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Abstract. A preference system Z is an undirected graph where vertices
have preferences over their neighbors, and Z admits a master list if all
preferences can be derived from a single ordering over all vertices. We
study the problem of deciding whether a given preference system 7 is
close to admitting a master list based on three different distance mea-
sures. We determine the computational complexity of the following ques-
tions: can Z be modified by (i) k& swaps in the preferences, (ii) k& edge
deletions, or (iii) k vertex deletions so that the resulting instance admits
a master list? We investigate these problems in detail from the viewpoint
of parameterized complexity and of approximation. We also present two
applications related to stable and popular matchings.

1 Introduction

A preference system models a set of agents as an undirected graph where agents
are vertices, and each agent has preferences over its neighbors. Preference sys-
tems are a fundamental concept in the area of matching under preferences which,
originating in the seminal work of Gale and Shapley [16] on stable matchings, is
a prominent research field in the intersection of algorithm design and computa-
tional social choice that has steadily gained attention over the last two decades.

Preference systems may admit a master list, that is, a global ranking over all
agents from which agents derive their preferences. Master lists arise naturally in
many practical scenarios such as P2P networks [26], job markets [21], and student
housing assignments [30]. Consequently, master lists and its generalizations have
been the focus of research in several papers [7,9,11,21,22,24,29].

In this work we aim to investigate the computational complexity of recogniz-
ing preference systems that are close to admitting a master list. Such instances
may arise as a result of noise in the data set, or in scenarios where a global
ranking of agents is used in general, with the exception of a few anomalies.
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Our Contribution. We introduce three measures to describe the distance of
a given preference system Z from the class of preference systems admitting a
master list. The first measure, ASV#P(7) is based on the swap distance between
agents’ preferences, while the measures A°%¢(Z) and AY®'*(Z) are based on clas-
sic graph operations, the deletion of edges or vertices; precise definitions follow
in Section 2. We study in detail the complexity of computing these values for
a given preference system Z. After proving that computing any of these three
measures is NP-hard, we apply the framework of parameterized complexity and
of approximation algorithms to gain a more fine-grained insight.

In addition to the problems of computing ASWaP(T), Acdee(T) and Avert(T),
we briefly look at two applications. First, we show that if a strict preference
system Z is close to admitting a master list, then we can bound the number
of stable matchings as a function of the given distance measure. This yields an
efficient way to solve a wide range of stable matching problems in instances
that are close to admitting a master list. Second, we consider an optimization
problem over popular matchings where the task is to find a maximum-utility
popular matching while keeping the number (or cost) of blocking edges low. We
prove that this notoriously hard problem can be efficiently solved if preferences
are close to admitting a master list. In both of these applications, the running
time of the obtained algorithms heavily depends on the distance measure used.

Related Work. Master lists have been extensively studied in the context of sta-
ble matchings [7,11,21,22]. Various models have been introduced in the literature
to generalize master lists, and capture preferences that are similar to each other
in some sense. Closest to our work might be the paper by Bredereck et al. [7]
who examine the complexity of multidimensional stable matching problems on
instances that are close to admitting a master list. Abraham et al. investigated a
setting where agent pairs are ranked globally [1]. Bhatnagar et al. [4] examined
three restrictions on preference systems—the k-attribute, the k-range, and the
k-list models—that aim to capture similarities among preferences; these models
have been studied subsequently by several researchers [9,24, 29].

Restricted preference profiles have been also examined in the broader context
of computational social choice; see the survey by Elkind et al. [13]. In election
systems, computing the Kemeny score [23] for a multiset of votes (where each
vote is a total linear order over a set of candidates) is analogous to computing
the value A®WaP (7)) for a preference system Z, although there are some differences
between these two problems. Besides the extensive literature on the complexity of
Kemeny voting (see e.g. [3,15]), our work also relates to the problem of computing
certain distance measures between elections [5]. Some of the distance measures
we use were considered by Gupta et al. in their paper on committee selection [18].

