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A B S T R A C T

Transportation-related activity scheduling is becoming more complex due to the growing number of potential 
locations and extensive opportunities to visit various places. Throughout the years, in the field of transportation 
several attempts were made to optimize travelers’ activity chains with different parameters to set, but there is a 
lack of comprehensive solutions. In this research, the activity chain optimization algorithm is applied, which 
requires high computational efforts. To provide an adequate calibration of the parameters, a sensitivity analysis 
is conducted. The aim of the analysis is to reveal how changes in the attribute values modify the final outcomes. 
The relevant parameters, activity chains, transport modes, optimization algorithms, and fitness functions, are 
identified and considered. For each parameter, an investigation is conducted to reveal its behavior throughout 
the runs. For example, changes in the population size and crossover function lead to more reliable results, while 
alteration in the number of generations and the mutation function have no effects on the outcomes. The analysis 
presents a peculiar behavior of the parameters related to the activity chains. The results can be useful for 
transportation planners and service providers in the adaptation of the existing network and transportation ser
vices to the travelers’ mobility patterns.

1. Introduction

Problems in urban transportation networks are frequently related to 
the accelerated urbanization and growth of cities. As urban locations are 
becoming more and more attractive to people, the overload of trans
portation networks becomes an urgent issue (Sinha, 2003). Therefore, 
network capacity has a direct impact on urban development and the 
quality of life. Thus, efficient ways of planning are required to maintain 
a sustainable usage of the existing transportation network (Camargo 
Pérez et al., 2015).

A smart way of using the transportation network efficiently is by 
exploiting its capacity and optimizing the actual trips conducted within 
the system. Such exploitation is well-represented by finding the best 
routes or closest locations when visiting a city while considering user 
specific constraints and other options. Throughout the years, several 
authors addressed the routing problem in different cases while propos
ing diverse solutions to the issue. Suggestions for optimal bus transit 
routes and multimodal trip routing are examples of solutions in the field 
of public transport (Fan and Machemehl, 2006); (Bast, 2016) . More
over, there are investigations in freight transportation including time- 

window constraints and multimodal solutions, as well (Yang et al., 
2015); (Fazayeli et al., 2018) .

Solving routing problems involves a considerable computational 
cost. Traveling from one location to another in urban environment re
quires an analysis of several routes and constraints, which may result in 
a huge number of calculations. Therefore, advanced research solutions 
analyze alternative algorithms that could reduce the computational 
costs of solving routing problems. One of these heuristic algorithms is 
the genetic algorithm (GA) family and its variations. For example, Beed 
et al. (Beed et al., 2017) apply the GA to solve the traveling salesman 
problem (TSP), while Esztergár-Kiss et al. (Esztergár-Kiss et al., 2018) 
use the GA to optimize travelers’ activity chains. Although several so
lutions appear, the efficiency of the solutions and the setting of suitable 
parameter need more analysis.

To find solutions for the routing problems and to optimize the usage 
of the transportation network capacity, the concept of activity chain 
optimization (ACO) can be used, which describes the tasks done and the 
locations to visit during a period in urban environment. These tasks can 
be created artificially, as demonstrated by Charypar and Nagel 
(Charypar and Nagel, 2005), or they can rely on actual activities, as 
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addressed by Esztergár-Kiss et al. (Esztergár-Kiss et al., 2018). The latter 
framework represents people’s routines more adequately, and it can 
provide an optimization process that presents routing solutions by 
involving the optimal set of activities.

The optimization process requires the understanding of all parame
ters included in the problem. It is fundamental to know how the travel 
time and transport mode influence the results of the optimization. In the 
ACO problem, several parameters are present; thus, the problem arises 
how all these parameters can be set to provide the most suitable solu
tion. Therefore, the main research question is the following: how do the 
parameters impact the output of the optimization process? For an 
adequate calibration of the method, sensitivity analysis could be 
applied. Sensitivity analysis is a valuable method to investigate various 
parameters.

