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A B S T R A C T   

This paper presents a novel high-resolution and rapid (50 ms) UV imaging system, which was used for at-line, 
non-destructive API content determination of tablets. For the experiments, amlodipine and valsartan were 
selected as two colourless APIs with different UV induced fluorescent properties according to the measured solid 
fluorescent spectra. Images were captured with a LED-based UV illumination (385–395 nm) of tablets containing 
amlodipine or valsartan and common tableting excipients. Blue or green colour components from the RGB colour 
space were extracted from the images and used as an input dataset to execute API content prediction with 
artificial neural networks. The traditional destructive, solution-based transmission UV measurement was applied 
as reference method. After the optimization of the number of hidden layer neurons it was found that the relative 
error of the content prediction was 4.41 % and 3.98 % in the case of amlodipine and valsartan containing tablets 
respectively. The results open the possibility to use the proposed UV imaging-based system as a rapid, in-line tool 
for 100 % API content screening in order to greatly improve pharmaceutical quality control and process 
understanding.   

1. Introduction 

In the pharmaceutical industry, the currently widespread Quality-by- 
testing (QbT) approach is applied as quality control strategy during 
production, where small samples undergo slow, destructive, off-line 
laboratory testing (Nagy et al., 2022; Yu, 2008). If the evaluated qual-
ity parameters meet the specifications, the product is available for 
release, if not, the entire batch could be discarded, resulting in severe 
financial loss (Rossi, 2022). To combat this phenomenon and to better 
understand the steps of pharmaceutical manufacturing the concept of 
process analytical technology (PAT) was introduced. This initiative is 
greatly supported by the regulatory authorities (Food and Drug 
Administration, 2004) and has also attracted the interest of pharma-
ceutical manufacturers. These tools possess the capability to enhance the 
comprehensive understanding of the processes and the product, as well 
as rapidly analyze and control any deviations from specifications that 
may arise during production (Casian et al., 2022). 

Considering the Quality-by-design (QbD) approach, the content and 

the content uniformity of the active pharmaceutical ingredient (API) are 
regarded as high-risk critical quality attributes (CQAs) (Kandpal et al., 
2017). Recalls have been initiated by the authorities related to the 
mentioned attributes, which emphasize the significance of these con-
cerns (Food and Drug Administration, 2024). Therefore, multiple faster 
methods were developed to replace the traditional destructive, off-line 
measurements. Several publications in the literature showcase that 
near infrared (NIR) and Raman spectroscopy surfaced as suitable PAT 
tools for the API content determination of tablets. NIRS has already been 
used as to predict API content of tablets manufactured at various levels 
of compression force (De Man et al., 2023), to assess API content and 
tablet hardness (Kandpal et al., 2017), and to compare the concentration 
of API in a tablet press feed frame and in tablets (Peeters et al., 2022). 
Transmission Raman spectroscopy has also been applied to assess the 
content uniformity of tablets as a standalone method (Belay et al., 2021) 
or coupled with NIRS (Wang et al., 2021). However, these spectroscopic 
methods have a high investment cost, and they also yield complex data 
that can be difficult to interpret. 
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Artificial neural networks (ANNs), which have improved dramati-
cally in the last few years, are capable of handling of such complex 
datasets, with non-linear correlations as inputs (Das and Chakraborty, 
2016; Djuris et al., 2021). This advanced multivariate data analysis 
method is widely applied to perform regression or classification tasks 
(Butts et al., 2003), especially when coupled with NIRS (Péterfi et al., 
2023). Several publications can be found in the field of in vitro disso-
lution predictions of various tablets with ANNs (Baranwal et al., 2019; 
Galata et al., 2021a; Nagy et al., 2019). Neural networks can also be used 
to efficiently and accurately analyse data gathered from other inputs, 
such as machine vision systems. 

Machine vision can be used as an innovative analytical method in the 
field of pharmaceutical manufacturing with several advantages, such as 
its fast data acquisition and low investment cost. By utilizing RGB 
cameras, the concentration of different coloured components can be 
monitored during various steps of the manufacturing process (Galata 
et al., 2021c). There have been cases reported, where the content of 
riboflavin, a yellow-coloured API was determined using machine vision 
during continuous blending and continuous twin-screw wet granulation 
even at a concentration of 0.05 w/w% (Ficzere et al., 2021; Galata et al., 
2021b). In addition to the widespread usage in the case of powders, 
tablets containing coloured components could also be investigated with 
machine vision (Wagner et al., 2000; Wagner et al., 1999). These 
methods all utilized visible illumination, which however can only be 
used in the case of coloured APIs for direct concentration measurement. 