2 Preliminaries

We assume that the reader is familiar with basic concepts in graph theory, clas-
sic and parameterized computational complexity, and approximation theory. For
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directed and undirected graphs, we will use the notation of the book by Bang-
Jensen and Gutin [2], unless otherwise stated. For more on complexity and ap-
proximations, we refer the reader to corresponding books [12,17,33]. We provide
all definitions and notations we use (apart from those defined below), as well as
all formal proofs in the full version of our paper [31].

Preference Systems. A preference system is a pair Z = (G, X) where G is an
undirected graph and <= {=<,: v € V(G)} where =<, is a weak or a strict order
over N¢(v) for each vertex v € V(G), indicating the preferences of v. For some
v € V(G) and a,b € Ng(v), we say that v prefers b to a, denoted by a <, b,
if a £, b. We write a ~, b, if a <, b and b =<, a. A tie in v’s preferences is a
maximal set T' C N¢(v) such that ¢ ~, ¢’ for each ¢ and ¢’ in T If each tie has
size 1, then 7 is a strict preference system, and we may denote it by (G, <).

Deletions and Swaps. For a set X of edges or vertices in G, let Z — X denote
the preference system whose underlying graph is G— X and where the preferences
of each vertex v € V(G — X) is the restriction of <, to Ng_x(v). We may refer
to Z — X as a sub-instance of Z.

If vertex v has strict preferences <, in Z, then a swap is a triple (a, b;v)
with a,b € Ng(v), and it is admissible if a and b are consecutive® in v’s pref-
erences. Performing an admissible swap (a,b;v) in Z means switching a and b
in v’s preferences; the resulting preference system is denoted by Z <1 (a, b; v). For
a set S of swaps, Z <15 denotes the preference system obtained by performing
the swaps in S in Z in an arbitrary order as long as each swap is admissible
(if this is not possible, Z <1 S is undefined). For non-strict preferences, similar
notions will be discussed in Section 3.

Master Lists. A weak or strict order <™ over V(G) is a master list for (G, <),
if for each v € V(G), the preferences of v are consistent with <™. that is, <,
is the restriction of <™ to N¢g(v). We will denote by Fyy, the family of those
preference systems that admit a master list. Notice that Fur, is closed under
taking subgraphs: if we delete a vertex or an edge from a preference system
in Fupr,, the remainder still admits a master list.

3 Problem Definition and Initial Results

Let us first introduce the notion of a preference digraph, a directed graph asso-
ciated with a given preference system, which can be exploited to obtain a useful
characterization of preference systems that admit a master list. We then proceed
with defining our measures for describing the distance from Fur..

Characterization of Fy;;, through the Preference Digraph. With a strict
preference system Z = (G, <) where G = (V, E), we associate an arc-labelled
directed graph Dz that we call the preference digraph of Z. We let Dz have the
same set of vertices as G, and we define the arcs in Dz by adding an arc (a,b)
labelled with v whenever a <, b holds for some vertices a, b and v in V. Note that

3 Vertices a and b are consecutive in v’s preferences, if either a <, b but there is no
vertex ¢ with a <, ¢ <, b, or b <, a but there is no vertex ¢ with b <, ¢ <, a.
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several parallel arcs may point from a to b in Dz, each having a different label,
so we have |V(Dz)| = |V| but |A(Dz)| = O(|V}|E|). Observation 1 immediately
follows from the fact that acyclic digraphs admit a topological order.

Observation 1 A strict preference system (G, <) admits a master list if and
only if the preference digraph of G is acyclic.

For a preference system Z = (G, =) with G = (V, E) that is not necessarily
strict we extend the concept of the preference digraph of Z as follows. Again,
we let Dz have V as its vertex set, but now we add two types of arcs to Dz:
for any v in V and a,b € Ng(V) with a # b we add a strict arc (a,b) with
label v whenever a <, b, and we add a pair of tied arcs (a,b) and (b,a), both
with label v, whenever a ~, b. Note that this way we indeed generalize our
definition above for the preference digraph of strict preference systems. We will
call a cycle of Dz that contains a strict arc a strict cycle. The following lemma
is a straightforward generalization of Observation 1.

Lemma 2 A preference systemn (G, =) admits a master list if and only if no
cycle of the preference digraph of G is strict.

