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A B S T R A C T   

Given the increasing importance of data- and model-driven design and control in food production systems, this 
paper addresses the need to improve the reproducibility, replicability, and reusability of datasets, models, and 
modeling frameworks. While sensor data and machine learning-based control and operation of agricultural and 
aquacultural systems face reproducibility and replicability challenges, reusability is becoming critical for 
computational model-based design and planning of complex processes. This study evaluates the reusability of an 
existing pond aquaculture model and outlines a systematic, stepwise approach for reusability enhancements. The 
suggested methodology starts with an established reference model of a typical production fishpond and improves 
its reusability through pilot-scale experiments, covering key aspects of pond farming technologies. The reference 
model is subjected to stepwise reusability checks using measured data from the respective pilot units, progressing 
from simpler (reduced) to more complex (extended) cases. Each step concludes with the necessary parameter or 
sub-model refinements, which remain unchanged in subsequent steps. The refined model is validated with the 
measured data from other pilot experiments. This process can be repeated until satisfactory results are obtained. 
The resulting model is then tested to scale up a production pond model using limited case-specific input data. In 
addition, a hypothetically modified scenario is studied to address discrepancies between measured and simulated 
data.   

1. Introduction 

Nowadays, driven by the increasing amount of measured data and 
advanced methods in the surging number of publications, attention has 
shifted to the reproducibility, replicability, and reusability of the accu
mulated knowledge (Plesser, 2018; European Commission, 2020). 
Reproducibility pertains to the availability of the complete datasets, 
methodological descriptions, and computational codes. Replicability 
involves testing these resources for another dataset to solve the same 
problem by someone else, elsewhere. Reuse encompasses not only the 
repeated use of data, methods, and models but also leveraging research 
findings beyond the original research context. Within the original topic 
of research, reusability means the application of data, models, and tools 
for the solution of simplified or extended problems, as well as for 
scaling-up the results. In a broader context reusability can be extended 
to other scientific fields or disciplines (e.g., for innovation, knowledge 

transfer, transdisciplinary research), marking the final stage of the 
research life cycle. 

In the context of agro-environmental systems, computational tools 
with improved data and model reusability, are crucial to ensure a reli
able food supply under changing environmental conditions (Liu et al., 
2002; de Kok et al., 2015; Varga et al., 2020). In this context, Palma et al. 
(2016) introduced an open-access platform for agricultural data man
agement, underpinned by a novel data model that integrates and extends 
different standards, including those related to GIS. The CGIAR Ontol
ogies Community of Practice also initiated efforts to improve knowledge 
representation and ontology development for effective use of multidis
ciplinary data (Arnaud et al., 2020). In marine science, Schaap et al. 
(2022) showed the importance of data reuse through their comprehen
sive review of marine-related data infrastructures. Holzworth et al. 
(2010) highlighted the growing awareness in the modeling community 
of the need for model sharing, despite the paradox that redeveloping 

* Corresponding author. 
E-mail address: varga.monika@uni-mate.hu (M. Varga).  

Contents lists available at ScienceDirect 

Computers and Electronics in Agriculture 

journal homepage: www.elsevier.com/locate/compag 

https://doi.org/10.1016/j.compag.2024.108664 
Received 23 January 2023; Received in revised form 16 January 2024; Accepted 19 January 2024   

mailto:varga.monika@uni-mate.hu
www.sciencedirect.com/science/journal/01681699
https://www.elsevier.com/locate/compag
https://doi.org/10.1016/j.compag.2024.108664
https://doi.org/10.1016/j.compag.2024.108664
https://doi.org/10.1016/j.compag.2024.108664
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2024.108664&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computers and Electronics in Agriculture 218 (2024) 108664

2

models is often easier than adapting existing models to new contexts. 
They shared insights from their work on the APSIM farm system 
modeling framework to address this challenge. Stella and colleagues 
(2015) also provided an example of model reuse by repurposing a sug
arcane model for a giant reed, highlighting the evolving landscape of 
reusability in agricultural research. 

Barriers to model reuse are multifaceted, primarily arising from the 
complex nature of agro-environmental models, resulting in a time- 
consuming process for understanding, modifying, and re- 
implementing them (Holzworth et al.,2010). Most of the models often 
have limited extensibility to specific cases, lacking standardization 
within the modeling framework. Hence, the challenge of model reuse is 
exacerbated as sub-models designed for one framework are not easily 
transferable to others (Donatelli et al., 2012). Extending biophysical 
models also demands additional initial data sets and parameters, making 
the process resource-intensive. 

Today, rapid advances in sensors and machine learning provide good 
solutions for local control and operation problems, however, these 
methods have limited ability to capture complex environmental in
teractions (Lokers et al., 2016). Databases and data-driven models often 
lack completeness and consistency (Talari et al., 2022), while the 
knowledge remains fragmented rather than integrated across the farm- 
to-fork chain (Repar et al., 2023; Rosen et al., 2022). While machine 
learning effectively processes big data for short-term decision-making, it 
fails to explain causal relationships in complex systems (Durden et al., 
2017). Consequently, the importance of first principles-based (‘a priori’, 
mechanistic, biophysical) models is crucial (Chary et al., 2022; Cohen 
et al., 2022). 

In the sphere of agricultural and aquacultural systems, effective 
model-based design and planning necessitate the utilization of previ
ously validated mechanistic, biophysical models, allowing for the 
modification of parameters to address a range of scenarios, including 
various species and technologies, different environmental conditions, 
scaling-up, etc. 

The freshwater fishpond sector occupies a central position within the 
European aquaculture industry. Consequently, a significant demand 
exists for reusable models aimed at augmenting productivity, efficiency, 
and quality while reducing costs in these systems (Varga et al., 2020). In 
Europe, approximately 38 % of the freshwater aquaculture production is 
derived from fishponds located in Central and Eastern European coun
tries, with Cyprinids constituting the majority of production (comprising 
almost 80 %, Gyalog et al., 2022). Fishpond production practices in 
many countries, however, continue to be ‘extensive’ or ‘semi-intensive’, 
yielding between 500 and 2500 kg/ha/year (Horváth et al., 2002). 
These complex systems function as open ecological systems, where 
natural and technological processes are in synergy and cannot be iso
lated (Aquaculture Advisory Council, 2021). Many fish farms have 
transformed into multifunctional units, integrating into the social, 
ecological and economic dimensions of fish farming (Palásti et al., 2020; 
Popp et al., 2019). Ecological intensification is suggested to attain the 
sustainable goals within fishpond production systems by merging arti
ficial interventions with ecosystem services (Dong et al., 2022). Hence, it 
is crucial to consider a broad range of allochthonous and autochthonous 
factors that impact pond aquaculture. Specifically, understanding the 
effects of managerial interventions — such as feeding, manuring, 
stocking density, and pond level control — on complex fishpond 
ecosystem processes is vital for achieving effective production (Varga 
et al., 2020). 

Several models have been developed since the 1970 s to understand 
fishpond performance (Ogawa & Mitsch, 1979; Prinsloo & Schoonbee, 
1984; Svirezhev et al., 1984; Hagiwara & Mitsch, 1994; Jorgensen, 
1995; Kochba et al., 1994). Bolte et al. (2000) constructed a decision- 
support tool based on databases, knowledge-based components, and 
models of the pond ecosystem, and various decision-support features. 
Emphasizing the reusability of data, models and code, the authors 
created a decision support tool, the POND model. Recent advancements 

in information technology have enabled the creation of interactive, 
software-based systems, that comprehend complex interactions in the 
fishpond environments, resulting in the reusability of process algorithms 
and specific model units. For example, utilizing mass-balanced models 
like Ecopath (Christensen et al., 2008), Aubin et al., 2021, drew in
ferences about the fish diet in common carp polyculture through a 
combination of experiments and trophic web interactions modeling. 
However, achieving a more comprehensive understanding of the 
complex relations and interacting mechanisms among various elements 
in the pond environment remains a challenge (Mathisen et al., 2016). To 
develop a precise pond management model, a deeper comprehension 
and consideration of detailed sub-groups within the food web, such as 
phytoplankton, zooplankton, and dissolved matter, are imperative. 
While numerous modeling tools and techniques are available for fish
pond, it is evident that sophisticated biophysical models are essential for 
design and planning of pond aquaculture ecosystems. However, the 
case-specific validation of these models for individual ponds is a highly 
expensive and time-consuming process. Therefore, testing and 
improving the reusability of the existing modeling frameworks are 
crucial tasks. 