UV imaging is a novel, fast and non-destructive tablet inspection 
method, which is attracting substantial interest. Wu et al. successfully 
applied multispectral UV imaging at six different wavelengths for the 
visualization of glibenclamide in tablets (Wu et al., 2014). The same 
approach was applied later for the non-destructive determination of 
tablet physical properties and for pellet visualization in tablets (Klukkert 
et al., 2016; Novikova et al., 2016). However, in all of these cases, due to 
the consecutive manner of data acquisition at different wavelengths, the 
acquisition time was 18 s per multispectral image. This long measure-
ment time limits the number of samples, thus making multispectral UV 
imaging in a consecutive manner not suitable for real-time monitoring. 

By exposing a tablet only to a single wavelength of UV light, its 
components can turn into different colours due to slight differences in 
absorption or fluorescence. This can be used to predict the API content 
and particle size distribution, and also the dissolution profile of the 
tablets at much higher speed and combined with an RGB camera, the 
resolution is greatly increased as well (Mészáros et al., 2022). In a pre-
vious work (Mészáros et al., 2020) of the authors, single wavelength UV/ 
VIS imaging was utilized to measure the drug content, dissolution profile 
and crushing strength of tablets containing a yellow model drug, 
meloxicam. For API content determination, the applied acquisition time 
was 1.2 ms, which is four magnitudes faster than in the case of multi-
spectral UV imaging. With RGB and CIELAB colour space-based algo-
rithms they could predict the API content of the tablets with a relative 
error of 4.9 %. However, there have been no cases reported where 
tablets containing APIs that are colourless in visible light were investi-
gated using fast, single wavelength UV imaging for API content 
determination. 

The aim of our study is to utilize a UV imaging-based machine vision 
system as a novel PAT tool for the fast and accurate concentration 
determination of colourless APIs in white tablets. We intend to use two, 
antihypertensive APIs that have different fluorescent properties to 
showcase the wide applicability of UV imaging. Amlodipine functioned 
as a highly UV fluorescent, while valsartan was a non-UV fluorescent API 
at the applied wavelength. These model APIs also vary in particle size, 
thus we also aim to analyse the effect of this attribute on the prediction 
of API content. The applied excipient matrices also model the compo-
sition of products currently available on the market (Sandoz Group AG, 
2018; Teva, 2022). We aim to utilize ANNs for the determination of API 
content, creating a fast, non-destructive machine vision-based method 
that could be used as a part of a real-time monitoring system. 

2. Materials and methods 

2.1. Materials 

The model APIs amlodipine and valsartan were obtained from 
Sigma-Aldrich (St. Louis, Missouri, USA). These are frequently applied 
either separately or in a combination. Microcrystalline cellulose (MCC) 
and calcium hydrogen phosphate (CHP) were both purchased from JRS 
Pharma (Rosenberg, Germany). Magnesium stearate was acquired from 
Hungaropharma Ltd. (Budapest, Hungary) and corn starch was obtained 
from Merck (Budapest, Hungary). 

2.2. Methods 

2.2.1. Preparation of tablets 
For the experiments two sets of biconvex tablets with a target weight 

of 400 ± 20 mg were produced on a Dott Bonapace CPR-6 (Limbiate, 
Italy) single punch tablet press, using concave punches with a diameter 
of 14 mm and the compression force was set to 14 kN. To model a 
commercially available formulation with a target API content of 2.5 mg, 
7 groups of low dose amlodipine tablets were produced consisting of 9–9 
tablets containing 187.25 mg CHP, 20 mg corn starch and 2 mg mag-
nesium stearate. The amlodipine content was different in each group, set 
to the values presented in Table 1 and the MCC content was altered 
accordingly. In total 63 tablets were produced containing the mentioned 
API. Valsartan tablets contained the commercially available doses 
shown in Table 1 and the rest of them consisted of MCC. A total number 
of 64 valsartan tablets were manufactured. The target dose was deter-
mined by the authors as 60 mg. 

