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Self-heating effects and switching dynamics in graphene multiterminal Josephson junctions
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Műegyetem rkp. 3, H-1111 Budapest, Hungary

2MTA-BME Correlated van der Waals Structures Momentum Research Group, Műegyetem rkp. 3, H-1111 Budapest, Hungary
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We experimentally investigate the electronic transport properties of a three-terminal graphene Josephson
junction. We find that self-heating effects strongly influence the behavior of this multiterminal Josephson
junction (MTJJ) system. We show that existing simulation methods based on resistively and capacitively shunted
Josephson junction networks can be significantly improved by taking into account these heating effects. We
also investigate the phase dynamics in our MTJJ by measuring its switching current distribution and find
correlated switching events in different junctions. We show that the switching dynamics is governed by phase
diffusion at low temperatures. Furthermore, we find that self-heating introduces additional damping that results
in overdamped I−V characteristics when normal and supercurrents coexist in the device.
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I. INTRODUCTION

Multiterminal Josephson junctions (MTJJs) consisting of
a single scattering region connected to multiple supercon-
ducting terminals have attracted significant attention in recent
years. Theoretical works showed that MTJJs may enable mul-
tiplet supercurrents [1–6], and the Andreev bound state (ABS)
spectra of MTJJs can exhibit nontrivial topology and simu-
late the band structure of Weyl semimetals [7–23]. Although
some of the theoretically proposed key features remain unob-
served, recent experimental advances led to the observation
of hybridized ABSs [24–27], broken spin degeneracy and
ground-state parity transitions [28], signatures of quartet su-
percurrents [29–33], the Josephson diode effect [34–37], and
topological phase transitions [38], highlighting the versatility
of MTJJ devices.

On the other hand, several experimental works found that
the transport characteristics of MTJJs can be reasonably well
modeled by a network of resistively and capacitively shunted
Josephson junctions (RCSJs) in which each pair of terminals
is connected by an RCSJ element. This relatively simple
approach is able to qualitatively capture features of current-
biased measurements, such as the coexistence of normal and
supercurrents between different terminals [31,32,39–41] and
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multiplet resonances [31,41]. In spite of some agreement
between simulations and measurements, these models in
general fail to quantitatively capture the observations when
normal and supercurrents coexist in the scattering region. This
lack of agreement can be attributed to heating effects due
to the presence of normal currents [39] that influence the
supercurrent flowing in other parts of the device. Furthermore,
the observation of more exotic phenomena, such as multiplet
supercurrents [31,41] and quantized transconductance [7,8],
also rely on the presence of finite voltages between some of
the terminals that necessarily imply the existence of normal
currents and heating effects. Due to the large superconducting
gap � of the terminals which prevents the outflow of hot
electrons, these heating effects can significantly modify the
superconducting properties of MTJJs. Moreover, heating ef-
fects can have an impact on the switching dynamics of single
Josephson junctions [42,43], which could be enhanced in the
case of MTJJs, due to the complex geometry and the nontrivial
current distribution.

In this work we experimentally investigate a three-terminal
graphene Josephson junction and compare our current-biased
measurements to an RCSJ network model, which enables us
to identify the limitations of these models. Next, we present
an improved simulation method, incorporating heating effects
due to the presence of normal currents, which results in a
significantly better agreement with the measurements. Fur-
thermore, we investigate the switching dynamics of our device
and observe a nontrivial behavior of the switching current dis-
tribution (SCD) at low temperatures that is governed by phase
diffusion. We find that this behavior is also modified by the
heating effects due to normal currents. Finally, we investigate
the charge-carrier-density dependence of the measured and
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FIG. 1. (a) Schematic representation of the multiterminal Josephson junction. Current biases IU and IR are applied via two separate contacts,
and the third contact is grounded. Voltages Vi are measured between the three pairs of contacts. (b, c) Differential resistance dV1/dIU and
dV3/dIU as a function of the current biases. In panel (b), white arrows illustrate the position of T -dependent measurement of I − V curves
[Fig. 3(d)], and colored arrows correspond to bias values where SCD measurements were performed [Fig. 3(b)]. The white star symbol shows
the extended region where a finite voltage develops between all terminals simultaneously. White arrows in panel (c) point to resonant features
attributed to MAR. (d) RSJ network model of our device. (e), (f) Simulated differential resistance maps analogous to panels (b) and (c),
respectively. I∗

R corresponds to the single-current-bias value of IR, where all three junctions switch to normal state simultaneously as IU is
ramped.

simulated resistance maps, which gives us further insight into
the possible cooling mechanisms via which the dissipated heat
escapes from the device.

II. SUPERCURRENT CHARACTERIZATION
OF A MULTITERMINAL DEVICE

A. Experimental results

Figure 1(a) shows the schematic representation of our de-
vice. A cross-shaped hBN/graphene/hBN heterostructure is
connected to three MoRe superconducting electrodes (op-
tical image is shown in Appendix A). The separation of
neighboring contacts is around 150 nm. The charge-carrier
density n in graphene can be tuned via the voltage applied
to the doped Si substrate that acts as a global back gate,
while a 300-nm-thick SiO2 layer forms the gate dielectric.
In our experiments, one of the electrodes is grounded and
two independent dc current biases, IR and IU , are applied
via the remaining two contacts, and differential voltages—V1,
V2 and V3—between the three different pairs of terminals
are measured. Transport measurements were carried out in a
Leiden dilution refrigerator at a base temperature of 40 mK
(unless otherwise stated). Figures 1(b) and 1(c) show the
differential resistance dV1/dIU (dV2/dIU )—obtained from the
measured V1 (V2) voltage by numerical differentiation with
respect to the current bias IU —as a function of IU and IR at
a back-gate voltage of VBG = 10 V. Two main features can be
identified in such a differential resistance map, similarly to
previous experiments [31,32,34,35,39,40,44,45]. First, in the

center, around small current bias values an extended super-
conducting region of zero resistance can be observed. Second,
superconducting arms [labeled by 1, 2, and 3 in Fig. 1(b)]
are spreading out from this central superconducting region in
multiple directions. Comparing differential resistance maps
obtained from the measurements of V1 [Fig. 1(b)], V2 (see
Appendixes), and V3 [Fig. 1(c)], it is easy to realize that
the central superconducting region is present in all cases,
indicating that the whole sample is superconducting and su-
percurrent can flow between all of the terminals. On the other
hand, each of the superconducting (SC) arms correspond to
supercurrent flowing between only two terminals, resulting in
zero resistance in only one of the differential resistance maps,
while a finite voltage develops between the remaining pairs of
terminals [e.g., the SC arm labeled by 1 shows zero resistance
in Fig. 1(b) and a finite voltage develops in Fig. 1(c)]. This
indicates that both normal and supercurrents can flow in the
sample simultaneously.