In light of this, our work aims:  

• to analyze the reusability of a formerly developed and validated 
reference biophysical fishpond model; and  

• to enhance the reusability of this model for a broader range of 
differently managed fishponds. 

Testing and improvements included appropriate reduction and 
extension of the selected reference model to describe different pond 
management cases and a hypothetically modified scenario for the 
aquatic food web. Having improved and validated the model, it was 
tested for scaling-up for another fishpond. 

2. Materials and methods 

2.1. Short description of the reference model 

The reference model used in this study was developed by Varga et al. 
in 2020 as a part of a decision support tool (DSS) for the ClimeFish 
project to assess the impact of climate change on fishpond aquaculture. 

The representation of the food web followed the structure, published 
by Svirezhev et al. (1984), but instead of using choice functions, the 
relative availability-based selection of alternative feeds and preys was 
used. Moreover, the biomass-based fish growth was replaced for the 
individual fish mass calculation, according to the anabolic and catabolic 
processes in sense of Bolte et al. (2000). 

The model was implemented for the SzegedFish Ltd. fish farm site, 
and was validated using 10 years of data from the farm pond register. 
The dynamic process model of medium complexity represented a 
simplified food web with predator–prey interactions, involving common 
carp, bighead carp, zooplankton, phytoplankton, benthos and detritus. 
In the pond water, the model considered dissolved oxygen, nitrogen, and 
phosphorus components, as well as a solid mass of feed (corn) and 
manure. The modelled life-related processes of fish (common carp and 
bighead carp) included individual catabolism and anabolism-based feed 
consumption and growth, respiration, faecal and ammonium excretion 
and mortality. For the other species, biomass growth, the catabolized 
food, respiration, and the decay were calculated. Life processes of 
phytoplankton described the photosynthesis, the nitrogen and phos
phorus limited growth, and the oxygen production. The model took into 
consideration the managerial interventions (stocking, feeding, 
manuring, water level control) and a set of meteorological data. 

As a limitation of the reference model, determined by the limited 
availability of measured data, the following parts were considered only 
by a series of assumptions, as follows: 
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• In the absence of explicit data for solar radiation and humidity, only 
estimated values were used;  

• In the absence of appropriate zooplankton, phytoplankton, benthos 
and detritus measurement the initial values were estimated from 
published data, and this part of model was not validated, 
comprehensively. 

It was concluded that, despite the limited amount of data available, 
the approximately validated, but well-structured balance model made it 
possible to study the effects of climate change on fishpond ecosystems 
and on carp growth. 

2.2. Applied modeling framework 

The reference model was implemented in the previous version of 
Programmable Process Structures (Varga et al., 2017; Varga & Csukas, 
2017). 

In the current study we applied the up-graded, consolidated version 
of Programmable Process Structures (PPS) Varga and Csukás (2022). In 
PPS, the unified process models of different process systems are gener
ated from one general state and one general transition meta-prototypes. 
The meta-prototypes are prepared for distinguished input and output of 
model-specific, additive conservational measures and of signals. Also, 
the meta-prototypes give a template to define spatial and temporal scales 
and various parameters in the prototype programs. The generation of the 
actual models involves the multiplication of these meta-prototypes to 
describe the process net of the actual problem under investigation. 
Actually, it results in a special net structure that consist of the actual 
state and transition elements, describing the structure of the investi
gated process system. The functionalities behind this structure are 
ensured by the case-specifically defined, functional program prototypes 
that can also be derived from the two general meta-prototypes. These 
program prototypes determine the locally executable programs of the 
investigated model. During the execution, the actual state and transition 
elements are calculated by the programs of their associated state or 
transition prototypes. The communication between the state and tran
sition elements is solved by uniform connections, while the generated 
model is executed by a generally usable kernel program. The PPS 
framework represents a unified multi-disciplinary methodology to 
combine holistic structural and local functional characteristics in 
modeling and simulation-based problem-solving of various process 
systems. PPS is implemented in the declarative, logical language of SWI- 
Prolog. In particular, unification and lists of functors in logical pro
gramming AI language help the effective (and reusable) representation 
and execution of the models. PPS has proven to be a successful approach 
for constructing models, simulating, designing, planning, and evaluating 
strategies in agro-environmental process systems (Varga, 2022; Varga 
et al., 2022, Varga et al., 2023). The reusable, locally executable code 
prototypes offer advantages, especially for describing large, multi-scale 
systems with standardized components. The fact that most variables are 
local, promotes code reusability and simplifies variable naming within 
local programs. 

2.3. First series of pilot experiments to check and improve the reference 
model 

For testing and improving the reference model’s reusability, datasets 
from pilot ponds were used, and subjected to various experimental 
conditions. 

During the 7-month growing season from 1 April to 31 October in 
2021 and 2022, carp rearing experiments were carried out in closely 
monitored fishponds to generate data on food web dynamics. The ex
periments were conducted in earthen ponds with a surface area of 
10,000 m2 and a depth of two meters at the site of the Hungarian Uni
versity of Agriculture and Life Sciences (Institute of Aquaculture and 
Environmental Safety, Research Centre for Aquaculture and Fisheries, 

MATE AKI HAKI, Szarvas, Hungary). These ponds, assigned the code- 
name CS2, CS3, CS6, and CS7, were used to generate experimental 
data. The geo-locations of these ponds are illustrated in the Mendeley 
database (Sharma et al., 2024). 

Two (CS6, CS7) and three (CS2, CS3, CS6) ponds were stocked with 
second year common carp in 2021 and 2022, respectively. The ponds 
were operated under various feeding and fertilization regimes 
throughout the production season to track the impact of different 
nutrient management scenarios on pond food web. Table 1 provides 
details on the stocked fish quantities, feeding rate, fertilizer input, and 
stocking and harvest timings. The raw measurement data, along with the 
comprehensive feed and fertilizer input for five fishponds, can be found 
in “RawData_2021.xlsx” and “RawData_2022.xlsx” respectively, which 
are located in the “Measured_Data” folder of the Mendeley database 
(Sharma et al., 2024). The process for gathering the data is outlined 
below:  

• Water samples from the ponds were collected twice a week, and 
analyzed for ammonium (mg/dm3), nitrate (mg/dm3), nitrite (mg/ 
dm3), orthophosphate (mg/dm3) and chlorophyll-a (mg/dm3) using 
to standard analytical methods;  

• In 2021, dissolved oxygen (mg/dm3) and water temperature (◦C) 
were both measured manually twice a day, using multi-parameter 
water quality meter. In 2022, sensors (Aquaread AP7000) were 
placed in the fishponds to measure these parameters hourly.  

• Zooplankton biomass (cm3/100 dm3) was monitored twice a week 
using a 50 µm mesh plankton net. For each sample, 100 dm3 of pond 
water was filtered and concentrated to 100 cm3. All samples were 
preserved in formaldehyde, then settled in a centrifuge tube and 
biomass was measured after 24 h.  

• Meteorological data, including air temperature (◦C), wind speed (m/ 
s), precipitation (mm/day), and solar radiation (W/m2), were 
collected from the Agromet Solar automatic meteorological station, 
located approximately 1 km away from the ponds in Szarvas.  

• Detailed information on the schedule and amount of feed (in kg) 
supplied to the ponds was recorded throughout the production 
period;  

• Strategy (date and quantity) for adding organic manure and/or 
inorganic fertilizer in each pond was recorded. Additionally, labo
ratory measurements for the manure composition were recorded;  

• We recorded the number and weight (in kg) of the fish that were 
stocked and harvested, as well as the increase in weight, determined 
through fish sampling under different pond managerial practices. 

2.4. Overview of case studies involved in reusability check and 
improvement 

Considering the limited availability of validating measurements and 
the other limitations of the reference model (see Section 2.1), this model 
has been adapted to different cases from pilot experimental ponds. 
Moreover, in certain situations, fishponds receive both organic manure 
and inorganic fertilizers to boost natural food production for fish 
growth, while this extra pool of nitrogen from inorganic fertilizer was 
not considered in the previous model. In addition, the reference model 
did not take into account the dry matter content and the nitrogen and 
phosphorus content of the dry matter when describing the breakdown of 
the manure. To capture also these parts, we planned a series of pilot 
pond experiments. 