2.2.2. UV image and fluorescent spectra acquisition 
Image acquisition was carried out using a Canon 650D (Canon, 

Tokyo, Japan) digital single-lens reflex (DSLR) camera equipped with a 
Canon EFS 18–55 macro lens (Canon, Tokyo, Japan) mounted using a 
reversing ring. UV illumination was provided by a ring light (Apokromat 
Ltd, Budapest, Hungary) which contained a single row of light-emitting 
diodes (LED) with an emission spectral range of 380–395 nm. The 
implemented system is operating in reflection mode. A dark box was 
used to exclude the outside light. Exposure time was set to 1/20 s. Im-
ages were captured from both sides of the tablets with a resolution of 
5184 × 3456 pixels. Between the camera and the computer, an USB 3.0 
interface provided the connection. The setup is similar to the one used in 
a previous work of the authors (Mészáros et al., 2020). VIS images were 
acquired for the visual comparison of the samples using the mentioned 
set up with a ring light, containing 3 rows of LEDs in the emission range 
of VIS. 

The fluorescent spectroscopy measurements were carried out using 
an RF-6000 spectrofluorometer (Shimadzu Corporation, Kyoto, Japan) 
with an excitation wavelength of 385 nm with slit bandwidths of 5 nm 
for both excitation and emission, and a scan speed of 200 nm/min. For 
the measurements, solid samples of pure amlodipine and valsartan were 
cold-pressed into a disk with a thickness of 10 mm. The fluorescent 
emission was detected from 400 nm to 700 nm. 

Table 1 
The amlodipine and valsartan content of each sample group.  

API content of amlodipine tablet 
groups 
[mg] 

API content of valsartan tablet 
groups 
[mg]  

1.75 20  
2.00 40  
2.25 80  
2.50 160  
2.75   
3.00   
3.25   
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2.2.3. Measurement of API content with UV/VIS spectrometry 
The validation of the API content predictions was carried out with 

UV absorption spectroscopy using flask method. An Agilent 8453 UV/ 
VIS spectrometer (Hewlett-Packard, Palo Alto, CA, USA) was used for 
the API content measurements. The amlodipine content determination 
was done by dissolving the tablets in 200 mL volumetric flasks using 
200 rpm stirring for 3 h in distilled water. Then the solutions were 
filtered using a 1.2 µm syringe filter (Labex Ltd, Budapest, Hungary). 
The amlodipine content was measured at 242 nm with a 10 mm cuvette. 
For the measurement of valsartan, the tablets were dissolved in 6.8 pH 
phosphate buffer and the measurements were taken at 252 nm in a 10 
mm cuvette. 

2.2.4. Determination of API content with artificial neural networks 
In order to predict the API content of the produced tablets, the ac-

quired images were analysed with an algorithm developed in Matlab 
9.12.0.2327980 (Mathworks, Natick, MA, USA) environment. For the 
ANN-based prediction Matlab Deep Learning toolbox 14.0 (Mathworks, 
Natick, MA, USA) was applied. Fig. 1 presents a flowchart of the applied 
algorithm. The first step of the image processing was the background 
extraction. With the application of B (blue) values of the pixels, binar-
ization was carried out enabling the Hough-transformation based circle 
detection with a set range of radii of the samples. 

For the evaluation of amlodipine containing samples RGB colour 
space was applied. From the extracted colour components, the B channel 
was used in the following steps. Histograms were created from the 
mentioned values of the pixels for both sides of the tablets, which were 
then averaged. These were used to create the input dataset for the ANN. 
The training set contained 52 samples and the test set consisted of 11 
samples, which means that 83 % and 17 % of the samples were utilized 
in the datasets. A classic feed-forward structure was chosen, with input, 
hidden and output layers, one from each. Bayesian regularization 
backpropagation was used as a training function. In the case of a small 
dataset this function can successfully avoid overfitting. In the optimi-
zation process the number of neurons used in the hidden layer was 
altered between 1 and 5. The training was carried out for maximum 40 
epochs. The early stopping of the training is also applied to reduce the 
occurrence of overfitting. The hyperparameters of the ANN were set to 
default. The optimal neuron number was chosen by comparing the 
average RMSE (root mean square error) values for the training and test 
set, each calculated by the following equation: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
ypredicted − ymeasured

)2

n

√
√
√
√
√

(1)  

where n is the number of samples, ypredicted is the API content value ob-
tained with UV imaging and ymeasured is the API content measured with 
UV/VIS spectrometry. The ensemble of 50 trained ANNs employing the 
optimal number of neurons, was utilized to execute the prediction of the 
content. The individual results of the ANNs were averaged. This 
approach can effectively mitigate overfitting, reduce prediction vari-
ability, and enhance model generalization capabilities. 

