≤ 4(γ + 2ε)p (− log b(v))p b(v).

(62)

Note that for log x > p

(log x)p

x

ep

pp
= exp

{
−p
(

log x

p
− 1− log

log x

p

)}
= exp

{
−pH

(
log x

p

)}
,

with H defined in (23). Thus with x = b(v)−1(
e

p

)p
(− log b(v))p b(v) = exp

{
−pH

(
2 ∨ −2 log(a(v)/`(v))

p

)}

=

(
a(v)

`(v)

) p
− log(a(v)/`(v))

H(2∨−2 log(a(v)/`(v))
p )

.

The function νx = x−1H(2 ∨ 2x) is strictly decreasing on (0, 1], and strictly
increasing on [1,∞) attaining its unique minimum at 1. Continuing (62) for
any ε2 > 0 for v small enough

J1 ≤
4
√
pπ

(γ + 2ε)p Γ(p+ 1)

(
a(v)

`(v)

)νβ−ε2
.

Combining with (61), (56), and (54) the result follows.

As an easy consequence of the moment bounds we show that the random
centering and norming can be substituted with the deterministic one.

Proof of Theorem 2.4. The theorem is an immediate consequence of Theorem
2.3 and Proposition 5.5. Indeed, by Proposition 5.5 for some c > 0

√
k |mp(Uk+1,n)−mp| ≤ c

√
k
a(Uk+1,n)

`(Uk+1,n)
= c
√
k
a(k/n)

`(k/n)

a(Uk+1,n)

a(k/n)

`(k/n)

`(Uk+1,n)
.

By the assumption
√
ka(k/n)/`(k/n) → 0, while the last two factors tends to

1, since a and ` are regularly varying and Uk+1,n ∼ k/n.
The central limit theorem for γ̂(n) follows from the previous result using the

delta method, see Agresti [1, Section 14.1].
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6. Limit results for power sums

In this section we assume that p = pn tends to infinity at a certain rate. We
prove the analogues of Bogachev’s result [4, Section 2] for the random variables
Y (v) uniformly in v. As the log-tail distribution function hv in (13) is regularly
varying, for each v ∈ [0, 1) fixed all the following results are consequences of
Bogachev’s results. However, the main difficulty in our setup is the additional
parameter v, in which we need some kind of uniformity. We apply these results
to prove limit theorems for the Sn(pn) and γ̂(n).

Recall (7). Let Y (v), Y1(v), Y2(v), . . . be iid random variables, and put

Zn(p, v) =

n∑
i=1

Yi(v)p.

First we determine the asymptotic behavior of the moments as p→∞.

Lemma 6.1. For any ε > 0 there is a p0 > 0 such that for v ∈ [0, 1), p > p0

(γ − ε)p Γ(p+ 1) ≤ mp(v) ≤ (γ + ε)p Γ(p+ 1). (63)

In particular, as p→∞ uniformly in v

logmp(v)

p
− log p→ log γ − 1.

Proof. First note that if X is a nonnegative random variable for which P(X >
x) > 0 for any x then for any K > 0

EXp ∼ EXpI(X > K) as p→∞.

This implies that for any ε > 0 and a > 0 there exist p0 = p0(ε, a) such that for
p > p0

(1− ε)p E(X + a)p ≤ EXp ≤ (1 + ε)p E|X − a|p. (64)

Using the Potter bounds (see (49)) and (64), for any ε > 0 there exists A > 1
and p0 > 0 such that for v ∈ [0, 1], p > p0

mp(v) = E
(

log

(
U−γ

`(Uv)

`(v)

))p
≤ E

(
log
(
U−(γ+ε)A

))p
≤ (γ + ε)pE

(
logU−1 +

logA

γ + ε

)p
≤ ((1 + ε)(γ + ε))pΓ(p+ 1).

Together with an analogous lower bound, (63) follows. The second part simply
follows from Stirling’s formula.
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If Vn(v) is a sequence of random variables indexed by v ∈ [0, 1), then Vn(v)
converges in distribution uniformly in v to a random variable W , if for each
continuity point x of the distribution function of W

lim
n→∞

sup
v∈[0,1)

|P(Vn(v) ≤ x)− P(W ≤ x)| = 0.

Similarly, Vn(v) converges in probability uniformly in v to a random variable
W , if for each ε > 0

lim
n→∞

sup
v∈[0,1)

P(|Vn(v)−W | > ε) = 0.