Accordingly, in this work, the existing reference model (Szeged-Fish) 
of a typical production pond was used to investigate the characteristics 
of a series of pilot-scale experiments. These experiments covered the 
characteristics of a wider range of production ponds. The reference 
model was used to generate appropriately reduced (2021CS6) and 
extended (2022CS6 and 2022CS2) computational models of these pilot 
case studies. At the same time, a step-by-step reusability check of these 
underlying pilot models was carried out with the knowledge of the 
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measured data from the respective pilot units, beginning with the 
simpler cases and working our way up to the more complex ones. After 
each step, we refined and tested the parameters or details of the model as 
necessary. These modifications have been adjusted for further process
ing. Finally, the evaluated and improved model was validated using data 
from two additional pilot cases (2021CS7 and 2022CS3) and underwent 
several rounds of testing and validation calculations. As a result, a 
cohesive model applicable to a broader range of ponds, including nat
ural ponds and those that are intensively fed and fertilized, was 
established. 

The data used in the reference model, the plan for the pilot experi
ments and the hypothesized model extension are listed in Table 1. 

The last row and column in Table 1. refer to the specifications 
considered to build a hypothetically extended scenario, where the eu
karyotes and cyanobacteria groups are distinguished instead of an in
tegrated consideration of phytoplankton. 

2.5. Second series of validating experiments 

To account for sampling and measurement errors (Section 3.2, point 
9), a number of formerly conducted set of pilot pond experiments were 
also included. In course of the ARRAINA project (Advanced Research 
Initiatives for Nutrition and Aquaculture, N288925-EU FP7) three feed 
types (crop, fish oil- and plant oil-based) were tested, using common 
carp monoculture at the MATE AKI HAKI, Szarvas, Hungary. Two 
earthen ponds with parallel experiments (average area: 1772 m2, depth: 
1.3 m) were assigned to each diet type. Water inflow was provided from 
the nearby oxbow lake of river Körös. On average 5288 individuals/ha, 
with an average body weight of 59.8 g were stocked into the lakes in 
2014. As usual with the semi-intensive technology, cow manure was 
used to enhance the natural production of the ponds. Each pond indi
vidually received 450 kg of manure in the season. 

In view of the availability of parallel pilot experiments, we also used 
these data for additional validation of the improved model. 

The detailed experimental data are summarized in the Raw
Data_2014.xlsx in the Mendeley database (Sharma et al., 2024). 

2.6. Evaluation of measurement and simulation errors 

For data filtering, particularly concerning dissolved oxygen, total 
inorganic nitrogen, and phosphorus, we utilized Matlab® Data Cleaner 
for pre-processing. The chosen smoothing method was the moving me
dian, using a smoothing factor of 0.25. We opted for the moving median 
as it effectively handled the presence of significant outlier data and 
fluctuating values in the raw measurements. The cleaned data can be 
accessed in the Mendeley database (Sharma et al., 2024) under the file 
name “Filtered_DO_N_P_2021_2022.xlsx”. 

In general, the measurement error during experimentation is defined 
as the sum of sampling and non-sampling error (EC CROS Knowledge 
repository, 2023). 

In the first series of experiments (Section 2.3) in the absence of 
knowledge about measurement errors (i.e., in the absence of parallel 
experiments), we described the average deviation of simulated and 
calculated data using normalized root mean square error (NRMSE, %) 
(Chai & Draxler, 2014), as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(xi − x*

i )
2

√
√
√
√ (1)  

NRMSE =
RMSE

xmax − xmin
*100 (2) 

where RMSE is the root mean square error, in the unit if the original 
values, xi is the ith value of the observed time series, xi* is the ith value of 
the calculated time series (model prediction), i is the ith variable, N is the 
number of data points, NRMSE is the normalized root mean square error, 
%, and xmax and xmin are the maximum and minimum values of the 
observed time series. The measured data, including sampled and har
vested carp biomass, measurements of water quality parameters (e.g., 
dissolved oxygen, total inorganic nitrogen, phosphorus), and phyto
plankton and zooplankton biomass, were used for NRMSE calculations. 
This error measure summarizes the errors made during sampling, mea
surement, model mapping, and simulation. 

Table 1 
Datasets used for reusability check and improvement of the model.  

Source of dataset Szeged- 
Fish farm 

Controlled pilot experiments at MATE HAKI Hypothetically extended case 

Dataset code Szeged-Fish 2021 
CS6 

2022 
CS6 

2022 
CS2 

2021 
CS7 

2022 
CS3 

Cyano 

Type of model Reference 
model 

Reduced 
model8 

Extended 
model9 

Extended 
model9 

Reduced 
model8 

Extended 
model9 

Distinguish 
eukaryotes and 
cyano-bacteria 

Role of model Reference 
model 

To test and improve the reusability of the reference 
model (Section 3.3) 

To validate the improved model ( 
Section 3.4) 

Hypothetical extension (Section 
3.5) 

Date of stocking 01.04.2011 26.05.2021 16.05.2022 16.05.2022 26.05.2021 16.05.2022 02.05.2021 
Date of harvest 31.10.2011 09.09.2021 14.09.2022 21.09.2022 07.09.2021 28.09.2022 02.09.2021 
Stocking density, kg/ha 376 101 200 200 201 200 200 
Feed input1 t/ha/season 2.2 no 0.62 0.72 no2 0.92 0.9 
Manure3, t/ha/season 1 no 54 54 115 95 9 
Inorganic fertilizer6, kg/ 

ha/season 
no no no 2007 no no no 

Distinguished 
eukaryotes 
+ cyano- 
bacteria 

no no no no no no Initial cyano-bacteria 
concentration: 0.5 %10  

1 Wheat. 
2 Daily feed portions corresponded to 0.5; 1; 2; 2 and 1 % of estimated biomass weight in May, June, July, August, and September, respectively. 
3 Cow manure. 
4 In two installments. For further information, the reader is referred to the Mendeley database (Sharma et al., 2024). 
5 In four installments. For further information, the reader is referred to the Mendeley database (Sharma et al., 2024). 
6 Ammonium nitrate. 
7 In two installments. 
8 Reduced model (highlighted by green) describes extensive fish production with low stocking rates and without external nutrient supply. 
9 Extended model describes intensive fish production with a higher nutrient supply, with manure, and with optional inorganic fertilizer. 
10 Based on expert estimation 
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In the second validation series of pilot experiments (Section 2.5), 
there were 2–2 parallel measurements for 3 case studies. For these ex
periments, we characterized the differences in the measurements by the 
standard deviation (Hayat Khan, 2011), according to the expression 

SD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(xi − μ)2

√
√
√
√ (3) 

where SD is the standard deviation, dimension is expressed in the 
same units as the original values, xi is each individual data point in the 
set, μ is the mean, and N is the total number of data points. 

It should be noted that the rigorous statistical approach was con
strained by the limited number (2) of parallel experiments, as well as by 
the possibly non-normalized distribution of the data. 

For the comparison of error regarding the measured vs. calculated 
data compared to the SD of measurements, RMSE values were also 
calculated for the six additional experiments, based on Eq.1. 

The calculation of RMSE and NRMSE, as well as SD values were 
prepared in the MS Excel file of the simulation output, and in the 
SD_of_parallels_2014.xlsx, respectively, and both are available in the 
Mendeley database (Sharma et al., 2024). 

3. Results and discussion 

3.1. Simplified overview of the investigated fishpond model 

A simplified structural overview of the studied model is illustrated in 
Fig. 1. According to the stocking of pilot ponds, we removed bighead 
carp from the original reference model. Also, due to its relatively limited 
proportion in the carp diet, as well as its unknown initial concentration 
and parameters, the benthos was not represented in the base model. 

The simplified structure shows the contribution of different nutrients 
(feed, as well as zooplankton produced from phytoplankton and/or 
detritus, influenced by the added manure and inorganic fertilizer) to the 
diet of the produced carp. Given their significant role in natural pond 
food production, the model also takes into account the nitrogen and 
phosphorus content, in addition to the total mass. 

The primary nutrient sources for carp are feed and zooplankton. 
Within the ecosystem’s food web processes, solar radiation-driven 

synthesis produces phytoplankton biomass from CO2, H2O, N and P, 
while releasing O2 into the water. Additionally, there is an equilibrium- 
driven kinetic transport of O2 (and also CO2) between the water and the 
atmosphere. 