B. RSJ simulation

Previous works [32,39,40,45] showed that MTJJs can be
described to a large extent by a network of RCSJ elements.
Here, we neglect capacitive effects and model our three-
terminal JJ with three resistively shunted junctions (RSJs),
one between any pair of contacts, as shown in Fig. 1(d). First,
we present the results of this model and highlight its limita-
tions in comparison with our measurements. Later, we show
that the agreement between measurement and simulation can
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be improved by including self-heating effects in the model.
As detailed in the Appendixes, the differential equations of
this network model can be constructed from the Josephson
equations and Kirchhoff’s laws. The necessary input param-
eters of the model are the resistances (Ri with i ∈ {1, 2, 3})
and the critical currents (Ic,i) of the individual junctions. Ri

can be obtained from the measured differential resistances in
the normal state, at large bias currents. For these, we obtain
R1 = 420 �, R2 = 1355 �, and R3 = 815 �. Furthermore, as-
suming that our junctions are in the short junction limit and
using Ic,iRi ∝ �, it is possible to extract Ic,i from the mea-
sured differential resistance maps as well. For these, we get
Ic,1 = 545 nA, Ic,2 = 170 nA, and Ic,3 = 280 nA, respectively.
(See Appendix B for details on the extraction of parameters.)

By numerically solving the set of differential equations for
the network of Josephson junctions and resistors, we obtain
differential resistance maps as shown in Figs. 1(e) and 1(f).
The model is capable of capturing the most prominent features
of the measured differential resistance map: (i) the central
superconducting region and (ii) the superconducting arms,
corresponding to the coexistence of normal current and su-
percurrent. In the context of this model, the SC arms can
be further discussed. The total current between any pair of
terminals (I1, I2, and I3) is determined by the Kirchhoff and
Josephson equations for a given IU and IR. It can be shown that
for arbitrary IR, a single value of IU exists for each junction
for which the total junction current Ii = 0 (see Appendix B).
The ratio of IU /IR for which Ii = 0 is determined solely by the
normal resistances and is independent of IU and IR. Therefore,
we expect to observe superconductivity in the vicinity of lines
with slopes defined by the normal resistances. We also note
that in this particular geometry, due to Kirchhoff’s law, which
states that the sum of voltages in a closed loop has to be zero,
a single junction cannot switch to the normal state alone; a
voltage drop has to appear on either two or all three junctions
simultaneously. Therefore, outside the central SC region, the
SC arms correspond to a configuration where only a single
junction is superconducting and the other two resides in the
normal state. On the other hand, several missing features can
also be identified in the simulated resistance maps. The most
prominent example is the decay of superconductivity that can
be observed in the measurements along the superconducting
arms. While the width of these arms in the simulated maps is
constant towards higher current bias values, in the measure-
ments a clear narrowing of the zero-resistance regions can be
observed. Furthermore, in the measured resistance maps an
extended region exists where all three junctions switch to the
normal state simultaneously [e.g., marked by star symbol in
Fig. 1(b)], whereas in the simulated maps, this simultaneous
switching of all three junctions can only be observed for a
single bias value I∗

R [marked also by vertical dashed line in
Fig. 1(e)]. Finally, multiple resonant features [e.g., marked by
white arrows in Fig. 1(c)] are visible in the measurements
parallel to the superconducting arms that are attributed to
multiple Andreev reflections (MAR) [44] that cannot be ac-
counted for by our simple model. We also note that MAR
features are more pronounced for junction 1 than the other
two junctions. This implies a larger contact transparency and
may explain the larger critical current and lower resistance
extracted for this junction.
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FIG. 2. Critical current of junction 1 Ic,1 along the corresponding
superconducting arm as a function of (a) heating power PJ and
(b) electronic temperature Te calculated assuming only phonon cool-
ing. (c) Simulated differential resistance map taking into account the
elevated electronic temperature due to normal current flowing in the
device. (d) Simulated map of Te as a function of current biases.

III. SELF-HEATING EFFECTS

The narrowing of the superconducting arms is attributed
to Joule heating from the dissipative normal currents in the
scattering region [39]. Due to the large superconducting gap
of the MoRe that prevents hot electron diffusion towards the
leads, the electron system can only dissipate heat via electron-
phonon coupling. In this case the dissipated power towards
the substrate is given by Pe−ph = �(T δ

e − T δ ) [46], where
� is the electron-phonon coupling constant, and Te and T
are the electron and phonon bath temperatures, respectively.
Following along the lines of Ref. [39], we determine � from
the temperature dependence of Ic,1 along the corresponding
SC arm. For this we measure the switching current Is,1 for
junction 1 by sweeping IU at different values of IR and bath
temperatures. Is,1 is then defined as the value of IU where
V1 crosses a certain threshold voltage (20 µV) corresponding
to the switching from the SC to the normal state. As men-
tioned earlier, in this current-biasing scheme, IU and IR do
not directly correspond to the junction currents I1, I2, or I3.
However, since along the SC arm supercurrent only flows in
junction 1, it is possible to calculate the junction’s critical
current Ic,1 from Is,1 (see Appendix B). Moreover, as it is
detailed later, the switching current of a Josephson junction is
prone to fluctuations due to thermal effects. To eliminate these
fluctuations, we take the average of 10 000 measurements
to determine the average switching current Is,1. Next, we
calculate the power PJ dissipated in the normal regions from
Joule heating as PJ = IUV2. Figure 2(a) shows the measured
critical current Ic,1 as a function of PJ for different T bath
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temperatures. As it can be seen from the figure, the increased
heating power leads to the decrease of the switching current,
similarly to the increased bath temperature. Our assumption
is that Te is homogeneous in the device and the critical cur-
rent value is defined by Te independently from whether it
originates from bath heating or current dissipation. We then
determine the value of � for which Ic,1 as a function of the
calculated equilibrium electron temperature Te scales onto a
single curve. As it is discussed later, by assuming δ = 4, we
obtain � = 25 pW/K4. This is shown in Fig. 2(b), where all
the curves fall on top of each other. Although it is challenging
to determine the exact active area of our device, we estimate
that � scaled by the graphene’s area yields ∼100 W/m2 K4.
This is an order of magnitude larger than the value obtained
in Ref. [39] (∼10 W/m2 K3) and is significantly larger than
the value obtained for large-area, nonencapsulated graphene
devices [46] (<50 mW/m2 K4). The authors of Ref. [39] also
speculate that electron-phonon coupling can be enhanced by
the presence of the hBN substrate and by scattering at the
edges of the graphene layer. Since our device area is about
an order of magnitude smaller than the device studied in
Ref. [39], scattering at the edges could be even more signifi-
cant and could explain the larger value obtained for � scaled
by the graphene’s area.