Measuring the Distance from Fyr,. Let us now define our three measures
to describe the distance of a given strict preference system Z = (G, <) from the
family Fy, of preference systems that admit a master list:

— A®WAP(7) = min{|S| : S is a set of swaps in Z such that Z < S € Fur};
— A®ee(T) = min{|S|: S C E(G),T— S € Fur};
— AV(T) = min{|S|: S C V(G),Z — S € Fa}-

The measures A®¥%¢(Z) and AV*™*(Z) can be easily extended for preference sys-
tems that are not necessarily strict, since the above definitions are well-defined
for any preference system (G, <).

Extending the measure ASW2P(T) for non-strict preference systems is, how-
ever, not entirely straightforward. If there are ties in the preferences of some ver-
tex v, how can we define an admissible swap? In this paper we use the following
definition for swap distance, which seems to be standard in the literature [6, §].
Let <, and =, be weak orders. If they are not defined over the same sets, then
the swap distance of <, and =, denoted by A(=,,=<,) is co, otherwise

A(=y, =) = {{a,b} : @ <, bbut b <, a}| + [{{a,b} : a ~, b but a £, b}|.

For two preferences systems Z = (G, <) and Z' = (G',%’) with G = (V, E) and
G' = (V' E'), we let their swap distance, denoted by A(Z,Z’), be oo if they
are not defined over the same vertex set; otherwise (that is, if V = V') we let
AZ,T') =3 ey A(Zy, =). Using this, we can define

AP (T) = min {A(Z,T) : T' € Fa} -

The following lemma follows easily from the definitions.

Lemma 3 ASVaP(T) > Acdee(T) > AVe'Y(T) for any preference system T.
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Let MASTER LisT BY SWAPS (or MLS for short) be the problem whose input
is a preference system Z and an integer k, and the task is to decide whether
AsWep(T) < k. We define the MASTER LIST BY EDGE DELETION (or MLED)
and the MASTER LIST BY VERTEX DELETION (or MLVD) problems analogously.

4 Computing the Distance from Admitting a Master List

Let us now present our main results on recognizing when a given preference list is
close to admitting a master list. We investigate the classical and parameterized
complexity of each of our problems MLS, MLED, and MLVD. In Section 4.1
we consider strict preference systems, and then extend our results for weakly
ordered preferences in Section 4.2.

4.1 Strict Preferences

We show that computing the distance from Fyp, is NP-hard for each of our three
distance measures. However, when viewed from the perspective of approximation
or of parameterized complexity, intrinsic differences between MLS, MLED, and
MLVD will surface.

We start with Theorem 4 showing that we cannot expect a polynomial-time
algorithm for MLS or for MLED and even a polynomial-time approximation
is unlikely to exist already for bipartite graphs, assuming the so-called Unique
Games Conjecture [25], a standard assumption in complexity theory. The proof
of Theorem 4 relies on a connection between MLS, MLED, and the FEEDBACK
ARC SET problem which, given a directed graph D and an integer k, asks whether
there exists a set of at most k arcs in D whose deletion from D yields an acyclic
graph. Interestingly, the connection of this problem to MLS and to MLED can
be used both ways: on the one hand, it serves as the basis of our reduction
for proving computational hardness, and on the other hand, we will be able
to apply already existing algorithms for FEEDBACK ARC SET in our quest for
solving MLS and MLED.

Theorem 4. MLS and MLED are both NP-hard, and assuming the Unique
Games Conjecture they are NP-hard to approximate by any constant factor in
polynomial time. All of these hold even if the input graph is bipartite with all
vertices on one side having degree 2, and preferences are strict.

Thanks to Lemma 1 below, for any strict preference system Z we can decide
whether AP (7) < k for some k € N by applying the FPT algorithm of Lok-
shtanov et al. [27] for FEEDBACK ARC SET on the preference digraph Dz and
parameter k. Their algorithm runs in time O(k!4¥k®(n 4+ m)) on an input graph
with n vertices and m arcs [27]. If G = (V, E) is the graph underlying Z, then Dz
has |V| vertices and O(|V ||E|) arcs, implying a running time of O (k!4*kS|V || E|).