In this simplified model, ‘available detritus’ refers to the cumulative 
organic solid phase resulting from the ongoing decomposition of manure 
and other allochthonous sources such as uneaten feed, faecal matter 
from species, and decomposition from species mortality. The detritus 
contains N and P from these components, and part of these nutrients are 
continuously released into the dissolved nutrient pool in water. 
Furthermore, zooplankton also consumes detritus, creating a feedback 
loop in the food chain. Depending on the movement of fish or windy 
weather, some of the detritus may be sedimented, while some of settled 
matter may be resuspended. 

The reference model did not account for the significant sedimenta
tion and resuspension events, as the low manuring rate in this pond 
model limited the detritus levels within a narrow range. However, this 
factor has been included in the improved model (see further details in 
Section 3.3). 

3.2. Workflow of improvements, validation and testing of the model 

Considering the scope of the previously developed reference model, 
we concluded that it was designed for a relatively intensive fishpond 
management, with high stocking densities and feeding rates, and low 
manuring rates. Accordingly, the role of the natural food web was un
derrepresented. The step-by-step workflow of checking, improving, 
validating and testing of the reference model was as follows:  

1. We analyzed the limitations of the reference model. We found 
that the main limitations (lack of measurements of solar radiation 
and humidity, as well as for plankton and detritus concentrations, 
etc.) were related to the functionalities of the natural food web. 
Therefore, they did not have a critical effect on the results (i.e., 
the biomass of the fish produced), but these features need special 
attention in the present work, in the knowledge of having more 
data on this segment of the model.  

2. We considered the 5 available pilot pond experiments (controlled 
pilot experiments at MATE AKI HAKI in Table 1) and selected the 

Fig. 1. Structural overview of the investigated models.  
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most extensive, one average manured and one manured +
fertilized experiments for the improvements to represent a wide 
range, while the remaining two cases were dedicated to valida
tion. Accordingly, we have defined the following steps.  

3. The parameters of the natural pond were calibrated for the case 
without feeding and manuring.  

4. Once the modified parameters were fixed; the model was revised 
for the case with feeding and manuring.  

5. After the changes were fixed, the model was extended for the 
additional use of inorganic fertilizer.  

6. The model was validated for the reduced case with manuring, but 
without feeding.  

7. The model was validated for the extended case with feeding and 
manuring.  

8. Case CS7 was extended and parameterized to distinguish between 
eukaryotes and cyanobacteria in the phytoplankton group.  

9. The model was tested by further validation considering sampling 
and measurement errors for a previously executed set of pilot 
pond experiments (Table 2).  

10. The model was tested by scaling-up to a large production pond, 
with knowledge of stocking, feeding, and manuring for the 
approximate calculation of yield. 

3.3. Stepwise reusability check and improvement of the reference model 

We used the validated parameters and programs of the reference 
model as a starting point for the subsequent cases. According to the 
above strategy, we began with a basic reduced case study (2021CS6) and 
progressed through a stepwise approach for two additional cases 
(2022CS6 and 2022CS2). 

The first pilot experiment (2021CS6, see Table 1), was a natural 
pond, representing low stocking density with no external nutrient input, 
typical of extensive fish production. To generate this simplified scenario, 
unnecessary state elements (i.e., feed, manure) and transition elements 
(i.e., feeding, manuring, uneaten feed, manure decomposition, etc.) 
were omitted. The unnecessary individual state and transition elements 
of PPS model can be switched off (by setting the ‘Yes/No’ existence of 
the given element to ‘No’, see the native simulation files of Lake_G_prot. 

graphml in the Mendeley database), or the user can set zero initial 
conditions and zero rate determining parameters in the respective user 
input. The comparison of measured and simulated values revealed the 
need for specific changes in the model. Calculation formulas and pa
rameters for both the reference and modified models are available in the 
Calculation_formulas_and_parameters.xlsx of Mendeley database 
(Sharma et al., 2024) for detailed insights into these changes. The sig
nificant observations and actions were the following:  

• Considering the actually available, site-specific solar radiation data, 
the program prototype, describing the phytoplankton related pro
cesses (“prot_t_phytop”) was upgraded to use the actually available 
radiation data for the calculation; 

• The initial phytoplankton, zooplankton, detritus, N and P concen
trations of the model were estimated on the basis of the early-season 
measurements. Given the fluctuating and potentially inaccurate 
measurements, these initial conditions were fine-tuned through 
systematic simulations. It is important to highlight that these pond 
ecosystem models are extremely sensitive to the initial phyto
plankton, zooplankton, detritus, N and P concentrations (Janse, 
2005). This can be understood by comparing the proportions of these 
components in large volumes of water with the changes in the pro
duction and consumption of the given components during the sea
son. Therefore, updating these initial conditions was crucial for 
accuracy.  

• Natural pond food web models, lacking external feeding, exhibit high 
sensitivity to initial phytoplankton, zooplankton, and detritus levels 
due to a positive feedback loops. Increases in phytoplankton and 
detritus consumption by zooplankton, coupled with increases in 
detritus biomass (due to zooplankton decomposition) intensifies this 
feedback (Fath & Halnes, 2007). In addition, availability-driven 
consumption of phytoplankton and detritus by zooplankton gener
ates extra detritus, increasing turbidity, that decreases phyto
plankton synthesis and potentially reduces oxygen level, so adversely 
affects carp growth. Aligning initial values with calculated rates 
during testing was crucial to mitigate this issue. For example, the 
refined initial conditions for 2021 CS6 were established, resulting in 
initial phytoplankton concentration (CPhytop) = 20 kg/ha, initial 

Table 2 
Datasets used for additional validation.  

Source of dataset Controlled pilot experiments at MATE HAKI 

Dataset code 2014 
64 

2014 
62 

2014 
61 

2014 
53 

2014 
63 

2014 
51 

Type of model Extended model1 

Role of model To validate the improved model (Section 3.7) 
Date of stocking 04.04.2014 
Date of harvest 13.11.2014 
Stocking density, kg/ha 333 370 313 310 287 282 
Feed input, t/ha/season 5.22 5.02 6.03 5.43 4.24 5.24 

Manure5, t/ha/season 2.5 2.6 2.5 2.4 2.8 2.5 
Inorganic fertilizer, kg/ha/season no no no no no no 
Distinguished 

eukaryotes 
+ cyano- 
bacteria 

yes yes yes yes yes yes  

1 Extended model describes intensive fish production with a higher nutrient supply, with manure, and with optional inorganic fertilizer. 
2 Winter wheat for the first five days after stocking, afterwards feed, containing fish oil. The daily amount of the feed was calculated as 0.6–3.5% of the metabolic 

body weight (MBW%: kg0.8). The feeding protocol during the weeks of the experiment was summarized as: 1–3: 0.6%, 4–5: 1%, 6–10: 1.5%, 11–13:2%, 14–16: 3%, 
17–25: 3.5%, 26–32: 1.4%. 

3 Winter wheat for the first five days after stocking, afterwards feed, containing vegetable oil. The daily amount of the feed was calculated as 0.6–3.5% of the 
metabolic body weight (MBW%: kg0.8). The feeding protocol during the weeks of the experiment was summarized as: 1–3: 0.6%, 4–5: 1%, 6–10: 1.5%, 11–13:2%, 
14–16: 3%, 17–25: 3.5%, 26–32: 1.4%. 

4 Winter wheat for the first five days after stocking, afterward cereal. The daily amount of the feed was calculated as 0.6–3.5% of the metabolic body weight (MBW%: 
kg0.8). The feeding protocol during the weeks of the experiment was summarized as: 1–3: 0.6%, 4–5: 1%, 6–10: 1.5%, 11–13:2%, 14–16: 3%, 17–25: 3.5%, 26–32: 
1.4%. 

5 Cow manure. 
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zooplankton concentration (CZoop) = 40 kg/ha, N concentration (CN) 
= 2.06E-04 kg/m3, and P concentration (CP) = 4.20E-05 kg/m3. 
(Note that the model’s sensitivity to initial N, P and plankton con
centrations was less noticeable when the external feed was dominant 
within the reference conditions.) 

The measured and simulated data of the refined model are compared 
in Figs.S1.1-S1.7 of the supplementary material. Here, only two signif
icant features are discussed in more detail. In Fig. 2 the measured and 
calculated fish biomass is compared. Both data sets showed that under 
given condition, after an initial period of weight gain, catabolic pro
cesses became dominant and fish lose weight. In addition, the measured 
values were higher than the simulated values because starving fish could 
find additional emergency food resources (e.g., zoo-benthic organisms) 
besides the zooplankton (Jurajda et al., 2016), which were not consid
ered in the model. 