Similarly as in (15) and (16), we introduce the growth parameter ζ of the se-
quence pn as follows. For the sequence p = pn let

lim inf
n→∞

log n

pn
= ζ ≥ 0; (65)

for ζ ≤ 2 we need the stronger assumption

n ∼ eζpn . (66)

To obtain a weak law of large numbers we need that ζ > 1.

Proposition 6.2. If ζ > 1 in (65) or ζ = 1 in (66) then uniformly for v ∈ [0, 1)
as pn →∞

Zn(pn, v)− nm̃pn(v)

nm̃pn(v)

P−→ 0.

Proof. Let ζ > 1. We follow the proof of Theorem 2.1 in [4]. Fix ε > 0, and let
r ∈ [1, 2]. Using the Markov inequality, the Marcinkiewicz–Zygmund inequality
(see e.g. [25, 2.6.18]), and the subadditivity we have with some cr > 0

P
(
|Zn(p, v)− nmp(v)|

nmp(v)
> ε

)
≤ (εnmp(v))−rE|Zn(p, v)− nmp(v)|r

≤ cr(εnmp(v))−rE

(
n∑
i=1

(Yi(v)p −mp(v))2

)r/2
≤ cr(εnmp(v))−rnE|Y (v)p −mp(v)|r

≤ crε−rn1−r
mrp(v)

mp(v)r
.

(67)

By Lemma 6.1 for any ε1 > 0 we can choose p0 > 0 such that for v ∈ [0, 1) and
p > p0

mrp(v)

mp(v)r
≤ (γ + ε1)rpΓ(rp+ 1)

(γ − ε1)rpΓ(p+ 1)r
≤ (1 + ε2)rp

Γ(rp+ 1)

Γ(p+ 1)r
,
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with ε2 = 2ε2/(γ − ε2). Thus, by the Stirling formula

lim sup
p→∞

1

p
log

mrp(v)

nr−1mp(v)r
≤ r log(1 + ε2) + r log r − (r − 1) lim inf

p→∞

log n

p

≤ r log(1 + ε2) + r log r − (r − 1)ζ.

(68)

As ζ > 1 we can choose r ∈ [1, 2] such that r log r− (r−1)ζ < 0. Then choosing
ε1 small enough we see that the right-hand side in (68) is negative, implying
that the right-hand side in (67) tends to 0.

For ζ = 1 the result is a consequence of Proposition 6.6. We only need that
nm̃p(v)/ηv(p)

p →∞, which follows from (74) in Lemma 6.5 with r = ζ = 1.

For the central limit theorem we need further restriction on pn.

Proposition 6.3. If ζ > 2 in (65) or ζ = 2 in (66) then uniformly on [0, 1)

Zn(pn, v)− nm̃pn(v)√
nσ̃pn(v)

D−→ N(0, 1).

Proof. Let ζ > 2. Applying the Berry–Esseen bound (see [6, Corollary 4,
p.300]), there exists a universal constant Cδ such that

sup
x∈R

∣∣∣∣P(Zn(pn, v)− nmpn(v)√
nσpn(v)

≤ x
)
− Φ(x)

∣∣∣∣
≤ Cδ

n

(
√
nσp(v))2+δ

E|Y (v)p −mp(v)|2+δ,

where Φ is the standard normal distribution function. Therefore, it is enough
to show that for some δ > 0 uniformly in v

n

(
√
nσp(v))2+δ

E|Y (v)p −mp(v)|2+δ → 0

as n→∞. By Lemma 6.1 σp(v) ∼
√
m2p(v) as p→∞. Thus we have to show

that
mp(2+δ)(v)

nδ/2m2p(v)1+δ/2
→ 0.

As in the proof of Proposition 6.2

lim sup
p→∞

1

p
log

mp(2+δ)(v)

nδ/2m2p(v)1+δ/2
≤ −δ

2
ζ + log(1 + ε) + (2 + δ) log(1 + δ/2).

We have to choose δ > 0 such that

2

δ
(2 + δ) log

(
1 +

δ

2

)
< ζ.

This is possible for ζ > 2.
For ζ = 2 we defer the proof after Proposition 6.6.
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In the range ζ ∈ (0, 2) we need (66), the finer assumption on the sequence
pn. For the error term in hv in (13)

hv(x)− h0(x) = log
(
`(v)1/γ ˜̀(v−γ`(v)ex)

)
= log `(v)1/γ ˜̀(v−γ`(v)) + log

˜̀(v−γ`(v)ex)˜̀(v−γ`(v))
.