Lemma 1. For a strict preference system T, ASW*P(T) < k if and only if the
preference digraph of T admits a feedback arc set of size at most k.
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Algorithm 1 Obtaining a 2-approximation for MLED on input (Z, k) with strict
preferences

1: Construct the graph Hz.

2: Let F be a solution for FEEDBACK ARC SET on input (Hz, k).

3: Ensure that each arc in F is incident to some vertex in V' by replacing all arcs of F'
entering some a, with (a;,a).

4: Return Sp = {{a,v} € E: (a,al) € F or (a;,a) € F}.

Corollary 5 If preferences are strict, then MLS is fized-parameter tractable with
parameter k, and can be solved in time O(k4¥KS|V||E)).

We remark that MLS for strict preferences can be formulated as a variant of the
KEMENY SCORE problem with incomplete votes as studied by Betzler et al. [3].
Their results also imply that MLS is FPT with parameter k, though the running
time we obtain in Corollary 5 is better than the one stated in [3, Theorem 10].

In contrast to MLS, the MLED problem is W[1]-hard with k as the parameter;
the reduction is from MULTICOLORED CLIQUE [14].

Theorem 6. MLED is W[1]-hard with parameter k, even for strict preferences.

Although Theorem 6 provides strong evidence that there is no FPT algo-
rithm for MLED with parameter k, and by Theorem 4 we cannot hope for
a polynomial-time approximation algorithm for MLED either, our next result
shows that combining these two approaches yields a way to deal with the compu-
tational hardness of the problem. Namely, Theorem 7 provides a 2-approximation
for MLED whose running time is FPT with parameter k. This result again relies
heavily on the connection between MLED and FEEDBACK ARC SET.

Theorem 7. There exists an algorithm that achieves a 2-approzimation for
MLED if preferences are strict, and runs in FPT time with parameter k.

2-Approximation FPT Algorithm for MLED (Strict Preferences). Let

the strict preference system Z = (G, <) with underlying graph G = (V, E)

and k € N be our input for MLED. See Algorithm 1 for a formal description.
First, we construct a directed graph Hz by setting

V(Hz) =V U{a,,a} : {a,v} € E},

v Y
A(Hz) ={(a},b;):a,b,c € V,a <. b} U {(a; ,a),(a,a)) :v € V,a € Ng(v)}.
Our approximation factor relies on the property if Hz that, roughly speaking, the
effect of deleting an edge from G can be achieved by deleting two arcs from Hr.
Next, we compute a minimum feedback arc set I’ in Hz using the algorithm
by Lokshtanov et al. [27]. We may assume that F' only contains arcs incident to
some vertex in V, as we can replace any arc (a],b_ ) with the sole are leaving b,

namely (b_,b), since all cycles containing (a}, b ) must also go through (b, ,b).

crrc

Finally, we return the set Sp = {{a,v} € E: (a,a}) € F or (a, ,a) € F}.
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Note that Hz has |V| + 2|E| vertices and at most |V ||E| + 4|E| arcs. The
total running time of Algorithm 1 is therefore O(k!4¥kS|V||E|) which is indeed
FPT with parameter k.

Contrasting our positive results for MLS and MLED, a reduction from the
classic HITTING SET problemshows that MLVD is computationally hard both in
the classic and in the parameterized sense, and cannot be approximated by any
FPT algorithm, as stated by Theorem 8.

Theorem 8. MLVD is NP-hard and W[2]-hard with parameter k. Furthermore,
no FPT algorithm with k as the parameter can achieve an f(k)-approzimation
for MLVD for any computable function f, unless FPT = W[1]. All of these hold
even if the input graph is bipartite and preferences are strict.

4.2 Weakly Ordered Preferences

Let us now consider preference systems that are not necessarily strict. The hard-
ness results of Section 4.1 trivially hold for weakly ordered preferences, so we
will focus on extending the algorithmic results of the previous section.

Lemma 2. For any preference system I = (G, =), AV (T) < k if and only if
there exists a set of at most k arcs in the preference digraph Dz of T that hits
every strict cycle of Dr.