In addition, the model did not follow the rapid increase in chloro
phyll a-based measurements at the end of the season (see Fig. S1.5 in the 
supplementary file), highlighting the need for model refinement. This 
symptom also occurred in other pilot experiments, leading to an 
extension of the model with a hypothesis of the temperature-driven 
appearance of cyanobacteria (as presented in Section 3.5). 

Fig. 3 shows the measured and simulated total inorganic nitrogen 
(TIN) concentrations. A decreasing trend can be observed in both the 
measured and simulated data, due to the lack of manure or inorganic 
fertilizer supply. However, this decrease did not limit the photosynthesis 
associated with the phytoplankton growth-. 

The next pilot experiment (2022CS6, see Table 1) tested a semi- 
intensive management case of pond production. Fish were stocked at a 
rate of 200 kg/ha and were fed at an average feeding rate of 0.6 t/ha/ 
season, together with a manuring rate of 5 t/ha/season. The manuring 
level in this case was significantly higher than in the reference model. 
Consequently, the first simulation showed a rapid increase in detritus 
concentration (which couldn’t be validated due to the lack of available 
measurements). This amount of detritus had several effects on the 
modelled process, including:  

• increased water turbidity, which inhibits photosynthesis and 
reducing phytoplankton biomass and oxygen production;  

• increased detritus and decreased phytoplankton concentrations, 
resulting in zooplankton feeding on detritus with excess oxygen 
consumption;  

• decreased oxygen levels prevented weight gain in fish and 
zooplankton, resulting in excess detritus;  

• finally, this feedback had a significant negative impact on fish 
production. 

The above malfunctions were identified through simulations and 
inspired the following improvements to the model. The prototype pro
gram “prot_t_detritus” was extended to consider permanent sedimenta
tion of a certain fraction of detritus, together with the associated amount 
of N and P (see Fig. 1). Consequently, when the detritus concentration 
exceeded the availability limit (Dmin), the sedimentation rate increased 
in proportion to the amount available. We formulated these processes in 
the following equations for total sediment (Eq.4, based on Svirezhev 
et al., 1984) and sedimented N and P loads (own formulation, Eqs.5 and 
6). 

DSed = − 1*Sed*max((D − Dmin), 0 )*Area*DT (4)  

DSedN =
DSed

D*Area
*ND*Area*10000*Depth (5)  

DSedP =
DSed

D*Area
*PD*Area*10000*Depth (6) 

where: 
Area is the surface area of the pond (ha), while 10,000 represents the 

conversion for m2/ha; 
D is the concentration of available (suspended) detritus (kg/ha); 
Depth is the depth of the pond water (m); 
Dmin is the lower limit concentration of available (suspended) 

detritus (kg/ha); 
DSed is the amount of sedimented detritus; (kg). 
DSedN is the amount of sedimented nitrogen; (kg). 
DSedP is the amount of sedimented phosphorus; (kg) 
DT is the time step of the model (day); 

Fig. 2. Fish biomass in pilot experiment pond 2021CS6.  

Fig. 3. The total inorganic nitrogen (TIN) concentration in the pilot experiment pond 2021CS6.  
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ND is the detritus-related nitrogen concentration (kg/m3) 
PD is the detritus-related phosphorus concentration (kg/m3); and 
Sed is the sedimentation rate coefficient (1/day). 
Eq. (4) determines the amount of sedimented detritus, while Eqs. (5) 

and (6) calculate the related sedimentation of nitrogen and phosphorus. 
During the cyclical stepwise improvements, the parameters Sed and 

Dmin were determined to be 0.6 1/day and 132 kg/ha respectively. 
As the previous reference model overlooked the details of the manure 

composition, in this work we applied the available actual composition 
and re-identified the decomposition coefficient in the prototype pro
gram of “prot_manure_decomp”, formulated according to the following 
relationships: 

DM = Alpha*M*Area*DT (7)  

DN = DM*Dry*Ncont (8)  

DP = DM*Dry*Pcont (9) 

where: 
Alpha is the rate of decomposition, (Svirezhev et al., 1984), (1/day); 
Area is the surface area of the pond (ha); 
Ncont is the concentration of nitrogen in dry manure, based on lab 

measurement (kg/kg); 
Pcont is the concentration of phosphorus in dry manure, based on lab 

measurement (kg/kg); 
DM is the amount of the decomposed manure (kg); 
DN is the amount of the decomposed nitrogen (kg); 
DP is the amount of the decomposed phosphorus (kg); 
DT is the time step (day); 
M is the concentration of the manure (kg/ha); and 
Dry is the dry matter content of the manure, based on lab measure

ments (kg/kg). 
For actual experiments, simulations used Dry = 0.421 kg/kg, Ncont 

= 0.139 kg/kg, and Pcont = 0.0526 kg/kg. from laboratory measure
ments. After the stepwise identification, the parameter Alpha = 0.2 1/ 
day was verified. 

A complete set of calculation formulas, parameters, and corre
sponding program codes are available in the file “Calcu
lation_formulas_and_parameters.xlsx” in the Mendeley database of 
Sharma et al., 2024, in the form of declarative code. 

The measured and calculated data of the refined model are compared 
in Figs. S1.8-S1.14 of the supplementary material. Here, only two 
commented features are illustrated. Fig. 4 shows the measured and 
calculated fish biomass for the experimental pond 2022CS2. In view of 
the higher recorded value, it should be emphasized that the operators 
found a substantial amount of trash fish (134 kg) during harvest – along 
with the originally stocked carp. These fish had entered the pond 
through the inlet water supply. A similar situation was also observed in 
pilot experiments 2022CS2 and 2022CS3. 

Fig. 5 shows the change in the calculated detritus concentration. It 
shows the increase after manure input, followed by sedimentation, 
converging to a limit value expressing an average amount of detritus, 

suspended in the pond. 
In the third pilot experiment (2022CS2, see Table 1), in addition to 

the feed and manure, two doses of inorganic fertilizer (ammonium-ni
trate) were added to the pond. Considering the rapid dissolution of 
ammonium-nitrate, its nitrogen content appears directly in the water, 
while the manure-originated nitrogen and phosphorus are considered 
separately and, part of them, can be trapped with the removed sediment 
as was described by Eqs. 4–6. The simulated and measured data of the 
refined model are shown in Figs. S1.15 – S1.21 of the supplementary 
material. The stepwise increase in the total inorganic nitrogen (TIN) 
concentration is shown in Fig. 6. In the model with concentrated pa
rameters, the component dissolves rapidly (causing the sharp steps in 
the calculated concentrations). 

Fig. 7 shows the change in phytoplankton concentration. Similar to 
the previous 2021CS6 experiment, the increase in phytoplankton con
centration was only significant in the last period of the season. It is 
important to note that in this 2022CS2 case, the laboratory and sensor 
measurements were complementary. Zero values in the sensor mea
surements during the second period of the season indicate a faulty 
operation of the sensor (measurement limit problem), while the 
increased amount of phytoplankton at the end of the season was 
detected by the laboratory measurements. This anomaly is discussed in 
Section 3.5. 

3.4. Validation of the improved model 

After conducting the reusability tests and refining the reference 
model, based on previous case studies, we proceeded to validate the 
improved model using data from two additional pilot experiments 
(2021CS7 and 2022CS3, see Table 1). The structure and parameters, 
including all previous improvements, remained fixed for these experi
ments. The full set of calculation formulae and parameters are available 
in the “Calculation_formulas_and_parameters.xlsx” file in the Sharma 
et al., 2024 Mendeley database. The native model files for the simula
tions are also available there. 

In the first validation experiment (2021CS7), we intensified the 
natural food chain involving phytoplankton, zooplankton, and carp by 
quadrupling the manuring pattern (i.e., 3 + 2 + 3 + 3 t/ha manure). The 
measured and calculated data are presented in Figs. S2.1 – S2.7 in the 
supplementary material. Fig. 8 shows the comparison of the measured 
and simulated biomass of carp. 