To take the effects of self-heating into account in our sim-
ulations, we perform a fixed-point iteration based on the RSJ
model introduced previously. First, we perform the previous
simulation with the experimentally determined Ri and Ic,i pa-
rameters for all IU and IR. We then calculate the Joule heat
dissipated in the whole network as PJ = ∑

i V 2
i /Ri. From PJ

we can obtain the equilibrium electron temperature Te using
the electron-phonon coupling model for all IU and IR bias
currents. Finally, we take into account the elevated temper-
ature using an Ic(Te) function, which we reconstruct from
the temperature-dependent measurements shown previously
in Figs. 2(a) and 2(b) and from the temperature dependence
of the central superconducting region (see Appendix B for
more details). We then iterate this process to achieve a self-
consistent solution using the modified Ic,i values in our RSJ
model, which now also depend on the applied IU and IR

current biases.
Figure 2(c) shows the simulated dV1/dIU map obtained in

our model with self-heating. Compared to Fig. 1(d), several
improvements can be observed. First of all, the narrowing
of the SC arms is qualitatively reproduced. The remaining
quantitative difference could be explained by the incorrect
reconstruction of the Ic(Te) function. Secondly, the improved
simulation method is capable of producing an extended edge
on the contour of the central SC region where all three
junctions switch to the normal state simultaneously. It is
also worth noting that the simulated resistance map is in-
version symmetric, in contrast to the measurements where
the sweep direction of the bias currents results in a slightly
asymmetric central SC region. Finally, Fig. 2(d) shows the
map of Te, illustrating that the heating outside the central
SC region is significant, increasing the equilibrium temper-
ature to a few Kelvins, an order of magnitude above the
bath temperature, in agreement with our measurements shown
in Fig. 2(b).

(a) (b)

(d)(c)

0.4 0.5 0.6 0.7
I ( A)U μ

0.00

0.05

0.10

0.15

V 1
(m

V)

I = 0.1 AR μ

-0.2 Aμ

0 0.5 1
T (K)

4
6

σ
(n

A)

T (mK)
1070
600
40

−0.5 0.0 0.5
I ( A)U μ

-0.5

0

0.5

I
(

A)
i
μ

Ic, 1

Ic, 2
Ic, 3

junction 1
junction 2
junction 3

0.20 0.35 0.50
I ( A)s, 1 μ

0

3

6

co
un

ts
(a

.u
.)

J1

0.0

0.1

0.2

0.3

0.4

0.5

I ( A)R μ

0.38 0.44 0.50
I ( A)s, 1 μ

0.0

0.5

1.0

co
un

ts
(a

.u
.)

J1

T (mK)
1070
800
600

390
240
40

FIG. 3. (a) Current distribution between the three junctions in the
central superconducting region obtained from the RSJ model (dashed
lines) and from numerically minimizing the Josephson energy of the
whole network (symbols) for IR = 0.1 µA. Dotted lines show the
critical current of each junction. (b) SCD for junction 1 measured
at different IR in the central superconducting region obtained from
10 000 measurements. (c) Temperature dependence of the SCD at
IR = 0.1 µA. The narrowing of the SCD with increasing temperature
is consistent with phase diffusion. (d) Averaged I−V curves obtained
from 10 000 individual measurements in the central SC region (IR =
0.1 µA) and in the SC arm of junction 1 (IR = −0.2 µA) for different
temperatures. Inset: Standard deviation σ of the SCD as a function
of T for IR = 0.1 µA.

IV. SWITCHING DYNAMICS

In the following we further investigate the interplay be-
tween the three junctions in the regions where all junctions
switch to the normal state simultaneously around I∗

R [also
shown in Fig. 2(c)]. Figure 3(a) shows the current in each
junction as a function of IU for IR = 0.1 µA � I∗

R [orange
arrow in Fig. 2(c)], obtained from our simulation with self-
heating (dashed lines). Although Ii cannot be obtained from
our measurements, we can also calculate the current in each
junction as long as all junctions are superconducting by nu-
merically minimizing the Josephson energy (symbols). As is
visible in Fig. 3(a), this method is consistent with our sim-
ulation. The dotted horizontal lines show the critical current
of the respective junctions. As is visible also in Fig. 1(e),
junction 1 is far below its critical current when junction 2 and
3 reach their respective critical currents. Therefore, without
taking self-heating into account, we only expect junction 2
and 3 to switch together. However, when heating is included
[Fig. 2(c) and measurements on Figs. 1(b) and 1(c)], all three
junctions switch at the same IU . From these we can infer that
junctions 2 and 3 switch together and junction 1 switches im-
mediately afterwards due to heating from the other junctions.
On the other hand, for IR ∼ I∗

R , all three junctions reach their
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critical currents simultaneously and heating should play no
role in the switching process, while for IR � I∗

R [gray arrow
in Fig. 2(c)], junctions 1 and 2 switch together, and junction
3 switches due to heating. Based on the previous arguments,
we emphasize that the observation of this correlated switching
of all three junctions in an extended region along the border
of the central SC region is strong evidence for self-heating
effects.

To gain insight into the dynamics of these correlated
switchings, it is essential to investigate not only the average
switching current but also its distribution. Figure 3(b) shows
the switching current distribution (SCD) obtained from the
measurement of V1 for different IR at 40-mK base temperature.
The investigated values of IR are also indicated at the top of
Fig. 1(b) by colored arrows. Each distribution is obtained by
sweeping IU and detecting the switching current using the
previously defined threshold voltage. This process is repeated
10 000 times, and a distribution of switching current values is
obtained. Interestingly, we observe that the width of the SCD
is greatly tunable by IR [Fig. 3(b)]. We find that the standard
deviation σ of the SCD, which describes the width of the
distribution, increases by a factor of 2. This broadening of the
SCD could be explained by the different junctions that switch
simultaneously at different IR. As junction 1 takes over the role
of junction 3 with increasing IR, the sum of the critical currents
of the two junctions that switch simultaneously increases,
which could lead to a wider distribution. It is also important to
note that during the measurement of the SCD of junction 1, we
simultaneously recorded the SCD of junction 2, obtained from
the appearance of a finite V2, and find that the distributions
are identical and the switching events of the two junctions are
indistinguishable within the timescales of our measurement
(see Appendix E). This suggests that the thermalization of the
device is faster than our data acquisition.

To further investigate the escape dynamics of our device,
we measure the temperature dependence of the SCD along
the contour of the central SC region. This is shown in Fig. 3(c)
for IR = 0.1 µA, and a similar trend is observed for all inves-
tigated values of IR inside the central SC region. It is clearly
visible that the SCD gets narrower with increasing T , which
is in stark contrast to the thermally activated behavior, as the
SCD is expected to broaden with temperature. This is further
confirmed by calculating σ as a function of bath temperature
for IR = 0.1 µA, which is shown in the inset of Fig. 3(d).
Here, an ∼40% decrease of σ is visible in the investigated
temperature range. The observed narrowing of the SCD with
increasing T is a consequence of phase diffusion due to
thermally activated escape and retrapping, and is consistent
with previous observations in moderately damped Josephson
junctions [47] and planar Josephson junctions [48]. However,
it is important to note that we observe the narrowing of the
SCD in the whole available temperature range and do not find
the broadening of the SCD due to thermally activated escape,
even for the lowest temperatures. This suggests that phase
diffusion is significant even at base temperature.