For this reason, current research work describes the sensitivity 
analysis of the parameters in the ACO framework. The aim of the study is 
to perform a detailed parameter analysis and present the most suitable 
settings for a specific transportation problem. Additionally, this research 
investigates the impacts of the main attributes on the outcomes of the 
optimization. The paper is structured as follows. After the introduction 
in Section 1, relevant literature about sensitivity analysis methods is 
discussed in Section 2. Section 3 demonstrates the description of the 
problem and the method applied during the sensitivity analysis. After
ward, in Section 4, the results are presented. The outcomes are discussed 
in Section 5, and finally, the conclusion is demonstrated in Section 6.

2. Literature review

Relevant papers that apply specialized algorithms to solve routing 
and optimization problems are introduced with a specific focus on 
sensitivity analysis.

2.1. Routing problems

Bast et al. (Bast, 2016) present a review of practical algorithms used 
in route planning including schedule-based public transport and multi
modal options. The authors state that routing with public transport is a 
significantly hard problem due to timetables and multicriteria issues. In 
the paper, shortest path algorithms on static networks and their per
formance in real road networks are compared by using query time and 
processing time. However, specific parameter settings and sensitivity 
analysis are not realized.

An example of using the GA to solve routing problems is found in the 
study of Fan and Machemehl (Fan and Machemehl, 2006). The re
searchers suggest an approach for examining an optimal bus transit 
route with variable demand. Furthermore, a sensitivity analysis of the 
main parameters is conducted, which makes the refinement of the al
gorithm possible thus giving more adequate routes. However, in this 
case a relatively simple routing problem is solved with a limited number 
of parameter settings. Regarding the vehicle routing problem, Yang et al. 
(Yang et al., 2015) propose a solution with time windows by using a 
hybrid GA. The researchers provide a solution to the heterogeneous 
vehicle fleet problem by considering the carbon effects. Suggestions for 
routes and load capability are provided by conducting a sensitivity 
analysis on the objective parameters. The study focuses on a logistics 
application where different parameters are relevant than in case of the 
ACO since in the ACO framework, passenger transportation-related is
sues are handled. Similarly, Fazayeli et al. (Fazayeli et al., 2018) use the 
GA to introduce a location-routing solution in a multimodal trans
portation network. The algorithm is meant to decide on the used 
transport modes and node locations as well as on the routing and the 
depot placement. A distribution system is considered where time win
dow constraints are introduced along with fuzzy variables for the rep
resentation of the customer demand. Similarly to the previous paper, the 
aim is to distribute the products of a supply chain, which faces different 
challenges than organizing travelers’ activities in a city.

2.2. Optimization problems

The activity chains of transportation users can be described as a se
ries of ordered activities realized by a person during a day (Yin et al., 
2021). By considering the optimization of these activity chains, Char
ypar and Nagel (Charypar and Nagel, 2005) apply the GA to generate an 
all-day schedule, which is used to create a multi-agent model for 
transportation planning. The GA initiates a population of possible ac
tivities and selects the best fit for human behavior through the genetic 
operators. The applied model generates daily activity schedules, but the 
performance of the algorithm and the settings of the parameters are not 
evaluated within the analysis. Moreover, Beed et al. (Beed et al., 2017) 
model and solve a multi-objective TSP problem by using weighted sums 
and the GA. Sensitivity analysis is conducted to investigate the impacts 
of various genetic operator values with different weights on the results 
of the fitness function. However, the algorithm does not reflect the 
complexity of the ACO problem, and several related parameters are 
neglected. To solve the TSP problem, Esztergár-Kiss et al. (Esztergár-Kiss 
et al., 2018) propose an optimization algorithm applied to a real 
transportation network with timetable data while using temporal and 
spatial flexibility. The method considers the flexibility of activities and 
processing times requiring the introduction of the GA with a point of 
interest (POI) search algorithm. However, no sensitivity analysis, which 
would support the parameter setting of the problem, are conducted. 
Moreover, Esztergár-Kiss et al. (Esztergár-Kiss et al., 2020) provide a 
solution including multimodal features and time window constraints. 
Additionally, Esztergár-Kiss (Esztergár-Kiss, 2020) presents how to 
group travel-related parameters of various activity chains into classifi
cation parameters and optimization parameters. The research explores a 
wide range of parameters and demonstrates useful results for defining 
the parameters included in current study related to the sensitivity 
analysis.