(69)

By the inverse relation (12) the first term is small for v small, while the second
term can be bounded using the Potter bounds, thus for any ε > 0 there exist
x0 > 0 such that for x > x0∣∣∣log

(
`(v)1/γ ˜̀(v−γ`(v)ex)

)∣∣∣ ≤ εx,
implying that for x > x0

|hv(x)− x/γ| ≤ εx.

Also, for ηv in (14) there exist x0 > 0 such that for x > x0

|ηv(x)− γζx| ≤ εx. (70)

Using these bounds, we can prove the uniform version of Lemma 5.4 in [4].

Lemma 6.4. For any K > 0

lim
p→∞

sup
v∈[0,1],x∈[K−1,K]

∣∣∣hv(ηv(p))− hv(ηv(p)x1/p) + ζ log x
∣∣∣ = 0.

Proof. We have by (13)

hv(ηv(p))− hv(ηv(p)x1/p) =
ηv(p)

γ
(1− x1/p) + log

˜̀(v−γ`(v)eηv(p))˜̀(v−γ`(v)eηv(p)x1/p)
.

Using (70) and that 1− x1/p ∼ −p−1 log x+O(p−2), we see that the first term
tends to −ζ log x. This further implies, using also the uniform convergence
theorem that the second term above tends to 0, proving the statement.

We also note that the argument above shows that the uniform convergence
theorem for the regularly varying hv holds uniformly in v ∈ [0, 1].

Once we have the uniform convergence in v, and the uniform moment bound
(63), the proofs of Lemma 6.1, 6.2, and 6.3 in [4] go through. We omit the proof.

Lemma 6.5. For any r > 0 and τ > 0 uniformly in v ∈ [0, 1)

lim
p→∞

eζp

ηv(p)pr
E
[
Y (v)rp

(
I(Y (v) ≤ ηv(p)τ1/p)− I(Y (v) ≤ ηv(p))

)]
=

{
ζ
r−ζ (τ r−ζ − 1), r 6= ζ,

ζ log τ, r = ζ.

(71)
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For any τ > 0 and r > ζ

lim
p→∞

eζp

ηv(p)pr
E
[
Y (v)rpI(Y (v) ≤ ηv(p)τ1/p)

]
=

ζ

r − ζ
τ r−ζ , (72)

while for τ > 0 and r < ζ

lim
p→∞

eζp

ηv(p)pr
E
[
Y (v)rpI(Y (v) > ηv(p)τ

1/p)
]

=
ζ

ζ − r
τ r−ζ . (73)

For r = ζ

lim
p→∞

eζp

ηv(p)ζp
E
[
Y (v)ζpI(Y (v) ≤ ηv(p))

]
=∞. (74)

Recall the notation (17). Again, if ζ ≤ 2 then ζ equals the characteristic
exponent of the limiting stable law. Therefore, we use the notation ζ = α.

Proposition 6.6. Assume that (66) holds with ζ = α ∈ (0, 2). Then as n→∞,
uniformly in v ∈ [0, 1)

1

ηv(pn)pn
[Zn(pn, v)− nm̃pn(v)]

D−→ Zα.

Proof. We use the classical criteria for convergence of sums of independent ran-
dom variables, see Theorem 25.1 in Gnedenko and Kolmogorov [18].

First, by (13), (14), and Lemma 6.4, uniformly in v ∈ [0, 1)

nP(Y (v)p > ηv(p)
px) = ne−hv(ηv(p))ehv(ηv(p))−hv(ηv(p)x

1/p) → x−α. (75)

Next, applying Lemma 6.5 with r = 2, uniformly in v ∈ [0, 1)

lim
τ↓0

lim sup
n→∞

n

ηv(p)2p
E
[
Y (v)2pI(Y (v) ≤ ηv(p)τ1/p)

]
= 0.

Therefore, we already have that the normed sum converges with an appropriate
centering, and the limit is a one-sided α-stable law. To see that the centering
is correct note that

lim
p→∞

(
n

ηv(p)p
E
[
Y (v)pI

(
Y (v) ≤ ηv(p)τ1/p

)]
− nm̃p(v)

ηv(p)p

)
=

{
α

1−ατ
1−α, α 6= 1,

log τ, α = 1.

Indeed, this follows from (72) for α < 1, from (73) for α > 1, and from (71) for
α = 1.

We end this section with the proof of the central limit theorem in the bor-
derline case α = 2.

27



Proof of Proposition 6.3 for α = 2. Here we use again the classical criteria [18,
Theorem 25.1], but specified to the Gaussian law.