We performed similar measurements along the SC arm
of junction 1. Here, we find a different behavior and we
cannot resolve a clear SCD. Figure 3(d) shows the aver-
aged I−V curves of the 10 000 individual measurements for
IR = −0.2 µA and IR = 0.1 µA [white arrows in Fig. 1(b)] for

different temperatures. In the central SC region, for IR =
0.1 µA, a sharp transition between the SC and normal states
can be seen. In this case the curvature of the averaged I−V
curves results from averaging curves with fluctuating switch-
ing currents. On the other hand, for IR = −0.2 µA, along the
SC arm of junction 1, a smooth transition is observed, indicat-
ing that a finite voltage develops below the switching current.
This is also consistent with the theoretical expectations for
moderately damped Josephson junctions at higher tempera-
tures [47]. As T increases, the thermally activated retrapping
results in a significant damping and the junctions become
overdamped. This is further confirmed by the T dependence of
the curves. For IR = 0.1 µA, as T is increased, the switching
current decreases [also visible in Fig. 3(c)]. However, for
IR = −0.2 µA, along the SC arm of junction 1, the effect of
increasing T is negligible; the increase of T rather makes
the transition between the SC and normal states smoother, as
expected for overdamped junctions. It is also consistent with
the self-heating picture, since increasing the bath temperature
has less effect on the electronic temperature when a large
heating power is already present due to the normal currents in
the device. Therefore, we conclude that the switching of our
multiterminal device is determined by phase diffusion at lower
temperatures along the contour of the central SC region and
show overdamped characteristics along the SC arm of junction
1 due to the increased temperature.

V. CHARGE CARRIER DENSITY DEPENDENCE

Finally, we investigate the dependence of the differential
resistance maps on the applied back-gate voltage VBG. As
mentioned earlier, the exponent of the electron-phonon cool-
ing power formula δ can be 3 or 4, depending on electronic
mean free path lmfp and temperature [46]. At the relatively low
temperatures accessed in our measurements, δ = 4 describes
phonon cooling in clean devices where lmfp is large, while
δ = 3 corresponds to phonon cooling modified by impurity
scattering in devices with small lmfp. Furthermore, the expres-
sion for � is also different in the two limits. In the clean limit
� = π2D2|EF |k4

B/15ρM h̄5v3
F s3, where D is the deformation

potential of graphene, which describes the electron-phonon
coupling strength, ρM is the mass density of graphene, vF =
106 m/s is the Fermi velocity, EF = h̄vF

√
πn is the Fermi en-

ergy, and s = 2 × 104 m/s is the speed of sound in graphene.
It can easily be shown that in the clean limit � ∝ √

n, while
in the dirty limit the expression is modified and � becomes
independent of n [46]. Figure 4 shows the measured and simu-
lated resistance maps for different VBG and δ = 4. We scale �

according to the
√

n dependence, and n is calculated accord-
ing to a planar capacitor model based on the hBN and SiO2

dielectrics (see Appendix C). From Fig. 4 it is visible that
the qualitative trend is reproduced well. Here, we assumed
δ = 4, but note that a reasonably good agreement can also
be achieved by taking δ = 3 and a constant � = 30 pW/K3

(see Appendix C). Although the overall qualitative agreement
between measurement and simulation is good, some differ-
ences can still be observed. Most notably, some of the SC
arms persist up to larger current bias values in the measure-
ments, especially noticeable for VBG = 2 V. This could be
explained by the appearance of additional cooling paths. As

033143-5



MÁTÉ KEDVES et al. PHYSICAL REVIEW RESEARCH 6, 033143 (2024)

−2

−1

0

1

2

I
(

A)
U
μ

V = 10 VBG Simulation

−2

−1

0

1

2

I
(

A)
U
μ

6 V

−2 −1 0 1 2
I ( A)R μ

−2

−1

0

1

2

I
(

A)
U
μ

2 V

−2 −1 0 1 2
I ( A)R μ

0 1 2
dV /dI (k )1 U Ω

FIG. 4. Back-gate dependence of the measured (left) and sim-
ulated (right) differential resistance maps. Simulations were per-
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√
n dependence expected for the clean limit

of electron-phonon coupling.

Te is increased up to a few Kelvins, kBTe becomes comparable
to �, allowing quasiparticles to diffuse into the MoRe leads.
Furthermore, we assumed that Te is homogeneous in the whole
device, which does not necessarily hold for large heating
powers. The inhomogeneity of Te could significantly modify
the ratio of normal and SC segments of the scattering region,
and as a result, the estimated input parameters of our model
would become increasingly inaccurate with increasing heating
powers.

VI. CONCLUSIONS

In conclusion, we have measured three-terminal graphene
Josephson junctions and investigated the heating effects and
junction dynamics in this multiterminal system. We have
shown that a significant improvement can be achieved over
existing RCSJ models for MTJJs by incorporating heating
effects into the simulation method. By considering only Joule
heating from the normal currents in the device and electron-
phonon coupling as a cooling mechanism, we were able
to obtain the narrowing of the SC arms that is commonly
observed in experiments and the simultaneous switching of
all junctions. By measuring the charge-carrier-density depen-
dence of the differential resistance maps, we could infer the
limitations of our model and suggest that, for significantly
increased electronic temperatures, new cooling mechanisms
might become available. We propose that by including ad-
ditional cooling terms, such as the outflow of hot electrons
via the SC terminals, our model could be further improved.

A
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D
V3
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V2

IR

IU

(b)(a)

−10 0 10
V (V)BG
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I
(
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U
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0 1 2
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FIG. 5. (a) Optical microscopic image of the device with the
schematic illustration of the measurement geometry. Scale bar is
2 µm. (b) Differential resistance of junction 1 dV1/dIU as a function
of current bias IU and back-gate voltage VBG for IR = 0.

Furthermore, from the investigation of the SCD, we con-
cluded that the switching from the central SC region to the
normal state is governed by phase diffusion, even at very
low temperatures. As the temperature is increased due to
self-heating, this phase diffusion modifies the characteristics
of the device, resulting in smooth I−V curves resembling
overdamped Josephson junctions. Building on these results,
future experiments could focus on the phase-biasing of MTJJs
and inductance measurements using rf techniques in the SC
state, where self-heating effects are absent.

Raw measurement data and simulation results are available
at [49].
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APPENDIX A: DEVICE GEOMETRY
AND MEASUREMENT SETUP

The measured sample is shown in Fig. 5(a). The dry-
transfer technique with polycarbonate/polydimethylsiloxane
stamps was employed to stack hBN (20 nm, top)/single layer
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FIG. 6. (a)–(c) Raw measured voltages V1, V2, and V3 as a function of IU and IR. (d)–(f) Differential resistances calculated from
panels (a)–(c).

graphene/hBN (35 nm, bottom). To fabricate electrical con-
tacts, we used electron-beam lithography patterning followed
by a reactive-ion-etching step using a CHF3/O2 mixture and
finally deposited MoRe (50 nm) by dc sputtering. As it is vis-
ible on the optical microscopic image in Fig. 5(a), four MoRe
contacts were fabricated; however, one of the contacts failed
to contact the graphene layer, resulting in a three-terminal
device as presented in the main text. The separation of neigh-
boring contacts is around 150 nm. The heterostructure around
the cross-shaped region was etched away using reactive-ion
etching with SF6/O2 mixture.

Transport measurements were carried out in a Leiden dilu-
tion refrigerator at a base temperature of 40 mK (unless other-
wise stated). Measurements were performed using a NI USB
6341 measurement card. In each measurement, contact A was
grounded and the dc current biases IR and IU were applied via
1-M� preresistors to contacts B and C, respectively. During
the SCD measurements for fixed values of IR, IU was ramped
from 0 to 1 µA at a ramp rate of 100 µA/s while the voltages
between two different pairs of terminals were simultaneously
measured. Figure 6 shows the measured raw voltages as a
function of the current biases, corresponding to the differential
resistance maps shown in Fig. 1 of the main text.

