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Abstract

A necessary and sufficient condition for the existence of moments of the station-
ary distribution of a subcritical multitype GWI process was obtained by Szűcs
[15]. In this short note we give a simple proof of this result.
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1. Introduction

Let (Xn)n≥0 = (Xn,1, . . . , Xn,d)n≥0 be a d-type Galton–Watson process with
immigration (GWI process), defined as

Xn =

d∑
j=1

Xn−1,j∑
i=1

An,i;j + Bn, n = 1, . . . ,

X0 = 0 = (0, . . . , 0),

(1)

where An,i;j ,Bn, n ≥ 1, i ≥ 1, j ∈ {1, . . . , d}, are independent d-dimensional
random vectors with integer coordinates such that {An,i;j : n ≥ 1, i ≥ 1} is
an identically distributed sequence of random vectors for each j ∈ {1, . . . , d},
and Bn, n ≥ 1, are identically distributed. Here Xn,j is the number of j-
type individuals in generation n, An,i;j is the number of offsprings produced
by the ith individual of type j in generation n − 1, and Bn is the number
of immigrants in generation n. To exclude trivialities we always assume that
P(B1 = 0) < 1. In the present paper we are only interested in properties of
the stationary distribution, therefore the initial distribution of the process is
irrelevant. For simplicity, we choose X0 = 0. In what follows, vectors, both
deterministic and random, are denoted by boldface letters, and are meant as
d-dimensional row vectors.
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The simplest branching process, the Galton–Watson process was introduced
by Sir Francis Galton in 1873 to model the evolution of British family names.
Since then, the theory of branching processes has evolved to describe more
complex systems. Nowadays, branching processes play an important role in
models of genetics, molecular biology, physics and computer science. As a main
reference on branching processes and its applications we refer to the classical
books by Athreya and Ney [1], by Mode [10] and by Haccou et al. [6].

Multitype Galton–Watson processes with immigration were introduced and
studied by Quine [12]. Recently, Cerf and Dalmau [5] obtained probabilistic
representations of the Perron–Frobenius eigenvector of the mean matrix of a
multitype Galton–Watson process. Multitype GWI processes in random envi-
ronment were investigated by Roitershtein [13], Roitershtein and Zhong [14],
Wang [16], to mention just a few.

Quine [12] gave a necessary and sufficient condition for the existence of a
stationary distribution in the subcritical case assuming that the mean matrix
M is irreducible and aperiodic (also called positively regular process). Mode
[10, Theorem 7.1] also provided a sufficient condition for the existence of a
stationary distribution. Under the same assumption on M the complete answer
for the existence of a limiting stationary distribution was obtained by Kaplan
[9], considering not only subcritical but critical processes as well. Without any
structural assumption on the mean matrix, in the subcritical case Szűcs [15]
proved necessary and sufficient conditions.

However, interestingly enough, properties of the stationary distribution, in
particular, existence of its moments, are much less investigated. Even in the
single type case, we are only aware of the recent results by Buraczewski and
Dyszewski [4] on Galton–Watson processes in random environment without im-
migration, from which the existence of certain moments can be deduced, see
Lemma 3.1 in [4], and by Basrak and Kevei [3, Lemma 1] on GWI processes in
random environment. In the multitype setup, an explicit formula for the vari-
ance was obtained already by Quine [12] and for the third moment very recently
by Barczy et al. [2, Lemma 1]. Using Foster–Lyapunov technique Szűcs [15]
proved necessary and sufficient condition for the existence of general, i.e. not
necessarily integer moments of the stationary distribution. Moreover, in [15]
exponential ergodicity was also proved.

The aim of the present note is to obtain a simple short proof of the necessary
and sufficient condition for the existence of the moments of any order α > 0
of the stationary distribution, which was proved in [15, Theorem 4]. Instead
of the Foster–Lyapunov technique we use the infinite sum representation of the
stationary distribution.