Despite multiple manuring, the carp biomass showed only a modest 
increase of 70 kg. This observation was understood by comparing ni
trogen, phosphorus, phytoplankton, and zooplankton concentration in 
the unmanured (2021CS6) with manured (2021CS7) pilot experiments, 
both without feed, which shows that:  

• the increased nitrogen levels are only partially reflected in increased 
phytoplankton levels, because solar radiation limits phytoplankton 
production, while multiple manuring also increases water turbidity 
(Terziyski et al., 2007), reducing the available radiation; 

Fig. 4. Common carp biomass for the pilot experiment pond 2022CS6.  
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• the increased phytoplankton did not lead to a proportional increase 
in zooplankton, prompting a further investigation into their 
relationship;  

• moreover, a measured, but un-modelled increase in phytoplankton 
concentration was observed towards the end of the season (see 
Fig. 9). 

These issues are discussed in more detail in Section 3.5, where an 
advanced model explores the hypothetical differentiation of eukaryotes 
and cyanobacteria, taking into account the reduced effect of cyano
bacterial consumption on zooplankton. 

In the second experimental pond (2022CS3) used for validation, an 
initial manure application of 4 t/ha was made before stocking, 1 t/ha 
after stocking, followed by two additional applications of 2 t/ha. 

Detailed results of this validation case are presented in Figs. S2.8 – 
S2.13 in the supplementary material. Fig. 10 shows the data comparing 
measured and simulated individual carp biomass. Notably, the higher 
measured values are consistent with the operator’s observation that a 
significant amount of trash fish (192 kg/ha), accompanied the originally 
stocked carp in the fishponds. 

It is important to note that in this case (2022CS3, Fig. 11), as well as 
in other pilot experiments during 2022, a peak in measured dissolved 

Fig. 5. Calculated detritus concentration in the pilot experiment pond 2022CS6.  

Fig. 6. Total inorganic nitrogen (TIN) concentration in case of stepwise fertilizer supply for the pilot experiment pond 2022CS2.  

Fig. 7. Phytoplankton concentration for the pilot experiment pond 2022CS2.  

Fig. 8. Carp biomass for pilot experiment pond validation case 2021CS7.  
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oxygen (DO) was observed in the middle of the season. This phenome
non can be attributed to temporary activation of the paddlewheel aer
ators during warm days. This was not included in the model as no 
recorded data were available for inclusion. 

3.5. Extended model for distinction between eukaryotic and 
cyanobacterial groups of phytoplankton 

As described in sections 3.3 and 3.4, the refined and validated model 
still shows a notable anomaly that remains unexplained within the 
investigated model. In particular, the increase in phytoplankton con
centration during the last period of the season defies current interpre
tation. To address this, possible explanations and model improvements 
are proposed in line with the existing literature (e.g., Potužák et al., 
2007; Jeppesen et al., 2011): 

• The phytoplankton group can be divided into the groups of eukary
otes and cyanobacteria;  

• At the beginning of the season, eukaryotes dominate and coexist with 
a minimal presence of cyanobacteria;  

• The growth kinetic coefficients of eukaryotes and cyanobacteria are 
different;  

• Cyanobacteria have a higher minimum, optimum, and maximum 
growth temperatures (Tmin = 22 ◦C, Topt = 28 ◦C, Tmax = 36 ◦C) 
compared to eukaryotes (Tmin = 9 ◦C, Topt = 24 ◦C, Tmax = 34 ◦C) 
(Lürling et al., 2013);  

• The presence of cyanobacteria reduces the appetite of zooplankton 
(Fulton and Paerl, 1987). In the availability-driven food web model, 
the zooplankton consumption coefficient is higher for eukaryotes 
than for cyanobacteria. 

Considering these hypotheses, the process model underwent the 
following refinements (calculation formulas and parameters are avail
able in the file “Calculation_formulas_and_parameters.xlsx” file in 
Sharma et al., 2024):  

• The state element “s_phytop” was replaced by the state elements 
“s_cyano” and “s_eukar”;  

• The initial concentration of cyanobacteria (s_cyano) was estimated to 
be 0.05 % (based on estimates from fishpond experts) of the total 
initial phytoplankton biomass; 

Fig. 9. Phytoplankton concentration for pilot experiment pond validation case 2021CS7.  

Fig. 10. Carp biomass in pilot experiment pond validation case 2022CS3.  

Fig. 11. Dissolved oxygen (DO) concentration in pilot experiment pond validation case 2022CS3.  
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• The transition element (“t_phytop”) and prototype (“prot_t_phytop”) 
were replaced by the modified code of the transition elements 
(“t_cyano” and “t eukar”) and prototypes (“prot_t_cyano” and “prot_t 
eukar”), respectively; 

• Instead of the maximum production rate coefficient for phyto
plankton (i.e., 20 1/day), through systematic identification the 
values for eukaryotes and cyanobacteria were adjusted to, 20 1/day 
and 3 1/day, respectively;  

• In the prototype program “prot_t_zoop”, the calculation of the 
competitive consumption rate kinetics was defined as follows  

• for eukaryotes (E) with a maximum rate of 1.6 1/day with an 
availability ratio of E/(E + C + D), where E, C, and D refer to eu
karyotes, cyanobacteria and detritus, respectively,  

• for cyanobacteria (C) with a maximum rate of 0.2 1/day with an 
availability ratio of C/(E + C + D), 

• for detritus (D) with a maximum rate of 0.5 1/day with an avail
ability ratio of D/(E + C + D). 

The detailed simulation, focusing on the amount of eukaryotes and 
cyanobacteria produced, is presented in the following parts of the sup
plementary material: in Figs. S3.1 – S3.2 for case 2021CS6, Figs. S3.3 – 
S3.4 for case 2022CS6, Figs. S3.5 – S3.6 for case 2022CS2, Figs. S3.7 – 
S3.8 for case 2021CS7 and in Figs. S3.9 – S3.10 for case 2022CS3. 

A notable aspect of the results obtained for the case of 2022CS3 is 
illustrated in Figs. 12-14. The comparison of simulated and measured 
phytoplankton concentrations in Fig. 12 shows that separate consider
ation of eukaryotes and cyanobacteria leads to improved results. 

Fig. 13 shows the measured and simulated zooplankton concentra
tions for the extended model based on the hypothetical scenario. In 
Fig. 14 the calculated concentrations of eukaryotes and cyanobacteria 
show that the increasing presence of cyanobacteria is likely influenced 
by warmer temperatures along the season. Growth of cyanobacteria was 
initiated slowly by the first warm peak in mid-June, and was accelerated 
by the second one. The positive feedback stopped at the beginning of 
cooling down in mid-August. 

Investigation of this model extension indicated its potential for 
improved performance, although validation through subsequent trials is 
still required. In addition, this case study highlights the ability of Pro
grammable Process Structures to easily generate an extended model. 

3.6. Overview of the practical results with the refined model 

Detailed simulation results are summarized in sections S1-3 of the 
Supplementary material, while comprehensive input files, including 
structural descriptions, input data, parameters, and local program pro
totypes for PPS, are available in the Mendeley database (Sharma et al., 
2024), together with the corresponding simulation output files. Table 3 
summarizes the practical results of the cases studied. 

As the fully extensive carp production rate remains very limited (see 
2021CS6), it can be concluded that extensive use of an ecosystem-based 
food web requires additional manuring. However, the efficiency of the 
phytoplankton → zooplankton → carp chain seems to be limited by solar 

radiation, so the excess amount of manure does not significantly in
crease fish production. 

In feed-based production, the contribution of natural nutrients is 
influenced by the additional manure or fertilizer. However, solar radi
ation limits their effect and excess amounts of manure or fertilizer in
crease fish biomass degressively, while increasing nutrient emissions. 

The error analysis of the improved model, presented in Table 3, 
shows the comparison between simulated and measured values. 

The improved model showed an overall satisfactory performance. In 
validation ponds 2021CS7 and 2022CS3, the model tended to over- or 
underestimate some variables. NRMSE values range from 1.5 % to 58.4 
%. 

It is to be noted that large NRMSE values contain both sampling & 
measurement and model errors. The correct evaluation of model error 
and further development of the model require the knowledge of sam
pling and measurement errors. 