Figure 5(b) shows the differential resistance of junction 1
as a function of VBG and IU , showing a highly tunable critical
current with VBG, as is common for graphene devices. The
critical current can be tuned to zero near the charge neu-
trality point, and we observe a significantly smaller critical
current for negative VBG that we attribute to doping from the
MoRe contacts and formation of a p-n junction at the MoRe
interface [50].

APPENDIX B: RSJ SIMULATIONS

As discussed in the main text, we start our simulation by
solving an RSJ network model. For our three-terminal device,
this consists of three blocks of resistively shunted Josephson
junctions as shown in Fig. 1(d) of the main text. The ith block
is described by a resistor with resistance Ri and the phase
difference of the Josephson junction ϕi. The normal current
flowing in the resistor is given by IN,i = Vi/Ri, where Vi is
the voltage drop on the RSJ block. We employ a sinusoidal
current-phase relation, and the supercurrent flowing in the
Josephson junction is given by Is,i = Ic,i sin ϕi. According to
the corresponding Josephson equation, the time derivative of
the phase difference is given by ϕ̇i = 2eVi/h̄. With these, one
can obtain the differential equation of a single RSJ block:

Ii = Ic,i sin ϕi + h̄

2eRi
Vi,

where Ii is the total current flowing in the ith block. In-
troducing the external current biases IU and IR and the
superconducting phases of the corresponding leads ϕU and ϕR

according to Fig. 7(a), choosing the phase of the grounded
terminal as zero, and applying Kirchhoff’s law, one can end
up with a set of coupled differential equations for the complete
RSJ network:

da1

dt
= 2e

h̄
[IU − Ic,2 sin(−ϕU ) − Ic,3 sin(ϕR − ϕU )],

da2

dt
= 2e

h̄
[IR − Ic,1 sin(−ϕR) + Ic,3 sin(ϕR − ϕU )], (A1)
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effects into account.

where

a1 = ϕR − ϕU

R3
− ϕU

R2
,

a2 = −ϕR − ϕU

R3
− ϕU

R1
,

and we made use of the fact that ϕ3 = ϕR − ϕU . By numeri-
cally solving equation system (A1), we obtain the stationary
ϕi phase differences and Vi voltages from which both the nor-
mal In,i and supercurrents Is,i in each block can be calculated
for a given IU and IR.

1. Determination of junction parameters

As mentioned in the main text, to quantitatively match the
simulations to our measurement, we determine Ri and Ic,i from
the measured differential resistance maps. First of all, it is easy
to show that the ratio IU /IR for which Is,i = 0, corresponding
to the slope of the SC arms, is determined by the normal
resistances as

α = −R2 + R3

R2
,

β = − R1

R1 + R2
,

γ = R1

R2
, (A2)

for junctions 1, 2, and 3, respectively. For these we obtain
α = −1.6, β = −0.34, and γ = 0.31 from the measured dif-
ferential resistance maps at VBG = 10 V. These are shown
with dashed lines in Fig. 7(b). Since these equations are not
independent, we also calculate the differential resistances in
the normal state where only normal currents are flowing as

RI = dV1

dIU
= R1R2

R1 + R2 + R3
,

RII = dV2

dIU
= R2(R1 + R3)

R1 + R2 + R3
,

RIII = dV2

dIU
= R2R3

R1 + R2 + R3
. (A3)

Combining equation systems (A2) and (A3), one can show
that R2 = RI (γ − α)/γ and the normal resistances can be
calculated. For these, we obtain R1 = 420 �, R2 = 1355 �,
and R3 = 815 �, respectively. Having obtained the normal
resistances, it is also possible to calculate the junction crit-
ical currents Ic,i. First, we calculate the superconducting
coherence length in graphene. Since the length of our junc-
tions is smaller than 200 nm, well below the typical mean
free path for similar graphene devices, we assume ballis-
tic conduction. Using � = 1.2 meV for the SC gap of the
MoRe contacts [51,52], the coherence length is given by ξ =
h̄vF /π� ≈ 200 nm. Therefore, we conclude that our junc-
tions are in the short, ballistic limit, which implies that Ic,iRi ∝
�. This allows us to calculate Ic,i from the measured differ-
ential resistance maps using the previously calculated normal
resistances. Using this, it can be shown that for IR = 0, the
total critical current is given by Ic,tot = Ic,2 + Ic,3 = Ic,2(1 +
R2/R3) and the individual junction critical currents Ic,i can
be calculated using the Ri normal resistances. We associate
Ic,i with the values obtained from the differential resistance
maps measured at base temperature. For these, we obtain
Ic,1 = 545 nA, Ic,2 = 170 nA, and Ic,3 = 280 nA.

2. Determination of Ic,i(Te)

As discussed in the main text, to include heating effects
in our simulations we perform a fixed-point iteration. The
pseudocode for this algorithm is shown in Algorithm 1. First,
we solve the RSJ network model with the experimentally
obtained parameters and calculate the Joule heating power as
PJ = ∑

i V 2
i /Ri and the equilibrium electron temperature as

Te = 4
√

T 4 + PJ/�, using � = 25 pW/K4 as obtained from

ALGORITHM 1. Iterative procedure for the self-consistent calculation of junction currents and electronic temperature.

function CALCULATE_MTJJ niter = 10, δ, �, Ri, Ic,i(Te) for i ∈ {1, 2, 3}, Tbath

Te ← Tbath for all IU , IR � Initialization
for niter repetitions do
for all IU , IR in the range
Vi, Ii ← solve ODE set using Ic,i = Ic,i(Te) � Equation system (A1)
P ← V 2

1 /R1 + V 2
2 /R2 + V 2

3 /R3

T new
e ← solve P = �(T δ

e − T δ
bath ) for Te � Assumes Pe−ph = PJ

end for
end for
return Ii(IU , IR),Vi(IU , IR ), Te(IU , IR )

end function
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FIG. 8. The experimentally obtained Ic,1(Te) function.
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junction 1.

the temperature-dependent measurements (see Fig. 2. of the
main text) and assuming homogeneous temperature distri-
bution in the device. The next step is to take the effect of
the elevated electron temperature into account via the Ic(Te)
dependence. We construct this function from our temperature-
dependent measurements. For this we have to consider two
different regimes. First, in the central SC region, as discussed
previously, the individual junction critical currents can be cal-
culated using the normal resistances. Assuming that the ratio
of the resistances does not change with temperature, we can
obtain Ic,1 by taking Ic,tot as the mean of the SCDs measured at
IR = 0 for different T [Fig. 3(c) of the main text]. Moreover,
since in this region all junctions are superconducting, we can
take Te = T , as there is no Joule heating.

−2

−1

0

1

2

I
(

A)
U
μ

#1 #3 #10

−2 −1 0 1 2
I ( A)R μ

−2

−1

0

1

2

I
(

A)
U
μ

−2 −1 0 1 2
I ( A)R μ

−2 −1 0 1 2
I ( A)R μ

0 1 2
dV /dI (k )1 U Ω

0 2 4
ΔT (K)e

(a) (b) (c)

(d) (e) (f )

FIG. 9. (a)–(c) Simulated differential resistance maps after 1, 3, and 10 iterations, respectively. (d)–(f) Change of electronic temperature
�Te = Tn − Tn−1, where n is the iteration step.