The effectiveness of GAs is investigated by several authors. Hassanat 
et al. (Hassanat et al., 2019) review the literature on the topic of 
choosing the right values for genetic operators and apply a new dynamic 
method for setting the parameters. However, parameter tuning is only 
used for the general TSP problem not covering all necessary parameters. 
Ulukok (Ulukok, 2017) applies the GA in the domain of numerical 
optimization. The researcher tests the performance of the algorithm 
with various parameter settings. The outcomes show that getting an 
optimum solution with GA requires distinct parameter settings.

2.3. Sensitivity analysis

Previous research shows that the performance of the algorithm 
strongly depends on the parameter settings. Thus, running a sensitivity 
analysis is required to provide optimal solutions. The impact of the al
gorithm parameters on the model can be assessed by sensitivity analysis, 
which aims to quantify the relative importance of the input parameters 
in determining the value of the output variables.

The sensitivity analysis explores how varying one input influences 
the output, which is called the one-factor-at-a-time (OFAT) method, as 
shown by ten Broeke et al. (ten Broeke et al., 2016). In the literature, 
there are several methods conducting sensitivity analysis, where 
depending on the type of the base model, different approaches are 
suggested. As examples of diverse applications, Fan and Machemehl 
(Fan and Machemehl, 2006) perform the OFAT method with a base set of 
parameters to investigate the sensitivity of the genetic operators and the 
parameters of a specific function on the outputs. Moreover, Dass and 
Namin (Dass and Namin, 2020) apply the sensitivity analysis to inves
tigate evolutionary algorithms. The researchers vary one parameter at a 
time to uncover the influence of parameter tuning in the GA. Although, 
current research applies sensitivity analysis, it does not solve the ACO 
problem and does not assess the suitable parameters for a scheduling 
problem in the field of transportation.

This study is conducted by using the OFAT method (ten Broeke et al., 
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2016), which enables the calibration of the ACO parameters based on 
the results of the sensitivity analysis. The choice of the method is based 
on the interaction of the inputs that is not a primary issue, while the 
focus of the research is a robust observation of changes. The method can 
reveal the qualitative characteristics of the system, it is computationally 
cheap and can be used with relatively low effort.

3. Method

Since activity scheduling helps users to optimize their trips in a city, 
in general, the target group of the research includes users. To solve the 
ACO problem including the traveling salesman problem with time 
windows (TSP-TW), a system is developed in Python language. For the 
development, the GA is used combined with Java environment by 
running the routing engine of the open trip planner (OTP). To analyze 
the influence of the parameters on the ACO results, a sensitivity analysis, 
which can be served as the basis for further parameter calibration, is 
conducted.

3.1. Aco

The ACO problem can be stated as a directed graph where each edge 
has a cost for traveling from one location vertex to another. Time win
dows are assigned to the vertexes, and the objective is to find the min
imum cost Hamiltonian cycle with the arrival time within or before the 
time window (Esztergár-Kiss and Remeli, 2019).

The flexible TSP-TW differs from the TSP in two ways. First, by 
including the time dimension in the calculations, time windows are 
considered as constraints for the selection of the locations. Second, the 
TSP-TW includes the option of spatially and/or temporally flexible ac
tivities, which can be replaced by other activities of the same type but 
with a lower total cost (Esztergár-Kiss and Rózsa, 2015).

The TSP-TW is implemented inside the ACO framework, which 
consists of a series of processes to optimize the activity chain. The first 
step is the definition of the data input regarding the characteristics of the 
activity. Afterward, the alternative activity locations are searched with 
the OTP in case of spatially flexible locations. Additionally, the OTP 
calculates a travel time matrix for various transport modes. The flexible 
TSP-TW is solved, and the framework chooses the optimal value. For 
comprehension reasons, the steps of the flexible TSP-TW method are 
summarized:

• Defining the daily activity chain: A list of activities is defined by 
the user.