RGB colour space was also used for the evaluation of valsartan 

containing samples. After the colour component extraction, the G 
(green) channel was used in the following steps. Histograms were 
created from the mentioned values, and these were used to create the 
input dataset for the ANN. The training set contained 52 samples and the 
test set consisted of 12 samples, which means that 81 % and 19 % of the 
samples were utilized in the datasets. The above-mentioned ANN 
structure and training function were also applied in this case. In the 
optimization process the number of neurons used in the hidden layer 
was also altered between 1 and 5. In comparison to amlodipine, the 
task’s complexity is reduced mainly because it involves only four API 
content levels. Furthermore, the significant differences observed in the 
histograms may require different numbers of epochs to adequately 
capture the underlying correlations. This can lead to faster convergence 
to the optimum when compared to the scenario involving amlodipine, 
resulting in that the training process was carried out for maximum 15 
epochs. The optimal neuron number was also chosen by comparing the 
average RMSEP values obtained for the training and test sets. 

3. Results and discussion 

3.1. Physical characterization of the produced tablets 

For the characterization studies, amlodipine and valsartan tablets 
were randomly selected, and their individual mass (n = 20), tensile 
strength (n = 10, Dr. Schleuniger THP-4 M tablet hardness tester; Dr. 
Schleuniger Productronic, Solothurn, Switzerland) and friability (n =
10, PTF E double drum friability tester; Pharma Test Apparatebau AG, 
Hainburg, Germany) were evaluated. Table 2 presents the results of the 
characterization. 

Based on these results it can be concluded, that the produced tablets 
meet the Ph. Eur. criteria on uniformity of individual mass (European 
Pharmacopoeia Commission, 2019b) and friability (European Pharma-
copoeia Commission, 2019a). The tensile strength values indicate that 
the tablets were indeed manufactured with the same level of compres-
sion force, resulting in a similar surface texture for the tablets. There-
fore, the was no need to include a parameter regarding surface 
roughness into the models. 

3.2. Fluorescent properties of amlodipine and valsartan tablets 

To assess the range of applicability of the UV imaging-based machine 
vision system, the authors have chosen two APIs with distinct fluores-
cent characteristics. Based on the registered fluorescence emission 
spectra at the excitation wavelength of 385 nm (presented on Fig. 2), 
amlodipine is an intensively fluorescent molecule with a peak at 451 nm, 

Fig. 1. Flowchart of the algorithm.  

Table 2 
The physical characteristics of the tablets, where RSD is the relative standard 
deviation and SD is the standard deviation.  

Individual mass 
[mg] 
(n = 20, mean ± SD) 

RSD 
[%] 

Tensile strength 
[N] 
(n = 10, mean ± SD) 

Friability 
[%] 
(n = 10) 

400.64 ± 5.742 1.43 130.2 ± 6.29 0.49  
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while valsartan is a non-fluorescent API. 
Based on the results, differences in the appearance of amlodipine and 

valsartan containing tablets under UV illumination are expected. Fig. 3 
presents a comparison between the surface of an amlodipine and a 
valsartan tablet on images taken with the machine vision system using 
VIS and UV illumination. 

As observed by visual inspection, in neither case is the API distin-
guishable on the surface of white tablets under VIS illumination. 

Consequently, the API content may not be measured using that illumi-
nation spectral range. On the other hand, applying UV range illumina-
tion makes both the APIs and excipient particles visible to the naked eye 
due to fluorescence contrast between the components. This also allows 
the possibility of differentiating the matrix elements and the API using 
the colour components, while also enabling the qualitative particle size 
determination of the APIs. 