Thanks to Lemma 2, we can reduce MLS to a generalization of the FEEDBACK
ARC SET problem where, instead of searching for a feedback arc set, the task is to
seek an arc set that only hits certain relevant cycles. In the SUBSET FEEDBACK
ARc SET (or SFAS) problem the input is a directed graph D, a vertex set W C
V(D) and an integer k, and the task is to find a set of at most k arcs in D that
hits all relevant cycles in D, where a cycle is relevant if it goes through some
vertex of W.

To solve SFAS, we apply an FPT algorithm by Chitnis et al. [10] for the vertex
variant of SFAS, the DIRECTED SUBSET FEEDBACK VERTEX SET (or DSFVS)
problem that, given a directed graph D, a set W C V(D) and a parameter k € N,
asks for a set of at most k wvertices that hits all relevant cycles in D. Applying a
simple, well-known reduction from SFAS to DSFVS, we can use the algorithm
by Chitnis et al. [10] to obtain an FPT algorithm for MLS with parameter k.

Theorem 9. MLS is fized-parameter tractable with parameter k, even if pref-
erences are weak orders.

Next we extend Theorem 7 for weak orders, by reducing MLED to SFAS.

Theorem 10. There exists an algorithm that achieves a 2-approximation for
MLED, and runs in FPT time with parameter k.

2-Approximation FPT Algorithm for MLED. Let the preference system 7
with underlying graph G = (V,E) and k¥ € N be our input for MLED. For
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Algorithm 2 Obtaining a 2-approximation for MLED on input (Z, k)
1: Construct the graph Hz.
2: Let F be a solution for SUBSET FEEDBACK ARC SET on input (Hz, Z, k).
3: Ensure F' C Ay by replacing all arcs pointing to some a, € U with (a; ,a) and all
arcs leaving some a;” € U with (a,al).

4: Return Sr = {{a,v} € E: (a,al) € F or (a;,a) € F}.

each v € V, let T, be the set family containing every tie that appears in the
preferences of v. See Algorithm 2 for a formal description.
First, we construct a directed graph Hr with V(Hz) =V UTUU U Z where

T={t:veV,teT,}
U={a,,al :{a,v} € E},
Z = {Z(a,bp) : @ <y b for some a,b,v € V'},
and with arc set A(Hz) = Ar U Ay U Az where
Ar ={(t,a,),(a),t):vEV,t €T,,a €t}
Ay ={(a, ,a),(a,al) v €V,a € Ng(v)}
AZ = {(a;f, Z(a,b,v))a (Z(a,b,v)a b;) : Z(a,b,v) S Z}

Next, we solve the SUBSET FEEDBACK ARC SET problem (Hz, Z, k) by ap-
plying the above reduction from SFAS to DSFVS and then using the algorithm
of Chitnis et al. [10]; let F be the solution obtained for (Hz, Z, k). Observe that
w.l.o.g. we may assume that F' only contains arcs of Ay. Indeed we can replace
any arc f € F in Ar U Az by an appropriately chosen arc f’ € Ay: note that f
either points to some a; € U or it leaves some a;” € U; in the former case we set
J' = (a,,a), while in the latter case we set f’ = (a,a;"). Then any cycle contain-
ing f must also contain f’, so we can safely replace f with [/, as F\ {f}U{f'}
still hits all relevant cycles. Hence, we will assume F C Ay .

Finally, we return the set Sp = {{a,v} € F: (a,a}) € F or (a,a;) € F}.

It is clear that the above algorithm runs in FPT time with parameter k.

5 Applications

In this section we consider two examples related to stable and popular matchings
where we can efficiently solve computationally hard optimization problems on
preference systems that are close to admitting a master list; see the book [28]
for the definition of stability and popularity.

5.1 Optimization over Stable Matchings

One of the most appealing property of the distances defined in Section 3 is
that whenever the distance of a strict (but not necessarily bipartite) preference
system from admitting a master list is small, we obtain an upper bound on the
number of stable matchings contained in the given preference system. Therefore,
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strict preference systems that are close to admitting a master list are easy to
handle, as we can efficiently enumerate their stable matchings, as Lemmas 11
and 13 show.