TABLE I. Charge-carrier densities n and � in the case of δ = 4,
corresponding to the values of VBG for which the differential resis-
tance maps were measured and simulated.

VBG (V) n (1012 cm−2) �δ=4 (pW/K4)

10 0.74 25
6 0.48 20
2 0.22 14

Next, we consider the SC arm of junction 1. Utilizing the
previous definition of the slope α of the SC arm of junction
1, for a given IR the supercurrent in junction 1 is zero for
IU = αIR. Furthermore, since along the SC arm only junction
1 is superconducting and the remaining two junctions are
in the normal state, we can calculate the ratio of IU that is
flowing towards junction 1. Combining these, the net current
of junction 1 is given by I1 = (IU − αIR)R2/(R2 + R3). In this
case we define the average switching current of junction 1
Is,1 as the value of IU for which V 1 exceeds the predefined
threshold voltage (20 µV), where V 1 is the average voltage
obtained from averaging 10 000 individual measurements.
From this we calculate the critical current of junction 1 as
Ic,1 = (Is,1 − αIR)R2/(R2 + R3). The obtained values of Ic,1

for different Te are shown in Fig. 8. To find the value of Ic,1

for any Te, we linearly interpolate and extrapolate. Finally, to
get Ic,2 and Ic,3, we simply scale the Ic,1(Te) function accord-
ing to the ratio of normal resistances, based on our previous
arguments.

The simulated differential resistances for IR = 0 are shown
with solid lines in Fig. 7(c). As is visible, the simulated curves
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FIG. 10. Simulation with δ = 3 and constant � = 30 pW/K3.

qualitatively match the measured points for IU > 0. For neg-
ative IU , the retrapping to the SC state happens later in the
measurements than in the simulations. We attribute this also to
the elevated temperature due to self-heating, as the simulated
curves do not take into account the sweep direction of the
current bias.

3. Iteration process

To further illustrate the fixed-point iteration method, we
show the simulated differential resistance map dV1/dIU af-
ter different numbers of iteration in Fig. 9. The first step
[Fig. 9(a)] corresponds to the simulation without taking
heating into account, also shown in Figs. 1(e) and 1(f) of
the main text. After three iterations [Fig. 9(b)], the main
features of the measured resistance maps are well repro-
duced. Figure 9(c) shows the final result after ten rounds of
iteration, which only shows minor differences compared to
Fig. 9(b). Figures 9(d)–9(f) show the change of electronic

temperature �Te = Tn − Tn−1, where n is the iteration step
and T0 = 40 mK is the base temperature. It can be seen that
while the electronic temperature is drastically modified for
the first step, later iterations only result in minor changes,
indicating the convergence of our simulations.

APPENDIX C: ADDITIONAL SIMULATIONS

As mentioned in the main text, we can also perform the
scaling of Ic,1 along the SC arm of junction 1 using δ = 3,
corresponding to the dirty limit of electron-phonon coupling.
This scaling yields � = 30 pW/K3. We also construct the
Ic(Te) function using this modified � and simulate the dif-
ferential resistance maps analogous to Fig. 4 of the main text.
In this case the expression for � is modified; it is given by

� = 2ζ (3)D2|EF |k3
B

π2ρM h̄4v3
F s2lmfp

. It can be shown that, in this case, � is

independent of n. The simulated resistance maps for δ = 3
and � = 30 pW/K3 are shown in Fig. 10.
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FIG. 12. (a), (b) Additional SCD data for junction 1 measured
at IR = 0.2 µA and IR = 0.4 µA, respectively, for different tempera-
tures. (c), (d) SCDs for junction 2, simultaneously measured with the
SCDs for junction 1.

As detailed in the main text, for δ = 4, � is scaled ac-
cording to an

√
n dependence. The � values for each VBG

can be found in Table I. We also present the charge-carrier
densities n for the different VBG values where the differential
resistance maps were measured and simulated in Table I.
We determine the back-gate voltage of the charge neutrality
point VCNP = −1.4 V from the gate-dependent measurement
shown in Fig. 5(c). Using this, the carrier density is given
by n = αBG(VBG − VCNP). The lever arm of the back gate is
calculated according to a planar capacitor model as αBG =
ε0/e(dSiO2/εSiO2 + dhBN/εhBN)−1, where ε0 is the vacuum per-
mittivity, e is the elementary charge, εSiO2 = 4 (εhBN = 3.3),
and dSiO2 = 300 nm (dhBN = 35 nm) are the dielectric con-
stant and thickness of SiO2 (hBN), respectively.

APPENDIX D: MULTIPLE ANDREEV REFLECTIONS

Figure 11 shows the differential resistances dVi/dIU plot-
ted as a function of the measured voltages Vi. We observe
resonant features that are attributed to multiple Andreev
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FIG. 13. Differential resistance R as a function of out-of-plane
magnetic field B and IR for IU = 0. Orange and white dashed
lines show the maximum of the switching and retrapping currents,
respectively.

reflections [44]. Each resistance map is plotted as a function
of the two voltages that were measured simultaneously.

APPENDIX E: EXTENDED SCD DATA

As mentioned earlier, we performed the SCD mea-
surements simultaneously for two different junctions.
Figures 12(a) and 12(b) show additional SCDs for junction
1, while Figs. 12(c) and 12(d) show the SCDs measured for
junction 2. As mentioned in the main text, we observe similar
tendencies for all investigated SCDs in the range of 0 µA <

IR < 0.5 µA. The narrowing of the SCDs with temperature
can be observed for both junctions in the whole investigated
temperature range. Furthermore, the SCDs obtained for junc-
tions 1 and 2 are almost identical, further showing that the two
junctions switch in a correlated manner.

APPENDIX F: SUPERCONDUCTING DIODE EFFECT

Previous works showed that MTJJs are a suitable platform
to realize the Josephson diode effect [34,35,37], where the
amplitude of the critical current depends on the direction of
the current flow. Figure 13 shows the differential resistance as
a function of out-of-plane magnetic field B and IR for IU = 0.
The differential resistance is measured between contacts A and
B using lock-in technique at 177-Hz frequency using 10-nA
ac current bias applied via a 1-M� preresistor. During the
measurement, IR is ramped from −1 µA to 1 µA for fixed B. As
is visible in Fig. 13, the maximum switching and retrapping
currents are observed for different B (orange and white dashed
lines, respectively), which is a signature of the Josephson
diode effect.

[1] M. P. Nowak, M. Wimmer, and A. R. Akhmerov, Supercur-
rent carried by nonequilibrium quasiparticles in a multiterminal
Josephson junction, Phys. Rev. B 99, 075416 (2019).

[2] R. Mélin, R. Danneau, K. Yang, J.-G. Caputo, and B. Douçot,
Engineering the Floquet spectrum of superconducting multiter-
minal quantum dots, Phys. Rev. B 100, 035450 (2019).