The visualization of the changes in the surface related to the 
increasing API content is shown on Fig. 4 for amlodipine and Fig. 5 for 
valsartan containing samples. As a highly UV- fluorescent API in the 
applied range (Fig. 2), amlodipine has a bright hue in the blue compo-
nent on the UV illuminated images, which overshines the darker colour 
of all the other excipients in the tablet. However, the midtones and the 
dark tones of the blue component can also be used to differentiate be-
tween the applied matrix components. Moreover, it can be seen on Fig. 4 
that the surface of tablets containing more API particles with increasing 
API content levels, thus increasing the overall brightness, while the 
colour of the matrix components is more supressed. 

Valsartan, as a non-UV fluorescent component (Fig. 2), has a darker 
blue hue, while the excipient has brighter shades, resulting in different 
detectable regions on the surface for the naked eye. Fig. 5 shows that 
tablets containing a higher amount of valsartan exhibit deeper blue hue. 
Because of the smaller particle size of this API, only a few bigger par-
ticles are distinguishable by the naked eye, but the presence of smaller 
particles can be detected in the shift of the hue as the content increases. 
It is also important to note that between the smallest and the largest 
levels of content there is significant difference in the hue, however be-
tween the 20 and 40 mg levels this can be slightly observed by the naked 
eye. To conclude, this shift in colour occurring due to the increasing API 
content may provide an opportunity to evaluate the mentioned CQA. 

The mentioned observations correlate with the fluorescent spec-
troscopy measurements (Fig. 2) and made the qualitative analysis of the 

Fig. 2. Fluorescent spectra of amlodipine and valsartan at the excitation 
wavelength of 385 nm. 

Fig. 3. The first column displays images of tablets illuminated with VIS, while the second column shows the same tablets illuminated with UV. The third column 
features an enlarged section of the sample surface, with arrows indicating the API particles. The top row consists of amlodipine tablets, while the second row shows 
valsartan tablets. 
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tablet components possible, but to enable quantitative analysis, tablets 
containing different amounts of APIs should be investigated. 

3.3. Preparing the input dataset for the development of the ANN model 

In order to create the input dataset for the ANNs, histograms were 
constructed of images taken of both sides of the samples produced for 
the experiments. The histograms were averaged for each group of tablets 
with the same dosage and shown in Fig. 6 a) for amlodipine and Fig. 6 b) 
for valsartan tablets. 

By investigating the average histograms of amlodipine tablets (Fig. 6 
a)), it can be seen that the higher doses have higher intensity in B values. 
The histograms correspond with the earlier perception that tablets with 
a higher amlodipine content have brighter colour due to the increasing 

number of API particles on the surface. The presence of this trend is 
particularly noticeable, within the range of 200–255. Furthermore, in 
the case of smaller doses, the smaller number of particles and the darker 
colours of the excipients become visible, shifting the histograms to the 
left. Consequently, the whole range of the histogram should be analysed 
to obtain the proper information for the analysis. The utilization of 
histograms enables the extraction of diverse information from the 
samples, thereby facilitating the applicability of multivariate data 
analysis methods, such as ANNs. In conclusion a strong correlation can 
be observed between the B histograms of the samples and the applied 
dosage levels, enabling the usage of histograms as a proper input for API 
content prediction. 

The average G histograms of valsartan tablets (Fig. 6 b)) also show a 
clear separation of the dosage groups. Samples containing more API 

Fig. 4. UV images of amlodipine containing tablets with a nominal dose of 1.75 mg (a), 2.5 mg (b), and 3.25 mg (c).  

Fig. 5. UV images of valsartan containing tablets with a nominal dose of 20 mg (a), 40 mg (b), 80 mg (c), 160 mg (d).  

Fig. 6. The average B histograms of the amlodipine (a) and the average G histograms (b) of valsartan tablets for each dosage group.  
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have lower G values, therefore they are darker, corresponding with the 
previous observations. In the context of these histograms, the peaks 
shifted towards the lower values with increasing API content. Compared 
to the histograms of amlodipine, a narrower distribution of the values 
can be observed, which can be explained by the small changes of the hue 
throughout the increasing dosage levels. It is important to mention that, 
despite the fact that the changes can also be observed in the blue 
component, the hue change is found to be more differentiative in the 
green component. To conclude, the investigation of the histograms 
showed that they are suitable for presenting the differences between the 
different dosage groups, making them preferable as input data for ANNs. 