Lemma 11 Given a strict preference system T = (G, <) with G = (V, E) and a
set S C FE of edges such that T — S € Fy1, the number of stable matchings in T
is at most 2151, and it is possible to enumerate all of them in time 2151 . O(|E)).

Corollary 12 In a strict preference system I, the number of stable matchings
is at most 227 (1),

Observe that although the number of stable matchings may grow exponen-
tially as a function of the distance A®48¢ or ASWaP this growth does not depend
on the size of the instance. By contrast, this is not the case for the distance AVe'®.

Lemma 13 Given a strict preference system T = (G, <) with G = (V, E) and
a set S CV of vertices such that T — S € Fur,, the number of stable matchings

in T is at most |V|15, and it is possible to enumerate all stable matchings of T
in time |V |15l O(|E|).

There exists an algorithm by Gusfield and Irving [19, 20] that outputs the
set S(Z) of stable matchings in a preference system Z over a graph G = (V, E)
in O(|S(Z)]|E]) time after O(|V| - |E|log|V|) preprocessing time. As a conse-
quence, the bounds of Lemma 11, Corollary 12, and Lemma 13 on |S(Z)| directly
yield a way to handle computationally hard problems on any preference system 7
where ASYaP(T), A°d8(T), or AY®'*(Z) has small value, even without the need
to determine a set S of edges or vertices for which Z — S € Fyyy, or a set S of
swaps for which I <S € Fyp,. Thus, we immediately have the following result,
even without having to use our results in Section 4. For the definitions of the
NP-hard problems mentioned as an example in Theorem 14, see the book [28].

Theorem 14. Let T be a strict (but not necessarily bipartite) preference system,
and Q any optimization problem where the task is to maximize or minimize some
function f over S(Z) such that f(M) can be computed in polynomial time for
any matching M € S(Z). Then @ can be solved

(i) in FPT time with parameter A®®(I) or ASVeP(I);

(11) in polynomial time if AV***(Z) is constant.

In particular, these results hold for SEX-EQUAL STABLE MATCHING, BALANCED
STABLE MATCHING, (GENERALIZED) MEDIAN STABLE MATCHING?, EGALI-
TARIAN STABLE ROOMMATES, and MAXIMUM-WEIGHT STABLE ROOMMATES.

We remark that the bounds in Lemmas 11 and 13 are tight in the following
sense. For any k,n € N with n > k, there exist strict preference systems Zj
and Ji, such that (i) A°8°(Z,) = k and Z;, admits 2% stable matchings, and
(i) AV (Jp,n) = k, the number of vertices in Jn, is 2n, and Jj admits (})
stable matchings. See the full paper [31] for the details of these constructions.

4 Although the problem of finding a (generalized) median matching is not an opti-
mization problem over S(Z), it is clear that it can be solved in |S(Z)| - O(|Z|) time.
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5.2 Maximum-Utility Popular Matchings with Instability Costs

We now turn our attention to the MAX-UTILITY POPULAR MATCHING WITH
INSTABILITY COSTS problem, studied in [32]: given a strict preference sys-
tem Z = (G, <), a utility function w : E(G) — N, a cost function c¢: E(G) — N,
an objective value ¢ € N and a budget 8 € N, the task is to find a popular
matching in 7 whose utility is at least ¢ and whose blocking edges have total
cost at most S. Our aim is to investigate whether we can solve this problem
efficiently for instances that are close to admitting a master list.

Note that in general this problem is computationally hard even if the given
preference system is strict, bipartite, admits a master list, and the cost and
utility functions are very simple. Namely, given a strict, bipartite preference
system (G, <) € Fur for which a stable matching has size |V(G)|/2 — 1, it is
NP-hard and W(1]-hard with parameter S to find a complete popular matching
(i.e., one that is larger than a stable matching) that admits at most 3 blocking
edges [32]. Nevertheless, if the total cost 8 of the blocking edges that we allow
is a constant and each edge has cost at least 1, then MAX-UTiLITY POPULAR
MATCHING WITH INSTABILITY COSTS can be solved in polynomial time for
bipartite, strict preference systems that admit a master list (in fact, it suffices
to assume that the preferences of all vertices on one side of the bipartite input
graph are consistent with a master list), representing an island of tractability
for this otherwise extremely hard problem [32]. Therefore, it is natural to ask
whether we can extend this result for strict preferences systems that are close
to admitting a master list. Theorem 15 answers this question affirmatively.