While the powerful Foster–Lyapunov technique is intrinsically related to
Markov processes, our probabilistic proof only relies on the infinite sum repre-
sentation of the stationary distribution. Therefore, our method might be appli-
cable in a non-Markovian setting, for example in the theory of age-dependent (or
Bellman–Harris) branching processes, see Chapter 4 in [1]. Pakes and Kaplan
[11] obtained a necessary and sufficient condition for the existence of a nondegen-
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erate limiting distribution with a compound renewal immigration component.
The generating function of the limiting distribution is given as a unique solu-
tion of a renewal-type integral equation. In a more general setting, the limiting
distribution of random processes with immigration was investigated recently by
Iksanov et al. [8]. In the latter paper the limiting process, called stationary
random process with immigration, is given as an infinite sum of iid stochastic
processes translated by an independent random walk. To the best of our knowl-
edge, moment properties of the limiting distribution were not investigated in
detail. However, these problems are beyond the scope of the present paper.

2. Results

We assume that the offspring means are finite, and let M denote the offspring
mean matrix

M =

EA1,1;1

...
EA1,1;d

 =

m1,1 . . . m1,d

...
. . .

...
md,1 . . . md,d

 , (2)

where mi,j is the mean offsprings of type j produced by an individual of type
i. Let ρ denote the spectral radius of M , and assume that the process is sub-
critical, i.e. ρ < 1. Without immigration a subcritical process dies out almost
surely exponentially fast, therefore immigration is necessary to obtain nontrivial
stationary distribution.

Let ‖x‖ =
∑d
j=1 |xj | denote the `1 norm of a vector in Rd and also the

generated matrix norm ‖A‖ = sup‖x‖=1 ‖xA‖. Then ‖A‖ is the maximum
absolute row sum, see e.g. Examples 5.6.4 and 5.6.5 in Horn and Johnson [7]
(note that we multiply from the left). To ease notation we introduce the random
operators θn as

θn ◦ k =

d∑
j=1

kj∑
i=1

An,i;j , k = (k1, . . . , kd), (3)

where the empty sum is 0, i.e. θn ◦0 = 0. We slightly abuse the notation writing
θn◦(k1+k2) = θn◦k1+θn◦k2, where on the right-hand side the two summands
are independent. Further, write Πn = θ1 ◦ . . . ◦ θn, for n ≥ 1, and Π0 = Id.
With this notation (1) can be written as Xn = θn ◦Xn−1 +Bn. Iteration gives
that the stationary distribution can be represented in distribution as

Y = (Y1, . . . , Yd) = B1 + θ1 ◦B2 + θ1 ◦ θ2 ◦B3 + . . . =

∞∑
i=0

Πi ◦Bi+1, (4)

provided that the infinite sum converges almost surely. Quine [12] showed that
the latter holds if and only if the immigration has finite logarithmic moment,
i.e. E log(‖B1‖+ 1) <∞. In our main result we assume that E‖B1‖α <∞ for
some α > 0, which implies E log(‖B1‖+1) <∞, thus the stationary distribution
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indeed exists. Formula (4) corresponds to formula (16) in [12] in terms of
generating functions.

Note that there might be types which does not appear in the stationary
distribution. Indeed, if a type-1 particle never immigrates and it cannot be a
descendant of an immigrant then it does not appear in the stationary distribu-
tion, and its offspring distribution does not matter. More precisely, introduce
the set of essential types E ⊂ {1, . . . , d} as

E = {i : P(Yi = 0) < 1}.

It is easy to see that type i is essential if and only if the ith coordinate of the
vector E(min{B1,1}) (M0+. . .+Md−1) is strictly positive, where 1 = (1, . . . , 1)
and the minimum is taken coordinatewise. (This is necessary, as the expectation
of the immigrants is not assumed to be finite.)

Now we can state our main result.

Theorem. Let (Xn)n≥0 be a d-type, subcritical Galton–Watson process with
immigration and let Y be defined in (4). For any α > 0 the following are
equivalent:

(i) E‖A1,1;i‖max{α,1} <∞ for all i ∈ E, and E‖B1‖α <∞;

(ii) E‖Y‖α <∞.

In particular, (ii) implies that each component of Y has finite moment of
order α.

Note that by the subcriticality assumption E‖A1,1;i‖ < ∞ for any i ∈
{1, . . . , d}. Thus, even for α < 1 we assume the existence of the offspring
mean. However, the immigration distribution might have infinite mean.