3.4. Development and optimization process of the ANN-based models 

3.4.1. ANN-based model for the prediction of amlodipine content 
Model development 
The UV imaging-based input dataset was used to determine the API 

content of the tablets with ANNs. In the case of amlodipine tablets, a 
total of 63 tablets were split into training and test groups at random, 
which contained 52 and 11 tablets respectively. In order to select the 
optimal number of hidden layer neurons, 50 ANNs trained with 1 to 5 
neurons. The RMSE values were compared using boxplots (Fig. 7 a) and 
b)). The comparison of the obtained averaged RMSE values for the 
training and test set of samples are presented on Fig. 7 c). 

As it can be observed, the number of hidden layer neurons greatly 
impacts the RMSE values. By increasing the neuron number, the training 
and test RMSE values both increase, indicating a less accurate model. 
Furthermore, the gap between the training and test RMSE values is 
growing as well, which results the occurrence of overfitting. It is worth 
noting that increasing the number of neurons in the hidden layer also 
significantly increases the training time of the ANN. In order to acquire a 
robust model with the applied training set consisting of a relatively small 
number of samples, 1 or 2 neurons should be used in the hidden layer, 
based on the RMSE values. On the other hand, with two neurons in the 

hidden layer the standard deviation of the 50 training cycles is obtained 
at higher levels. Based on the low-level of complexity of the input 
dataset it is expected to obtain a model that is not prone to overfitting 
with a simple ANN structure and a small number of neurons in the 
hidden layer. Considering all observations, 1 hidden layer neuron was 
selected as the best option and was used in the following for amlodipine 
content prediction. 

In the context of the goodness parameters of the structurally simple, 
optimized ANN the averaged RMSE values are 0.111 mg for the training 
set and 0.112 mg for the test set. It meant 4.4 % of relative error on the 
target value of 2.5 mg, which is in the range of the ± 5 % limit for the API 
content determination (Casian et al., 2017). In conclusion, the acquired 
images and the colour component histograms, such as B values of the 
samples can become valuable information sources when the formulation 
contains a highly UV fluorescent substance as an API. 

Evaluation the results obtained for the test set of the ANN-based predic-
tion of amlodipine content 

Fig. 8 showcases the predicted and the measured amlodipine con-
tents of the test set. When the trends in the measured and predicted 
values are compared, it can be observed that the prediction follows the 
trend obtained from the measurements. Moreover, the predicted values 
are close to the measured contents. 

Table 3 shows the detailed comparison of the measured and the 
predicted, averaged values with the trained 50 ANNs using one neuron 
in the hidden layer. The calculated relative errors are also presented for 
the samples of the test set. As showcased, the amlodipine content of the 
tablets was determined without systematic error and with high accu-
racy. Larger deviation from the measured value is obtained at the 2nd, 
5th and 9th samples. However, these error values are in the range of the 
± 10 % limit. In all the other cases the relative error is under 5 %, 
averaging 4.41 %. Nevertheless, increasing the number of samples could 
enhance the accuracy of the ANN model. 

In conclusion the developed, simple image processing method was 
capable of extracting the appropriate information from the images in the 

Fig. 7. The results of the optimization process of the ANN-based model for the training (a) and test set (b) of amlodipine content prediction with different numbers of 
neurons in the hidden layer, and the trend obtained in the averaged RMSE values (c). 
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context of a highly UV-fluorescent API. Only by utilizing UV illumina-
tion is an opportunity provided, where white amlodipine particles 
become visible on the surface of the samples. The changes in the his-
tograms of B values showed strong correlation with the changes in the 
content of amlodipine, thus it was sufficient for the training of an ANN 
with a simple structure. The larger size of the API was not a limiting 
factor in the context of image processing or prediction. As presented, the 
amlodipine content of the tablets was determined without systematic 
error and with high accuracy. The average relative error of the predic-
tion is 4.41 %, which is a very suitable result for a novel rapid machine 
vision method with a measurement time of only 50 ms, making it a 
promising tool for future applications. 

3.4.2. ANN-based model for the prediction of valsartan content 
Model development 
To explore the range of applicability of the UV imaging system, 

valsartan was applied as a non-fluorescent API, due to its different 
appearance on the tablet surface in comparison with amlodipine con-
taining samples. In that case, a total of 64 tablets were randomly split 
into training and test groups containing 52 and 12 tablets. In order to 
determine the optimal number of hidden layer neurons, like previously, 
the RMSE values were calculated from 50 training cycles and visualized 
on boxplots (Fig. 9 a) and b)). The averaged RMSE values were 
compared in Fig. 9 c). 