3.7. Consideration of measurement errors by a second series of validating 
pilot measurements 

The significant discrepancies between measured and calculated 
characteristics are common in real-world agricultural and aquacultural 
processes (Pandey & Hardaker, 1995). The erroneous estimations can be 
partly explained by the different erroneous methods of sampling and 
measurement used during the experiments. Mainly, spatial and temporal 
sampling emerged as critical factors for such discrepancies (Bellocchi 
et al., 2010). Accurately capturing processes with distributed parame
ters within a given area relies on appropriate spatial sampling (Wang 
et al., 2012). Temporal sampling, on the other hand, takes into account 
the varying measured values at a specific spatial point over time 
(Gómez-Dans et al., 2022). Unfortunately, representative sampling is 
often hampered by the high costs and significant manpower required. 
While measurement errors directly from the equipment are typically 
small, errors from the sampling process itself can be significant, espe
cially if inadequate equipment is used or limits are missed (Espig et al., 
2020). The above discussion is visually presented in Fig. 15, empha
sizing the position and significance of the calculated error measures 
between the measured and simulated data. 

As the conclusions of modeling studies are highly based on measured 
values, it is crucial to assess the quality of the measurements (Tarkko
nenand & Vehkalahti, 2005). Furthermore, to distinguish errors in 
measurement, as well as in model mapping and simulation, it is essential 
to understand errors that occur during sampling and measurement. To 
make a first, modest step toward this understanding, the model was 
tested by further validation with the consideration of sampling and 
measurement errors for a formerly executed set of pilot pond experi
ments (described in Section 2.5), where two parallel experiments were 
made for three pilot pond case studies. These experiments were designed 
to test three types of feed, so we estimated the respective ‘feed conver
sion rate’ parameters for carp’s diet. 

First, we calculated the standard deviation (SD), characterizing the 
differences in the measurements of the 3*2 parallel experiments defined 

Fig. 12. The sum of eukaryotes and cyanobacterial concentrations for pilot pond experiment 2022CS3.  
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by Eq.3 in Section 2.6. The calculated results are summarized in Table 4. 
Next, we ran the simulation model to calculate the 3*2 experiments 

and calculated the error between the simulated and the averaged 
measured values by means of the error measure (RMSE) defined by Eq.1 
in Section 2.6. This measure represents the deviation in the unit of the 
original measurement value. These values can be seen in Table 5. 

SD (in the context of parallel measurements) and RMSE (in the 
context of the comparing of measured and simulated data) provide 
different evaluations of their respective sets of observations (Meyer, 
2012). In our study, given the very limited and not comprehensive 
measurements available, we used these two, different error measures to 
demonstrate the possible causal relationship between these two phe
nomena, namely (i) the difference between the parallel measurements 
and (ii) the difference between the measured and simulated data. It 

should be emphasized that the input data for the simulation are the same 
for all (actually both) parallel experiments, while the reason for the 
differences between the parallel measurements is hidden (invisible) to 
the model. Nevertheless, the error (e.g., RMSE) between measured and 
simulated data includes the error of the parallel experiments. This 
overlapping interaction makes model identification and validation more 
difficult. At first look, increasing the number of parallel pilot experi
ments may seem to be a solution, but only with huge labor demand and 
cost to consider. However, there is a deeper problem, namely the 
inherent differences between the pilot ponds, studies in parallel. Un
fortunately, we do not have any information on the “history” of these 
pilot ponds, e.g. on the volume, the chemical and biological composition 
of the residual water and re-suspendable sediment, on the pond-specific 
seepage, etc. These conditions can lead to increased fish mortality and 

Fig. 13. Zooplankton concentrations for pilot experiment pond case 2022CS3.  

Fig. 14. Eukaryotes and cyanobacteria concentrations in pilot experiment pond 2022CS3, illustrating also the temperature.  

Table 3 
Summarized overview of case studies.  

Characteristics Pilot experiment 

2021CS6 2022CS6 2022CS2 2021CS7 2022CS3 

Feeding t/ha/season no 0.6 0.7 no 0.9 
Manuring, t/ha/season no 5 

(4 + 1) 
5 
(4 + 1) 

11 (3 + 2 + 3 +
3) 

9 (4 + 1 + 2 + 2) 

Fertilizing, kg/ha/season no no 200 (100 + 100, ammonium 
nitrate) 

no no 

Stocking density, kg/ha 101 200 200 201 200 
Harvested fish biomass, measured, kg/ha 162 536 638 270 655 
Harvested fish biomass, calculated, kg/ha 117 615 638 257 782 
Harvested fish biomass, with hypothetic cyanobacteria consideration, 

calculated, kg/ha 
117 569 639 271 829 

NRMSE, carp biomass, %    21 34.6 
NRMSE, zooplankton biomass, %    38 1.5 
NRMSE, phytoplankton biomass, %    22 11.6 
NRMSE, DO, %    24 19 
NRMSE, TIN, %    28.6 34 
NRMSE, PO4-P, %    26.8 58.4  
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other hidden side effects on the food web and chemical composition. It is 
worth emphasizing again, that the dynamic simulation of the given non- 
linear system with positive feedback loops is very sensitive to the initial 
conditions, if these conditions do not fit appropriately (i.e., contradict) it 

can affect the calculated functionalities. 
In line with the above discussion, in case of the food web elements 

(carp, zooplankton, phytoplankton and detritus), both model calcula
tions and parallel measurements show a larger error. For example, in 

Fig. 15. Position and meaning of errors.  

Table 4 
Ranges of SD values regarding the parallel experiments (in the same unit as the respective parameter).  

Parameter SD 

Experiments 64 and 62 Experiments 61 and 53 Experiments 63 and 51 

Min Max Min Max Min Max 

Dissolved oxygen, mg/l  0.01  1.53  0.00  1.76  0.00  2.71 
Nitrogen, mg/dm3  8.3E-05  2.96E-01  1.67E-04  2.79E-01  2.75E-04  1.74E-01 
Phosphorus, mg/dm3  5.2E-09  8.75E-04  5.51E-09  1.78E-03  5.72E-09  7.25E-03 
Carp, g/piece  0.17  71.88  0.01  141.00  0.22  125.25 
Zooplankton, kg/ha  7.34  798.75  17.24  2377.89  45.65  108.79 
Phytoplankton, kg/ha  2.72  413.61  0.00  344.18  5.44  379.14 
Detritus, kg/ha  0.00  76.66  0.00  111.80  0.00  202.74  

Table 5 
RMSE values for the measured/calculated data for the 3*2 parallel experiments.  

Parameter ID of experiments Range of RMSE (in the same unit as the respective observation value) 

63 51 64 62 61 53 min max 

Dissolved oxygen, mg/l  2.17  2.13  1.73  1.94  2.32  2.60  1.73  2.60 
Nitrogen, mg/dm3  0.20  0.20  0.20  0.21  0.12  0.12  0.12  0.21 
Phosphorus, mg/dm3  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01 
Carp, g/piece  40.01  44.81  150.20  116.38  64.03  40.37  40.01  150.20 
Zooplankton, kg/ha  509.43  531.67  1 150.19  1 137.17  60.58  82.92  60.58  1150.19 
Phytoplankton, kg/ha  258.20  256.07  236.19  237.97  262.60  257.57  237.53  261.89 
Detritus, kg/ha  85.72  92.12  127.98  127.33  111.08  113.40  85.72  127.98  
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case of zooplankton, model predicts with a range of 60.58 – 1150.19 kg/ 
ha RMSE. Similarly in the measurement side, experiments are charac
terized by a larger range (7.34 – 2377.89 kg/ha). 

The RMSE values for carp biomass showed slightly larger differences 
between experiments ID64 vs. ID62 and ID61 vs. ID53. To investigate 
this, we mined the incomplete historical data from 2014 which revealed 
that variations in carp biomass data (ID61 vs. ID53) were due to higher 
fish mortality in a particular pond. The deeper reason may be related to 
the unknown history of the pond. 

Considering the former discussion about missing pond history, future 
work should include numerous consecutive years and comprehensive 
modeling of historical processes throughout the entire calendar year. 
Also the simulations would highly benefit from data from a continuous 
logbook recording in addition to the sensor and laboratory measure
ments (extended by the data for the realistic initial and boundary 
conditions). 

3.8. Test of model-based scaling-up 

When using the model for simulation-based scaling-up, it is neces
sary to actualize case-specific data such as:  

• the number and biomass or individual mass of fish stocked;  
• the composition and quantity of feed and the feeding strategy 

applied;  
• the composition and quantity of manure (and/or inorganic fertilizer) 

and the dosing strategy applied; and  
• possible estimates of the initial conditions such as zooplankton, 

phytoplankton, detritus, and water quality representing 
concentrations, 

while all other model parameters and program prototypes can be 
used according to the previously validated reusable model. 