• Solving the basic TSP-TW: The original locations are calculated.
• Prioritizing the activities: Fixed points receive higher priority than 

flexible ones.
• Replacing the flexible points: New locations are found for the 

flexible activities within a determined distance.
• Optimization: For each version, a TSP-TW is calculated, and the one 

with the lowest cost is compared with the basic TSP-TW result.

To make the system able to calculate the most adequate schedule in a 
comprehensive time, a heuristic GA approach is introduced. Otherwise, 
the optimization would take a long period considering the enormous 
number of possibilities.

3.2. GA

GAs are heuristic algorithms that can be used for searching, opti
mizing, and learning tasks. These algorithms were introduced by 
Holland (Holland, 1975) based on the theory of the survival of the 
fittest. The crossover and mutation abilities play an important role in 
continuing the evolutional process. The crossover brings together the 
“better” traits over time, and the mutation introduces new changes in 
the mechanism. The algorithm makes a representation of the natural 

selection regarding the laws of nature, which ensures that the next 
generation will be “better” than the previous one. Therefore, there are 
several elements such as population, fitness function, selection, cross
over, and mutation described in the following list:

• Population: A collection of chromosomes or candidate solutions.
• Fitness function: The “better” the fitness, the higher chances of 

reproduction.
• Selection: The choice of the individuals that are to be reproduced.
• Crossover: Interchange of genes between chromosomes to create 

offspring.
• Mutation: A random modification in a gene to introduce new 

attributes.

The main genetic operators of the algorithm are selection, crossover, 
and mutation. There is a gradual search for the optimal solution eval
uated by the fitness value. The optimal solutions are assembled as a 
group of chromosomes. The individuals who have the desired chromo
somes receive “better” scores and pass these chromosomes to the next 
generations combining them with other desired chromosomes from 
other individuals. Thus, a population of individuals with more adequate 
chromosomes is formed (Wirsansky, 2020).

Therefore, the solutions with poor fitness are eliminated. On the 
other hand, the solutions with high fitness pass their offspring to the next 
generations until there is no more improvement, and the “best” solution 
is found. Although the search space is reduced by the algorithm, and a 
solution can be found way faster, there are some limitations, as well. For 
example, the need for parameter tuning, intensive computational op
erations, the chance of premature convergence, and no guaranteed so
lution are some limitations. Additionally, the algorithm has the risk of 
getting stuck in a local optimum, as well.

3.3. Sensitivity analysis

A sensitivity analysis is used to assess the behavior of the ACO. The 
analysis performed in this case is the OFAT described by ten Broeke et al. 
(ten Broeke et al., 2016). The method consists of determining a base 
parameter setting and changing one parameter once while maintaining 
the others fixed. This type of analysis can reveal the influence of a 
parameter on the output. The goal of the applied sensitivity analysis is to 
observe how patterns and emergent properties are created. Additionally, 
other aims of the analysis are to examine the consistency of the emergent 
properties and to quantify the variability in the outputs. Thus, to deploy 
the investigation in the ACO system, a working protocol is established 
based on the steps demonstrated in Fig. 1.

3.3.1. Identifying the relevant parameters
In the work of Esztergár-Kiss (Esztergár-Kiss, 2020), travel-related 

parameters are presented and grouped into classification parameters 
and optimization parameters to define a set of inputs, which model the 
ACO utility function. The ACO system analyzed in this research follows 
the same structure of the utility function. Therefore, the parameters in 
common with those presented by Esztergár-Kiss (Esztergár-Kiss, 2020) 
are picked due to their relevance to the analysis. The classification pa
rameters are related to the specific characteristics of the user, location, 
or trip. On the other hand, the optimization parameters support the 
optimization process; thus, they are relevant for the sensitivity analysis.

Besides the weights of the utility function, other parameters are used 
in the sensitivity analysis. Some of them are related to the algorithm, 
while others are related to the users’ inputs. In this case, the analysis is 
meant to understand the behavior of the system in different configura
tions. To present the selected variables, a summary of all relevant chosen 
parameters with their meanings, default values of the basic setting of the 
analysis, and brief descriptions are demonstrated in Table 1.
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3.3.2. Setting the parameters and the value testing interval
For defining the testing interval, all parameters are varied uniformly 

within the possible range as they belong to different terms, and the 
testing range is heterogeneous among them. Some parameters are tested 
for the whole search space, e.g., the fitness weights. Other parameters 
are tested inside a plausible and feasible range, e.g., the start_time. 
Therefore, it is possible to explore the behavior in a wide space of as
sumptions, which ensures that interesting behavior is not ignored. 
Annex 1 demonstrates the testing intervals for all the tested parameters.