It was observable, just as in the case of the amlodipine containing 

samples, the number of hidden layer neurons significantly influences the 
training and test RMSE values, thus the performance of the ANNs. The 
test RMSE values at higher neuron numbers are larger than the training 
values, which can indicate overfitting. Due to the low complexity of the 
input dataset, ANNs with 1 hidden layer neuron yielded the best per-
formance and were used for the valsartan content prediction. Based on 
the differences in the G histograms and the levels of the API content the 
standard deviations were small both for the training and test sets as 
expected. The obtained RMSE for the training set was 2.54 mg and for 
the test set this value was 2.70 mg. By applying a simple network 
structure, the ANN is also less prone to overfitting. 

To summarize the results obtained throughout the optimization 
process, the machine vision-based dataset was also applicable for the 
training of the ANN and for the prediction of the non-fluorescent API 
content. Moreover, the darker colour and the smaller particle size of the 
API are not limiting factors in the context of the prediction of the val-
sartan content. 

Evaluation the results obtained for the test set of the ANN-based predic-
tion of valsartan content 

Fig. 10 illustrates the valsartan contents of the test set of samples, 
both predicted and measured. Just as the prediction of amlodipine 
content, the predicted values show a trend consistent with the measured 
values. Additionally, the estimated content values closely approximated 
the values determined using UV spectroscopic method. 

Table 4 include the measured values, the predicted values, and the 
calculated relative error values of the test set. These values were ob-
tained by averaging the output of 50 trained ANNs. The valsartan con-
tent of the tablets was also successfully determined without systematic 
error and with high accuracy. The 1st and 3rd samples exhibit a larger 
deviation from the measured value. These deviations can be caused by 
the small input dataset. Despite the two outliers, the average relative 
error of the method was 3.98 % for the 60 mg target, which is in the 
range of the ± 5 % limit. Consequently, it can be observed, that despite 
the vastly wide range of valsartan content in the tablets, the predicted 
values were never deviated more than a few milligrams from the 
measured values. 

In conclusion, the machine vision method demonstrated the ability 
to extract relevant information from images containing non-fluorescent 
API with darker colour, similar to the amlodipine content prediction. 
The changes observed in the histograms of the G values are associated 
with the changes in the content of the applied API, resulting in its suc-
cessful utilization for training a simple ANN model. The smaller particle 
size of the API and the obtained slight differences in the surface colour 
were not a limiting factor during the image processing and the predic-
tion. The combination of machine vision and artificial neural networks 
can offer a versatile solution for the rapid and comprehensive evaluation 
of various APIs. 

The results of the ANN-based API content predictions are compared 
in Table 5. The relative error values were similar for both a highly and a 
non-UV fluorescent API. UV imaging proved to be an accurate API 
content measurement method in the case of two different APIs with 
different characteristics. However, with the application of extended 
sample sets the accuracy of the predictions can be further increased. 

To place our findings in the literature, the accuracy and other pa-
rameters regarding UV imaging and other PAT tools, such as NIR and 
Raman spectroscopy should be investigated. In a previous paper of the 
authors (Mészáros et al., 2020), the meloxicam (a coloured API) content 
of tablets was predicted with a relative error of 4.9 % using single 
wavelength UV imaging. In the case of both colourless APIs in this work 
a lower relative error was achieved. Casian et al. (Casian et al., 2017) 
measured the amlodipine and valsartan content of tablets using NIR and 
Raman spectroscopy. They reported RMSECV values of 0.48 mg and 
2.22 mg with NIR, and 0.44 mg and 1.92 mg with Raman spectroscopy 
for amlodipine and valsartan respectively. These results are comparable 
with our RMSE values of 0.112 mg and 2.70 mg. However, there is an 
enormous difference in investment cost between the spectroscopic 

Fig. 8. The amlodipine content of the test tablets predicted with the optimized 
ANN-based model and measured using standard method of UV spectrometry. 

Table 3 
Predicted and measured amlodipine content of the test set and the relative error 
values for each sample.  