[3] R. Mélin, Inversion in a four-terminal superconducting device
on the quartet line, I. Two-dimensional metal and the quartet
beam splitter, Phys. Rev. B 102, 245435 (2020).

[4] R. Mélin, R. Danneau, and C. B. Winkelmann, Proposal for
detecting the π -shifted Cooper quartet supercurrent, Phys. Rev.
Res. 5, 033124 (2023).

[5] B. Douçot, R. Danneau, K. Yang, J.-G. Caputo, and R. Mélin,
Berry phase in superconducting multiterminal quantum dots,
Phys. Rev. B 101, 035411 (2020).

[6] A. Melo, V. Fatemi, and A. Akhmerov, Multiplet supercur-
rent in Josephson tunneling circuits, SciPost Phys. 12, 017
(2022).

033143-11

https://doi.org/10.1103/PhysRevB.99.075416
https://doi.org/10.1103/PhysRevB.100.035450
https://doi.org/10.1103/PhysRevB.102.245435
https://doi.org/10.1103/PhysRevResearch.5.033124
https://doi.org/10.1103/PhysRevB.101.035411
https://doi.org/10.21468/SciPostPhys.12.1.017


MÁTÉ KEDVES et al. PHYSICAL REVIEW RESEARCH 6, 033143 (2024)

[7] R.-P. Riwar, M. Houzet, J. S. Meyer, and Y. V. Nazarov,
Multi-terminal Josephson junctions as topological matter, Nat.
Commun. 7, 11167 (2016).

[8] E. Eriksson, R.-P. Riwar, M. Houzet, J. S. Meyer, and Y. V.
Nazarov, Topological transconductance quantization in a four-
terminal Josephson junction, Phys. Rev. B 95, 075417 (2017).

[9] M. Houzet and J. S. Meyer, Majorana-Weyl crossings in topo-
logical multiterminal junctions, Phys. Rev. B 100, 014521
(2019).

[10] H.-Y. Xie, M. G. Vavilov, and A. Levchenko, Topological
Andreev bands in three-terminal Josephson junctions, Phys.
Rev. B 96, 161406(R) (2017).

[11] H.-Y. Xie, M. G. Vavilov, and A. Levchenko, Weyl nodes in
Andreev spectra of multiterminal Josephson junctions: Chern
numbers, conductances, and supercurrents, Phys. Rev. B 97,
035443 (2018).

[12] H.-Y. Xie, J. Hasan, and A. Levchenko, Non-Abelian
monopoles in the multiterminal Josephson effect, Phys. Rev. B
105, L241404 (2022).

[13] J. S. Meyer and M. Houzet, Nontrivial Chern numbers in three-
terminal Josephson junctions, Phys. Rev. Lett. 119, 136807
(2017).

[14] O. Deb, K. Sengupta, and D. Sen, Josephson junctions of mul-
tiple superconducting wires, Phys. Rev. B 97, 174518 (2018).

[15] L. Peralta Gavensky, G. Usaj, D. Feinberg, and C. A. Balseiro,
Berry curvature tomography and realization of topological
Haldane model in driven three-terminal Josephson junctions,
Phys. Rev. B 97, 220505(R) (2018).

[16] R. L. Klees, G. Rastelli, J. C. Cuevas, and W. Belzig, Microwave
spectroscopy reveals the quantum geometric tensor of topolog-
ical Josephson matter, Phys. Rev. Lett. 124, 197002 (2020).

[17] V. Fatemi, A. R. Akhmerov, and L. Bretheau, Weyl Josephson
circuits, Phys. Rev. Res. 3, 013288 (2021).

[18] L. Peyruchat, J. Griesmar, J.-D. Pillet, and C. O. Girit,
Transconductance quantization in a topological Josephson tun-
nel junction circuit, Phys. Rev. Res. 3, 013289 (2021).

[19] H. Weisbrich, R. L. Klees, G. Rastelli, and W. Belzig, Second
Chern number and non-Abelian Berry phase in topological su-
perconducting systems, PRX Quantum 2, 010310 (2021).

[20] Y. Chen and Y. V. Nazarov, Weyl point immersed in a contin-
uous spectrum: An example from superconducting nanostruc-
tures, Phys. Rev. B 104, 104506 (2021).

[21] Y. Chen and Y. V. Nazarov, Spin Weyl quantum unit: A theoret-
ical proposal, Phys. Rev. B 103, 045410 (2021).

[22] E. V. Repin and Y. V. Nazarov, Weyl points in multiterminal
hybrid superconductor-semiconductor nanowire devices, Phys.
Rev. B 105, L041405 (2022).

[23] L. Peralta Gavensky, G. Usaj, and C. A. Balseiro, Multi-
terminal Josephson junctions: A road to topological flux
networks, Europhys. Lett. 141, 36001 (2023).

[24] M. Coraiola, D. Z. Haxell, D. Sabonis, H. Weisbrich, A. E.
Svetogorov, M. Hinderling, S. C. ten Kate, E. Cheah, F. Krizek,
R. Schott, W. Wegscheider, J. C. Cuevas, W. Belzig, and F.
Nichele, Phase-engineering the Andreev band structure of a
three-terminal Josephson junction, Nat. Commun. 14, 6784
(2023).

[25] S. Matsuo, J. S. Lee, C.-Y. Chang, Y. Sato, K. Ueda,
C. J. Palmstrøm, and S. Tarucha, Observation of nonlocal
Josephson effect on double InAs nanowires, Commun. Phys.
5, 221 (2022).

[26] S. Matsuo, T. Imoto, T. Yokoyama, Y. Sato, T. Lindemann, S.
Gronin, G. C. Gardner, S. Nakosai, Y. Tanaka, M. J. Manfra,
and S. Tarucha, Phase-dependent Andreev molecules and su-
perconducting gap closing in coherently-coupled Josephson
junctions, Nat. Commun. 14, 8271 (2023).

[27] S. Matsuo, T. Imoto, T. Yokoyama, Y. Sato, T. Lindemann,
S. Gronin, G. C. Gardner, M. J. Manfra, and S. Tarucha,
Phase engineering of anomalous Josephson effect derived from
Andreev molecules, Sci. Adv. 9, eadj3698 (2023).

[28] M. Coraiola, D. Z. Haxell, D. Sabonis, M. Hinderling, S. C.
ten Kate, E. Cheah, F. Krizek, R. Schott, W. Wegscheider, and
F. Nichele, Spin-degeneracy breaking and parity transitions in
three-terminal Josephson junctions, arXiv:2307.06715.

[29] A. H. Pfeffer, J. E. Duvauchelle, H. Courtois, R. Mélin, D.
Feinberg, and F. Lefloch, Subgap structure in the conductance
of a three-terminal Josephson junction, Phys. Rev. B 90, 075401
(2014).

[30] Y. Cohen, Y. Ronen, J.-H. Kang, M. Heiblum, D. Feinberg, R.
Mélin, and H. Shtrikman, Nonlocal supercurrent of quartets in a
three-terminal Josephson junction, Proc. Natl. Acad. Sci. USA
115, 6991 (2018).