Using (74) with α = r = 2 we obtain that uniformly in v ∈ [0, 1)

σ1
p(v)ep/ηv(p)

p →∞. (76)

Thus, for any x > 0 fixed and τ > 0 large, for n large enough

nP(Y (v)p >
√
nσ1

p(v)x) ≤ nP(Y (v)p > ηv(p)
pτ),

which by (75) converges to τ−2. Thus, for any x > 0

nP(Y (v)p >
√
nσ1

p(v)x)→ 0. (77)

For the truncated variance

n

(σ1
p(v)
√
n)2

E
[
Y (v)2pI

(
Y (v) ≤ (σ1

p(v)
√
nτ)1/p

)]
= 1 +

E
[
Y (v)2pI

(
ηv(p) ≤ Y (v) ≤ (σ1

p(v)
√
nτ)1/p

)]
(σ1
p(v))2

.

(78)

For the second term for δ ∈ (0, 1) by (73) with α = 2, r = 2− δ

E
[
Y (v)2pI

(
ηv(p) ≤ Y (v) ≤ (σ1

p(v)
√
nτ)1/p

)]
(σ1
p(v))2

≤
(σ1
p(v)
√
nτ)δ

(σ1
p(v))2

E
[
Y (v)(2−δ)pI(ηv(p) ≤ Y (v))

]
∼ 2

δ

(
σ1
p(v)ep

ηv(p)p

)−(2−δ)
nδ/2

epδ
,

which tends to 0 by (76). Furthermore, by (76)[
E
(
Y (v)pI(Y (v) ≤ (σ1

p(v)
√
nτ)1/p)

)]2
E
(
Y (v)2pI(Y (v) ≤ (σ1

p(v)
√
nτ)1/p)

) ≤ (mp(v))2

(σ1
p(v))2

.

Using Lemma 6.1 and (70) it is simple to show that the latter quantity tends
to 0 uniformly in v ∈ [0, 1). Thus, from (78) we obtain for any τ > 0

lim
n→∞

n(√
nσ1

p(v)
)2{E [Y (v)2pI

(
Y (v) ≤ (σ1

p(v)
√
nτ)1/p

)]
−
(
E
[
Y (v)pI

(
Y (v) ≤ (σ1

p(v)
√
nτ)1/p

)])2}
= 1.

(79)

Finally, by (73) with α = 2, r = 1

n

σ1
p(v)
√
n
E
(
Y (v)pI(Y (v) > (σ1

p(v)
√
nτ)1/p)

)
≤
√
n

σ1
p(v)

E
(
Y (v)pI(Y (v) > ηp(v)τ1/p)

)
∼
√
n

σ1
p(v)

ηv(p)
p

e2p
τ−1
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which tends to 0 by (76). Together with (77) and (79) this implies the statement.

7. Proofs for large p

Proof of Theorem 3.1. The limiting relations (18) and (19) are immediate con-
sequences of Propositions 6.2 and 6.3. Indeed, for the law of large numbers by
representation (5)

P (|Sn(pn)/mpn(Uk+1,n)− 1| > ε)

=

∫ 1

0

P (|Zn(pn, v)/(nmpn(v))− 1| > ε) dP(Uk+1,n ≤ v),

which tends to 0, since the integrand tends to 0 uniformly. The proof of (19) is
similar.

The weak consistency follows from Lemma 6.1 and (18).
The CLT (20) follows from Bogachev’s transfer lemma (Lemma 9.1 in [4])

and Theorem 3.1. To apply Lemma 9.1 in [4] we only need to show that

√
knmpn(Uk+1,n)

σpn(Uk+1,n)
→∞.

This follows easily from Lemma 6.1 as for ε > 0 small enough

lim inf
n→∞

p−1n log

√
knmpn(Uk+1,n)

σpn(Uk+1,n)
≥ ζ

2
− log 2− log(1 + ε) > 0.

Proof of Theorem 3.2. First note that Uk+1,nn/k → 1 in probability, and since
a and ` are regularly varying functions Uk+1,n can be changed to k/n.

For the first result we have to show that mp(k/n)/mp → 1. This follows
from Proposition 5.6. Indeed, for any ε > 0∣∣∣∣mp(k/n)

mp
− 1

∣∣∣∣ ≤ K(1 + ε)p
(
a(k/n)

`(k/n)

)νβ−ε
.

Taking logarithm and dividing by p we see that the right-hand side above is
negative for ε > 0 small enough.