Number of 
test tablet 
[-] 

Amlodipine 
content predicted 
with ANN 
[mg] 

Amlodipine content 
measured with UV 
spectrometry 
[mg] 

Relative error 
of prediction 
[%] 

1  1.41  1.35  4.35 
2  1.81  1.70  6.61 
3  1.63  1.70  − 3.99 
4  1.96  1.90  3.57 
5  1.76  1.89  − 7.36 
6  1.88  1.96  − 3.98 
7  2.18  2.09  4.54 
8  2.28  2.18  4.65 
9  2.91  3.16  − 7.95 
10  3.15  3.15  − 0.09 
11  2.91  2.93  − 0.70  
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methods, where medium level equipment has an asking price of more 
than 80 000 USD (Hallmark, 2024), and our UV imaging system, with a 
cost well below a tenth of that, while being more easily implementable 
by taking up less space and requiring less training for the users. By 
utilizing imaging techniques, other aspects of the tablets could also be 
simultaneously inspected, for example their hardness, porosity, disin-
tegration time and the particle size of the API, factors all influencing the 
dissolution profile of a tablet, which is one of the most important CQAs. 

By being a low-cost, fast and non-destructive at-line or off-line sys-
tem, UV imaging can replace the traditional API content measurement 
techniques currently practised in the pharmaceutical industry. It is also a 
huge step in the direction of UV imaging-based in-line, real-time 

Fig. 9. The results of the optimization process of the ANN-based model for the training (a) and test set (b) of valsartan content prediction with different numbers of 
neurons in the hidden layer, and the trend obtained in the averaged RMSE values (c). 

Fig. 10. The valsartan content of the test tablets predicted with the optimized 
ANN-based model and measured using standard method of UV spectrometry. 

Table 4 
Predicted and measured amlodipine content of the tablets of the test set and the 
relative error values for each sample.  

Number of 
test tablet 
[-] 

Valsartan content 
predicted with 
ANN 
[mg] 

Valsartan content 
measured with UV 
spectrometry 
[mg] 

Relative error 
of prediction 
[%] 

1  24.72  20.92  18.17 
2  26.03  26.57  − 2.04 
3  26.38  23.81  10.78 
4  35.10  37.51  − 6.43 
5  38.41  38.50  − 0.24 
6  39.43  38.47  2.49 
7  77.03  78.76  − 2.19 
8  77.57  78.40  − 1.07 
9  82.77  81.64  1.38 
10  139.03  138.99  0.03 
11  140.46  138.74  1.24 
12  141.46  138.48  2.15  

Table 5 
The comparison of the developed ANN models, according to the selected number 
of hidden layer neurons and the average relative error of the API content pre-
dictions of prepared tablets.  

API Selected number hidden 
layer neurons 
[-] 

Average relative error of API 
content prediction 
[%] 

Amlodipine 1  4.41 
Valsartan 1  3.98  
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monitoring, because its measurement time of 50 ms is much quicker 
compared to previous multispectral UV imaging techniques. 

4. Conclusions 

This work introduced a novel at-line PAT system, wherein UV im-
aging is used to predict the API content of tablets containing two col-
ourless APIs, valsartan or amlodipine an order of magnitude faster than 
what was previously achieved. Artificial neural networks have been 
applied to determine the API content of the tablets based on the blue and 
green histograms extracted from UV images. It was found that this 
machine vision-based method is capable of predicting the amlodipine 
and valsartan content of tablets with low relative errors. The proposed 
system has a measurement time of only 50 ms, which enables the at-line 
analysis of well over 100 tablets per minute. With this simple and cost- 
effective method, the content uniformity of the tablets could be 
measured more thorough, while also opening the possibility for the 
particle size measurement of the API. 

The developed method could be used for a vast number of other APIs, 
making the API content and content uniformity measurements faster 
and non-destructive for a wide range of pharmaceutical products. This 
UV imaging-based method could also be augmented in a way to produce 
a high-throughput in-line API content measurement system, making it 
possible to investigate all the produced tablets, accomplishing 100 % 
screening. Other than APIs, excipients can also interact differently with 
UV illumination, enabling the differentiation of all tablet components, 
which could be used to create an imaging based chemical mapping 
method. 
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Investigation, Data curation. Anna Diószegi: Investigation. Zoltán 
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2017. Development, validation and comparison of near infrared and Raman 
spectroscopic methods for fast characterization of tablets with amlodipine and 
valsartan. Talanta 167, 333–343. 
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