[31] E. G. Arnault, S. Idris, A. McConnell, L. Zhao, T. F. Larson,
K. Watanabe, T. Taniguchi, G. Finkelstein, and F. Amet, Dy-
namical stabilization of multiplet supercurrents in multiterminal
Josephson junctions, Nano Lett. 22, 7073 (2022).

[32] G. V. Graziano, M. Gupta, M. Pendharkar, J. T. Dong, C. P.
Dempsey, C. Palmstrøm, and V. S. Pribiag, Selective control of
conductance modes in multi-terminal Josephson junctions, Nat.
Commun. 13, 5933 (2022).

[33] K.-F. Huang, Y. Ronen, R. Mélin, D. Feinberg, K. Watanabe,
T. Taniguchi, and P. Kim, Evidence for 4e charge of Cooper
quartets in a biased multi-terminal graphene-based Josephson
junction, Nat. Commun. 13, 3032 (2022).

[34] J. Chiles, E. G. Arnault, C.-C. Chen, T. F. Q. Larson, L. Zhao,
K. Watanabe, T. Taniguchi, F. Amet, and G. Finkelstein, Nonre-
ciprocal supercurrents in a field-free graphene Josephson triode,
Nano Lett. 23, 5257 (2023).

[35] M. Gupta, G. V. Graziano, M. Pendharkar, J. T. Dong, C. P.
Dempsey, C. Palmstrøm, and V. S. Pribiag, Gate-tunable super-
conducting diode effect in a three-terminal Josephson device,
Nat. Commun. 14, 3078 (2023).

[36] S. Matsuo, T. Imoto, T. Yokoyama, Y. Sato, T. Lindemann, S.
Gronin, G. C. Gardner, M. J. Manfra, and S. Tarucha, Josephson
diode effect derived from short-range coherent coupling, Nat.
Phys. 19, 1636 (2023).

[37] M. Coraiola, A. E. Svetogorov, D. Z. Haxell, D. Sabonis, M.
Hinderling, S. C. ten Kate, E. Cheah, F. Krizek, R. Schott,
W. Wegscheider, J. C. Cuevas, W. Belzig, and F. Nichele,
Flux-tunable Josephson diode effect in a hybrid four-terminal
Josephson junction, ACS Nano 18, 9221 (2024).

[38] E. Strambini, S. D’Ambrosio, F. Vischi, F. S. Bergeret, Y. V.
Nazarov, and F. Giazotto, The ω-SQUIPT as a tool to phase-
engineer Josephson topological materials, Nat. Nanotechnol.
11, 1055 (2016).

[39] A. W. Draelos, M.-T. Wei, A. Seredinski, H. Li, Y. Mehta,
K. Watanabe, T. Taniguchi, I. V. Borzenets, F. Amet, and
G. Finkelstein, Supercurrent flow in multiterminal graphene
Josephson junctions, Nano Lett. 19, 1039 (2019).

[40] J. Kölzer, A. R. Jalil, D. Rosenbach, L. Arndt, G. Mussler,
P. Schüffelgen, D. Grützmacher, H. Lüth, and T. Schäpers,

033143-12

https://doi.org/10.1038/ncomms11167
https://doi.org/10.1103/PhysRevB.95.075417
https://doi.org/10.1103/PhysRevB.100.014521
https://doi.org/10.1103/PhysRevB.96.161406
https://doi.org/10.1103/PhysRevB.97.035443
https://doi.org/10.1103/PhysRevB.105.L241404
https://doi.org/10.1103/PhysRevLett.119.136807
https://doi.org/10.1103/PhysRevB.97.174518
https://doi.org/10.1103/PhysRevB.97.220505
https://doi.org/10.1103/PhysRevLett.124.197002
https://doi.org/10.1103/PhysRevResearch.3.013288
https://doi.org/10.1103/PhysRevResearch.3.013289
https://doi.org/10.1103/PRXQuantum.2.010310
https://doi.org/10.1103/PhysRevB.104.104506
https://doi.org/10.1103/PhysRevB.103.045410
https://doi.org/10.1103/PhysRevB.105.L041405
https://doi.org/10.1209/0295-5075/acb2f6
https://doi.org/10.1038/s41467-023-42356-6
https://doi.org/10.1038/s42005-022-00994-0
https://doi.org/10.1038/s41467-023-44111-3
https://doi.org/10.1126/sciadv.adj3698
https://arxiv.org/abs/2307.06715
https://doi.org/10.1103/PhysRevB.90.075401
https://doi.org/10.1073/pnas.1800044115
https://doi.org/10.1021/acs.nanolett.2c01999
https://doi.org/10.1038/s41467-022-33682-2
https://doi.org/10.1038/s41467-022-30732-7
https://doi.org/10.1021/acs.nanolett.3c01276
https://doi.org/10.1038/s41467-023-38856-0
https://doi.org/10.1038/s41567-023-02144-x
https://doi.org/10.1021/acsnano.4c01642
https://doi.org/10.1038/nnano.2016.157
https://doi.org/10.1021/acs.nanolett.8b04330


SELF-HEATING EFFECTS AND SWITCHING DYNAMICS … PHYSICAL REVIEW RESEARCH 6, 033143 (2024)

Supercurrent in Bi4Te3 topological material-based three-
terminal junctions, arXiv:2301.01115.

[41] F. Zhang, A. S. Rashid, M. T. Ahari, W. Zhang, K. M.
Ananthanarayanan, R. Xiao, G. J. de Coster, M. J. Gilbert, N.
Samarth, and M. Kayyalha, Andreev processes in mesoscopic
multiterminal graphene Josephson junctions, Phys. Rev. B 107,
L140503 (2023).

[42] J. Clarke, A. N. Cleland, M. H. Devoret, D. Esteve, and J. M.
Martinis, Quantum mechanics of a macroscopic variable: The
phase difference of a Josephson junction, Science 239, 992
(1988).

[43] G.-H. Lee, D. Jeong, J.-H. Choi, Y.-J. Doh, and H.-J.
Lee, Electrically tunable macroscopic quantum tunneling in
a graphene-based Josephson junction, Phys. Rev. Lett. 107,
146605 (2011).

[44] N. Pankratova, H. Lee, R. Kuzmin, K. Wickramasinghe,
W. Mayer, J. Yuan, M. G. Vavilov, J. Shabani, and V. E.
Manucharyan, Multiterminal Josephson effect, Phys. Rev. X 10,
031051 (2020).

[45] E. G. Arnault, T. F. Q. Larson, A. Seredinski, L. Zhao, S.
Idris, A. McConnell, K. Watanabe, T. Taniguchi, I. Borzenets, F.
Amet, and G. Finkelstein, Multiterminal inverse AC Josephson
effect, Nano Lett. 21, 9668 (2021).

[46] C. B. McKitterick, D. E. Prober, and M. J. Rooks, Electron-
phonon cooling in large monolayer graphene devices, Phys.
Rev. B 93, 075410 (2016).

[47] J. C. Fenton and P. A. Warburton, Monte Carlo simula-
tions of thermal fluctuations in moderately damped Josephson

junctions: Multiple escape and retrapping, switching- and
return-current distributions, and hysteresis, Phys. Rev. B 78,
054526 (2008).

[48] D. Z. Haxell, E. Cheah, F. Křížek, R. Schott, M. F. Ritter, M.
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