To demonstrate this scaling-up test, we used the available limited 
part of the previously collected data from a production fish farm in 
Biharugra (Hungary) (46◦55′32.6″N 21◦33′04.4″ E) for the years 2014 – 
2016. The data were extracted from specific pond sites with designated 
codes: BIX2013, BIII2014, BII2015, BVIII2014, and BVIII2015. Data on 
pond area, stocked and harvested fish biomass and feed and manure 
applied were used from this source. Similar meteorological conditions as 
in the pilot experiments were assumed. The missing data and parameters 
were taken from the analyzed pilot case 2022CS3. 

The production-based and calculated results for the harvested carp 
biomass are summarized in Table 6. The input and output files of the 
model are collected in the “Simulations_Scaling_up” folder of the Men
deley database (Sharma et al., 2024). 

In addition to the estimated approximate fish production, the 
upscaled simulation can provide estimates of the other characteristics 
and environmental impacts of the production pond (e.g., for the 

required water supply, nutrient emission, O2 production, and for CO2 
sequestration, etc.). 

4. Limitations and strengths of the results 

In parts discussed above, the proposed workflow for the reusability 
check-based improvement of a formerly developed reference model 
combines additional knowledge, coming from two sources. One of them 
contains new data, from complementary experiments, carried out within 
and beyond the scope of the original model. The other source is the 
reasoning about the possible reductions and extensions of the underly
ing conceptual model. In an effective combination, these two types of 
model refinement could be carried out in parallel. However, in this work 
the modeling had to use the results of previous experiments, controlled 
by actual practical purposes, but not by reusability. This situation leads 
to two types of limitations (and weaknesses), resulting from the exper
imental and modeling efforts. 

One part of the experimental limitations is caused by the lack of 
information about the possible measurement errors. Most of these errors 
is associated with sampling, which is one of the most critical issues in 
agricultural and aquacultural measurements. First of all, these systems 
cannot be characterized by concentrated parameters, and even in certain 
cases by limited mixing amongst some compartments, on the one side. 
However, the cost and manpower needed for multiple, parallel mea
surements have to be taken into consideration, on the other. This 
contradiction can be resolved only by a compromise, where computa
tional modeling helps to make rational decisions. For example, in our 
case, parallel measurement for initial conditions of some critical com
ponents (such as phytoplankton, zooplankton) in various points of the 
site would support the model development, highly. It should be followed 
by frequently repeated samplings from one to two points for shorter 
periods during the experiments. Of course, the success of this strategy 
would need the interaction with modeling before and during the 
experimentation. 

The non-sampling related experimental limitations of the actual 
measurements resulted.  

• from missing series of measurements (e.g., for suspended detritus in 
the 2021 and 2022 pilot experiments); 

• from lack of measurements, especially in the first part of the exper
iments (i.e., before manuring and stocking);  

• from faulty sensor data (e.g., in 2022CS2 for phytoplankton 
concentration); 

• from unregistered, missing information about some “hidden” phe
nomena such as switching on of aerator on warm days, or trash fish 
input. 

The limitations of the applied method for improving reusability 
come mainly from the fact that it requires the systematic incorporation 

Table 6 
Simulated fish biomass in the up-scaled model.  

Characteristics Pond ID and Year 

BIX 
2013 

BIII 
2014 

BII 
2015 

BVIII 
2014 

BVIII 
2015 

Area, ha 24 123 141 58 58 
Feeding, t/ha/season 1.538 1.053 1.304 1.422 1.573 
Manuring, t/ha/season 8.3 4.1 2.8 3.4 2.6 
Fertilizing, kg/ha/season no no no no no 
Stocking density, kg/ha 370 338 333 248 247 
Harvested fish biomass, measured, kg/ha 1360 1080 975 1266 1159 
Harvested fish biomass, calculated, kg/ha 1336 1138 1103 1027 1067 
Relative difference, 

Calculated − Measured
Measured

*100, % 

− 1.76 5.37 13.13 − 18.88 − 7.94  

P. Sharma et al.                                                                                                                                                                                                                                 



Computers and Electronics in Agriculture 218 (2024) 108664

15

of experts’ reasoning. In contrast to the easily automated sensor data- 
driven machine learning model improvements (utilized for the solu
tion of well-defined local control problems), the ‘a priori’ model-based 
reusability improvement (utilized for longer-term design and plan
ning) requires the evolution of conceptual models and the description of 
new functionalities that is not easily automated. 

To address these limitations in the future, the continuous collabo
ration of field experts, sampling and measurement staff, and model de
velopers should be realized, from experimental design through interim 
discussions to evaluation of results. 

The strength of the study lies in its systematic model reuse strategy, 
achieved through stepwise reusability checks and improvements, inte
grating existing model knowledge with additional measurements. The 
adaptable framework of Programmable Process Structures enabled 
automatic model generation and simulation, enhancing reusability 
testing and improvement. This experience will guide the future devel
opment of ecosystem-oriented agricultural and aquacultural models, 
particularly in pilot experimentation-based and process model-assisted 
scale-up of production units. 

5. Conclusions 

The reusability of a process model involves a broader application 
beyond its original scope, including reduced models of specific sub- 
processes and extended models with new features. Model-based 
scaling up, which is fundamental to design and planning, is a special 
case of reusability. Models, validated by small-scale (e.g., pilot) exper
iments can approximately predict the characteristics of larger produc
tion units. Furthermore, planning uses the knowledge, gained from pilot 
tests to represent essential process characteristics over a larger space and 
longer time horizon. Both the scaling-up of pilot experiments and the 
design and planning of complex process systems require first principles- 
based dynamic simulation models. 

Complex agro-environmental processes combine natural ecosystems 
with human activities, making comprehensive experimentation expen
sive and laborious. The construction of reusable models from pilot ex
periments is therefore essential. 

This work presents a stepwise workflow for reusability testing and 
improvement by re-implementing and refining a mechanistic biophysi
cal fishpond model, constructed using the framework of Programmable 
Process Structures. 

The model architecture of the Programmable Process Structures 
helped to solve the reusability check-based improvement with the 
available limited amount of relatively erroneous data. This was sup
ported by the unified state and transition elements and their unified 
model prototypes, which follow the building blocks of the real-world 
processes being modelled. Accordingly, all of the parameter and func
tionality (i.e., program code) changes require only local intervention 
without reasoning about holistic side-effects in the applied mathemat
ical construct or computational tool. Moreover, the unnecessary model 
elements and prototype programs can be turned off, while new model 
elements and prototype programs can be conveniently added by local 
intervention. The price of this flexibility is that the improvement process 
based on the reusability check cannot be automated, especially in the 
case of the actually limited data availability. However, the lessons 
learned from the expert-driven execution of such a difficult task inspire 
further methodological developments towards more and more auto
mated solutions. 

Starting from the reference model, a series of case studies repre
sented a wide range of scenarios from the simple, extensive use of the 
natural food web to the intensive cases with feeding, manuring, and 
fertilizing in freshwater pond aquaculture. In the first phase, the model 
was tested and refined on a subset of pilot-scale experiments covering a 
wider range of characteristics. In the second phase, the refined model 
was validated using measured data from additional pilot case studies. 
This approach resulted in an improved model for fishponds following a 

wider range of production practices. The systematic improvement pro
cess also revealed hidden processes, and a hypothesis-based section 
distinguishing between eukaryotic and cyanobacterial phytoplankton 
groups was incorporated into the improved model. 

After analyzing the overall simulation errors, the model was tested 
through a further validation, taking into account sampling and mea
surement errors from a previously conducted set of pilot pond experi
ments, where two parallel experiments were performed for three pilot 
pond case studies. 

Finally, the refined model showed satisfactory results when applied 
to the scale-up of large-scale production ponds with very limited input 
data availability. 

The reusability checking procedure highlighted the critical need for 
well-designed and careful experiments, given the inherent uncertainty 
associated with sampling and measurement errors in pilot experiments. 
It underlines the importance of involving model experts and preliminary 
modeling to establish the sampling and measurement strategy. The plan 
should include a limited but necessary number of locally distributed and 
parallel samples to gain accurate knowledge of measurement errors. In 
addition, as food web models are very sensitive to the initial conditions, 
consideration of pond history and a comprehensive set of initial con
centrations are extremely important. 
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