We emphasize that we do not need any structural assumption (positive reg-
ularity, irreducibility) on the mean matrix. We use directly the infinite sum
representation in (4).

3. Proof

We can simply discard the non-essential types, therefore without loss of
generality we assume that E = {1, . . . , d}.

Implication (ii)⇒ (i) follows easily from representation (4). Indeed, Y ≥ B1

(meant coordinatewise), thus

E‖B1‖α ≤ E‖Y‖α <∞.

Since 1 ∈ E , a type-1 particle appears as an immigrant or as a descendant of an
immigrant, meaning that for some i ∈ {1, . . . , d} the event

A = {θ2 ◦ . . . θi ◦Bi+1 ≥ (1, 0, . . . , 0)}

4



has positive probability and it is independent of the vector A1,1;1. Therefore
Y ≥ I{A}A1,1;1, thus

E‖Y‖α ≥ E (I{A}‖A1,1;1‖α) = P(A)E‖A1,1;1‖α,

implying that E‖A1,1;1‖α <∞. Clearly, the proof works for any type i.
In what follows we prove the implication (i) ⇒ (ii).

3.1. The case α ≥ 1

Let α ≥ 1 be fixed. First we prove the theorem under the additional as-
sumption that

‖M‖ < 1, (5)

that is the row sums are less than 1. Let µj =
∑d
`=1mj,`, j ∈ {1, . . . , d}.

We prove that
Mα(k) = E‖Πk ◦Bk+1‖α (6)

tends to 0 exponentially fast.
Recall (3). To ease notation we suppress the lower index. We have

‖θ ◦ k‖ =

d∑
j=1

kj∑
i=1

‖Ai;j‖ =

d∑
j=1

kj∑
i=1

d∑
`=1

A
(`)
i;j =:

d∑
j=1

Skj ;j ,

where ‖Ai;j‖ =
∑d
`=1A

(`)
i;j is the number of all the offsprings of the ith indi-

vidual of type j, with A
(`)
i;j being the number of `-type offsprings, and Sk;j =∑k

i=1 ‖Ai;j‖ is the sum of k iid scalar random variables, with mean E‖A1;j‖ =∑d
`=1mj,` = µj < 1.
For any µ ∈ (max1≤j≤d µ

α
j , 1) there exists k′0 such that

E
(
Sk;j
k

)α
< µ for all k ≥ k′0, j ∈ {1, . . . , d}. (7)

Indeed, by the strong law of large numbers

lim
n→∞

Sn;j
n

= µj a.s.

Therefore, the moment convergence theorem implies

lim
n→∞

E
(
Sn;j
n

)α
= µαj ,

provided we show that the sequence ((Sn;j/n)α)n is uniformly integrable. By
the convexity of xα, for any y > 0

E
[
I
{(

Sn;j
n

)α
> y

}(
Sn;j
n

)α]
≤ E

[
I
{
Sn;j > ny1/α

}∑n
i=1 ‖Ai;j‖α

n

]
= E

[
I
{
Sn;j > ny1/α

}
‖A1;j‖α

]
,
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where I{·} stands for the indicator function. Markov’s inequality gives

P(Sn;j > ny1/α) ≤ ESn;j
ny1/α

= µj y
−1/α,

and since E‖A1;j‖α <∞ the uniform integrability, and thus (7) follows.
Put

max
1≤j≤d

max
k<k′0

E
(
Sk;j
k

)α
= c0. (8)

Since the function xα is convex, we have( ∑d
j=1 Skj ;j

k1 + . . .+ kd

)α
=

 d∑
j=1

kj
k1 + . . .+ kd

Skj ;j

kj

α

≤
d∑
j=1

kj
k1 + . . .+ kd

(
Skj ;j

kj

)α
.

Combined with (7) and (8) this implies for k 6= 0

E‖θ ◦ k‖α = ‖k‖αE
(
‖θ ◦ k‖
‖k‖

)α
≤ ‖k‖α

d∑
j=1

kj
‖k‖

E
(
Skj ;j

kj

)α

≤ ‖k‖α
d∑
j=1

kj
‖k‖

[I{kj ≥ k′0}µ+ I{kj < k′0}c0]

≤ ‖k‖α
(
µ+

k′0c0d

‖k‖

)
.