For the central limit theorem, σp(k/n)/σp → 1 follows again from Proposi-
tion 5.6, thus σp(Ukn+1,n)/σp → 1 also follows as above. To change the center-
ing, using again Proposition 5.6

√
k

σpn
|mp(k/n)−mp| =

mp

√
k

σp

|mp(k/n)−mp|
mp

≤ c
√
k(1 + ε)p

Γ(p+ 1)√
Γ(2p+ 1)

(
a(k/n)

`(k/n)

)ν̃
,

(80)
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with ν̃ = 1 ∧ (νβ − ε). Taking logarithm, dividing by p, and using the Stirling
formula

lim sup
p→∞

p−1 log

[
√
k(1 + ε)p

Γ(p+ 1)√
Γ(2p+ 1)

(
a(k/n)

`(k/n)

)ν̃]

≤ log(1 + ε)− log 2 + lim sup
p→∞

p−1 log

[
√
k

(
a(k/n)

`(k/n)

)ν̃]
.

Since ε > 0 in (80) is as small as we wish, the result follows.
Now (26) follows from (20) using Bogachev’s transfer lemma, as above.

Proof of Theorem 3.3. The proof goes as the previous proof, but we use Propo-
sition 5.5.

Proof of Theorem 3.4. The first result follows from Proposition 6.6. Combining
with Bogachev’s transfer lemma we obtain (28) and (30). To use the transfer
lemma for α ∈ [1, 2) we have to check that

knm̃pn(Uk+1,n)

ηUk+1,n
(pn)pn

→∞.

For α > 1 by Lemma 6.1 and (70) the left-hand side above is at least

eαpn(γ − ε)pnΓ(pn + 1)

((αγ − ε)pn)
pn ≥

(
eα

α

)pn
(1− ε)pn ,

which tends to ∞ for ε > 0 small enough. For α = 1 the result follows from
(74) in Proposition 6.5 with r = α = 1.

To see (29), note that as pn →∞,(
Sn(pn)

Γ(pn + 1)

)1/pn

(knΓ(pn + 1))
1/pn 1

ηUk+1,n
(pn)

=
(knSn(pn))1/pn

ηUk+1,n
(pn)

→ 1.

Thus (29) follows from the asymptotics

(knΓ(pn + 1))
1/pn

ηUk+1,n
(pn)

→ eα−1

αγ
.

Proof of Theorem 3.5. First we show that we can change to deterministic nor-
malization, i.e.

lim
n→∞

(
ηUk+1,n

(pn)

αγpn

)pn
= 1. (81)

We have |ηv(x)− αγx| = γ|hv(ηv(x))−h0(ηv(x))| by the definition of ηv in (14),
recalling that ζ = α. Therefore,∣∣∣∣ηv(pn)

αγpn
− 1

∣∣∣∣ ≤ 1

αpn
|hv(ηv(pn))− h0(ηv(pn))| ,
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from which we see that (81) follows if we show the convergence

lim
n→∞

[
hUk+1,n

(ηUk+1,n
(pn))− h0(ηUk+1,n

(pn))
]

= 0.

This holds, since the first term on the right-hand side of (69) tends to 0 as
v = Uk+1,n → 0 by (12). Changing Uk+1,n to k/n, with v = k/n and x =
ηv(pn) ∼ γ log k, we see that the second term tends to 0 by assumption (31).
Thus (33) holds for α < 1.

For α ∈ [1, 2) we need to handle the centering as well. For α > 1 by
Proposition 5.6

kn|mpn −mpn(v)|
(αγpn)pn

≤ 2K1

γ
(1 + ε)p

eαpn

(αpn)pn
Γ(pn + 1)

(
a(v)

`(v)

)ν̃
,

with ν̃ = 1 ∧ (νβ − ε). As before we can substitute Uk+1,n to k/n. Thus

lim sup
n→∞

p−1n log
kn|mpn −mpn(k/n)|

(αγpn)pn

≤ log(1 + ε) + α− 1− logα+ ν̃ lim sup
n→∞

p−1n log

(
a(k/n)

`(k/n)

)
= log(1 + ε) +H(α)− ν̃β1,

which is negative for ε > 0 small, under our assumptions. Thus (33) follows.
To prove (34), write

pn

(
[knSn(pn)]1/pn

αγpn
− 1

)
= pn

(
γ̂(n)

(knΓ(pn + 1))1/pn

αγpn
− 1

)
.

Simple calculation shows that

k
1/pn
n

αγpn
Γ(pn + 1)1/pn =

eα−1

αγ

(
1 +

log(2πpn)

2pn
+ o(1/pn)

)
.

Thus (34) and (35) follows from Bogachev’s transfer lemma. For (36) we use
the asymptotics of the truncated moments in Lemma 5.4.

Proof of Theorem 3.6. The proof goes as the previous proof, but we use Propo-
sition 5.5.
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