It is important to highlight the differences between the values of the 
problem_solved parameter, which are related to the applied mode of 
transportation such as car (value: 1), walking (value: 2), public transport 
(value: 3), and bicycle (value: 4).

The ACO system is meant to read the input file with the user pref
erences about the activity chain. This file contains the name of the ac
tivity, the processing time (spent time), priority label (flexibility), time 
window open/close, demand time start/end, and the coordinates of the 
activity. Besides that, all relevant parameters are used in their default 
value. Moreover, the priority level indicates whether the activity is 
flexible or not. 1 indicates a fixed activity, 2 stands for a spatially flexible 
activity, 3 is applied for a temporally flexible activity, and 4 indicates a 
totally flexible activity. Due to the heuristic behavior of the algorithm, 
the number of runs for each parameter test is set to 10 to search for the 
consistency and average performance. In this test, the input file remains 
constant, as shown in Table 2.

3.3.3. Developing the evaluation framework
Due to the huge number of runs derived from all parameters and 

their respective testing intervals, as well as the needed simulations for 
each variable, an evaluation framework capable of running all the tests 
consecutively is developed. The framework utilizes a second input file 
where all the parameter values are described to make consecutive runs. 
The values are read, and one is applied at a time on the correspondent 
parameter keeping all other parameters in default mode. Afterward, the 
framework runs the ACO to calculate the results. In the end, the 
framework saves the results in a file and applies the default values again 
to all parameters for restarting the process. This process occurs a pre- 
determined number of times (10 times in this case) for each param
eter. By the end of all runs, a dataset is built with all the outcomes 
specifying which result belongs to which parameter modification. Fig. 2
presents the functioning of the framework.

3.3.4. Cleaning and processing the data
After finishing all the runs, the framework returns the compiled re

sults of all simulations in a dataset, but the data are saved as given by the 
ACO system. Therefore, cleaning unwanted or failed results and pro
cessing the ones from which information can be extracted are needed. At 
the end of the runs, more than 3000 records are collected. After the 
processing and cleaning of the data, 2220 records remain for the anal
ysis, which is performed by using statistical tools. The main attributes 
analyzed in the results are the following: travel time, the start and end 
times of the activities, the order, and the chosen POI.

3.3.5. Realizing the analysis of the results
As mentioned before, the nature of GAs is heuristic. Thus, the con

sistency of the results is prioritized during the analysis. The prioritiza
tion includes the comparison of each attribute to the output by using 
statistical tools. The range shows the difference between the largest and 
the smallest values, which demonstrates an initial measure of vari
ability. The sum of the variables is divided by the sample size. In other 
words, the sample mean is provided, which has the property of 
describing the balance point of a distribution. Finally, the variance is 
calculated.

4. Sensitivity analysis results

4.1. Start_time

The outcomes for this parameter shown in Table 3 have similar 
standard deviations in general, but slightly “better” after the time 480. 
However, there is an exception regarding the 390-input value, which is 
with a 14,60 min range, and has the highest deviation.

4.2. End_time

When checking the data, the algorithm chooses six times (out of 10) 
the same route for the value 1350, which indicates the fastest route of 
the End_time analysis. Thus, this route is a candidate for being a global 
optimum. As it can be observed in Table 4, there is an exception 
regarding the value 1350, which presents a higher deviation compared 
to the others. Most probably due to a higher local optimum, the second 
higher result found in the End_time analysis, the deviation becomes 
higher.

Fig. 1. The flow chart of the applied method.
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4.3. Problem_solved

This parameter corresponds to a different mode of transportation for 
each parameter value. Thus, it needs specific analysis for each category 
and for how its change can affect the functioning of the application. 
Table 5 presents the respective results.