Choosing k0 > 2k′0c0d/(1− µ) we obtain that

E‖θ ◦ k‖α ≤ µ‖k‖α whenever ‖k‖ ≥ k0, (9)

with µ = (1 + µ)/2 < 1.
Put

c1 = max
‖k‖<k0

E‖θ ◦ k‖α

and let Z be a random vector with nonnegative integer components, independent
of the A’s. Then, by (9)

E‖θ ◦ Z‖α =
∑
k

P(Z = k)E‖θ ◦ k‖α

=
∑

k:‖k‖≥k0

P(Z = k)E‖θ ◦ k‖α +
∑

k:0<‖k‖<k0

P(Z = k)E‖θ ◦ k‖α

≤
∑

k:‖k‖≥k0

P(Z = k)µ‖k‖α +
∑

k:0<‖k‖<k0

P(Z = k)c1

≤ µE‖Z‖α + c1 E‖Z‖.
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Turning back to Mα(k) in (6), we obtain the recursion

Mα(k) ≤ µMα(k − 1) + c1M1(k − 1), (10)

with µ < 1. Note that M1(k) is the expectation of the total number of indi-
viduals in generation k in a multitype Galton–Watson process without immi-
gration, starting with Bk+1 at generation 0. Therefore M1(k) = ‖EB1M

k‖ ≤
‖EB1‖ ‖M‖k, which goes to 0 exponentially fast. Thus, recursion (10) implies
that

Mα(k) ≤ µkE‖B1‖α + c1
(
M1(k − 1) + µM1(k − 2) + . . .+ µk−1M1(0)

)
≤ µkE‖B1‖α + c1‖EB1‖

(
‖M‖k−1 + µ‖M‖k−2 + . . .+ µk−1

)
≤ µkE‖B1‖α + c1‖EB1‖k(max{‖M‖, µ})k−1.

Therefore, with ν = (1 + max{‖M‖, µ})/2 and

C = E‖B1‖α +
E‖B1‖c1

max{‖M‖, µ}
sup
k≥0

k

(
max{‖M‖, µ}

ν

)k
,

we obtain
Mα(k) ≤ Cνk for all k ≥ 0. (11)

The statement now follows from Minkowski’s inequality, as

(E‖Y‖α)
1/α

=

(
E
∥∥∥ ∞∑
k=0

Πk ◦Bk+1

∥∥∥α)1/α

≤
∞∑
k=0

Mα(k)1/α <∞.

The additional assumption in (5) can be omitted easily. By Gelfand’s for-
mula for the spectral radius we have

lim
k→∞

‖Mk‖1/k = ρ,

which is strictly less than 1, by subcriticality. Thus, there exists r such that
‖Mr‖ < 1. The matrix Mr is the mean matrix of the offspring distribution cor-
responding to Πr, i.e. when we sample the process only in every rth generation.
Therefore, the previous argument gives that Mα(rk + i) in (6) is exponentially
small for each i ∈ {0, 1, . . . , r − 1}. Clearly, then Mα(k) is also exponentially
small, that is (11) holds with some C > 0 and ν < 1. Then result follows from
Minkowski’s inequality as above.
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3.2. The case α < 1

This case is in fact simpler, but needs to be treated differently.
First, assume again that (5) holds. We use the same notations as above.

Now xα is concave, thus by Jensen’s inequality for any k

E‖θ ◦ k‖α = E
( d∑
j=1

Skj ;j

)α
≤
(
E

d∑
j=1

Skj ;j

)α
=
( d∑
j=1

kjµj

)α
≤ µ‖k‖α,

with µ = max1≤j≤d µ
α
j , implying

E‖θ ◦ Z‖α =
∑
k

P(Z = k)E‖θ ◦ k‖α

≤
∑
k

P(Z = k)µ‖k‖α ≤ µE‖Z‖α.

Therefore, Mα(k) in (6) is exponentially small. By subadditivity we have

E‖Y‖α = E
∥∥∥ ∞∑
k=0

Πk ◦Bk+1

∥∥∥α ≤ ∞∑
k=0

Mα(k) <∞,

as claimed.
Condition (5) can be omitted the same way as before.
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