Theorem 15. Let T be a strict (but not necessarily bipartite) preference system
with G = (V,E). Then an instance (Z,w,c,t,5) of MAX-UTILITY POPULAR
MATCHING WITH INSTABILITY COSTS where c¢(e) > 1 for all edges e € E, and
B is constant can be solved

(i) in FPT time with parameter A®¢(T) or ASVaP(T);
(i) in polynomial time if A" (Z) is constant.

We apply the same approach as in Section 5.1, with a crucial difference: for
the algorithms proving Theorem 15 we will need to determine a set of edges or
vertices whose deletion yields an instance in Fy,. Using such a set, we then
apply Lemma 16 or 17 below; these are generalizations of Lemmas 11 and 13 for
the case when we allow a fixed set of edges to block the desired matching.

Lemma 16 Given a strict preference system T = (G, <) with G = (V, E) and
edge sets B C E and S C F such that T — S € Fuy, the number of matchings M
for which B = bp(M) is at most 2151 and it is possible to enumerate them in
time 2151 - O(|E)).

Lemma 17 Given a strict preference system I = (G, <) with G = (V,E), an
edge set B C E, and a vertex set S C V such that T — S € Fyy, the number
of matchings M for which B = bp(M) is at most |V|I5, and it is possible to
enumerate them in time |V |15 - O(|E|).
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Table 1. Summary of our results on MLS, MLED, and MLVD. Results marked by the
sign T assume the Unique Games Conjecture.

problem parameterized complexity approximation
MLS FPT wrt k (Cor. 5, Thm. 9) constant-factor approx. is NP-hard (Thm. 4)7

MLED  W[1]-hard wrt k (Thm. 6) constant-factor approx. is NP-hard (Thm. 4)T
2-approx. FPT alg wrt k (Thms. 7, 10)

MLVD  W]2]-hard wrt k£ (Thm. 8)  f(k)-approx. is W[1]-hard wrt k& (Thm. 8)

The algorithms proving Theorem 15 start with searching for the set of block-
ing edges using brute force: recall that our budget (8 is constant, and since each
edge has cost at least 1, we know that |bp(M)| < S for our desired popular
matching M. Thus, there are only polynomially many sets to consider as the
set B of blocking edges.

Next, to prove statement (ii) of Theorem 15, we again use brute force to find
a set S of AV (Z) vertices such that Z—S € Fyr,. Thus having the sets S and B
at hand, we can apply Lemma 17. For statement (i) however, we need to find a
set S of edges such that Z — S € Fyy, in FPT time with A®48¢(Z) or AVaP(T)
as parameter. Notice that it suffices to use Theorem 7 to obtain an edge set S of
size at most 2A°%8°(7), and then we can apply Lemma 16. For a more detailed
description of these algorithms and their correctness, see the full paper [31].

6 Summary and Further Research

We summarize our main results on MLS, MLED, and MLVD in Table 1. Inter-
estingly, all our hardness results hold for strict preference systems, and we were
able to extend all our positive results for preference systems with weak orders.

There are a few questions left open in the paper. We gave asymptotically
tight bounds on the maximum number of stable matchings in a strict preference
system Z as a function of A°18°(Z) and AY*'*(Z), but we were not able to do the
same for ASWaP(7). Another question is whether the approximation factor of our
2-approximation FPT algorithm for MLED can be improved.

A possible direction of future research would be to identify further problems
that can be solved efficiently on preference systems that are close to admit-
ting a master list. Also, it would be interesting to see how these measures vary
in different real-world scenarios, and to find those practical applications where
preference profiles are usually close to admitting a master list.
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