The car (mode 1) represents the default parameter values where it is 
expected that the trips are made with the car mode. By using this mode, 
a consistent result appears with a low deviation, as shown in Table 5.

Walking (mode 2) is the slowest transport mode realized by the al
gorithm. The deviation and range of this mode are rather big compared 
to the other modes. Due to the low speed, any change in the route can 
have a huge impact on the output. Table 5 shows a huge difference 
between the lowest and the highest travel time values.

A combination of public transport and walking (mode 3) is realized 
because the stops can be solely reached on foot. Thus, the results are 
quite poor compared to the other modes. According to Table 5, the 
outputs for these parameters are quite inconsistent with a huge range 
between the extremes. A possible cause can be that some extreme 
alternative activity locations are quite far away from the rest of the 
activities.

The results of bicycle (mode 4) are found between the walking and 
the public transport modes. Since the speed of a bicycle is higher than 
the walking speed, the impacts of changing the routes can be smaller, 
which brings very consistent results (Table 5).

4.4. Population_size

When checking the results, it is possible to identify a tendency in the 
population outcomes, as presented in Table 6. Thus, the larger the 
population, the higher the chance for the algorithm to reach “better” 
results. This result is quite plausible. Once the algorithm has more 
candidates for possible adequate solutions with a higher population 
number, the consistency of the outputs is increasing.

Table 1 
Relevant parameters.

Parameter Meaning Default 
value

Description

start_time The start time of the 
activity chain

480 User preference 
In seconds, 
counting from 00 h 
= 0 to 23 h59 =
1439

end_time The end time of the 
activity chain

1170 User preference 
In seconds, 
counting from 00 h 
= 0 to 23 h59 =
1439

problem_solved The mode of 
transportation

0 User preference 
Each number 
represents a 
different mode

population_size The list of GA 
individuals

30 Genetic operator 
parameter 
The number of 
candidate solutions

generations The number of GA 
generations

20 Genetic operator 
parameter 
The number of 
generations of 
populations

cxpb The probability of 
mating the GA

0.1 Genetic operator 
parameter 
The probability of 
crossing-over 
solutions

mutpb The probability of 
GA mutation

0.2 Genetic operator 
parameter 
The probability of 
changing an 
element of a 
solution

number_of_alt_locations The number of 
alternative locations 
kept by the 
algorithm

5 ACO parameter 
Alternative places 
for flexible 
activities

fitnessweight1 Daily income / cost 0 The weight of the 
utility function 
Maximization 
objective

fitnessweight2 CO2 emission 0 The weight of the 
utility function 
Minimization 
objective

fitnessweight3 Burned calories 0 The weight of the 
utility function 
Maximization 
objective

fitnessweight4 Time 4 The weight of the 
utility function 
Minimization 
objective

fitnessweight5 Subtour by electric 
vehicle

0 The weight of the 
utility function 
Minimization 
objective

fitnessweight6 Safety 4 The weight of the 
utility function 
Maximization 
objective

fitnessweight7 Comfort 4 The weight of the 
utility function 
Maximization 
objective

fitnessweight8 Quality 4 The weight of the 
utility function 
Maximization 
objective

fitnessweight9 Ownership 4 The weight of the 
utility function  

Table 1 (continued )

Parameter Meaning Default 
value

Description

Maximization 
objective

fitnessweight10 Hot mode 7 The weight of the 
utility function 
Maximization 
objective

fitnessweight11 Cold mode 0 The weight of the 
utility function 
Maximization 
objective

fitnessweight12 Rain mode 0 The weight of the 
utility function 
Maximization 
objective

fitnessweight13 Snow mode 0 The weight of the 
utility function 
Maximization 
objective

fitnessweight14 Humid mode 7 The weight of the 
utility function 
Maximization 
objective

fitnessweight15 Windy mode 0 The weight of the 
utility function 
Maximization 
objective

fitnessweight16 Total time / in- 
vehicle time

4 The weight of the 
utility function 
Minimization 
objective
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4.5. Generations

The outcomes of the tests with the generation parameter, shown in 
Table 7, demonstrate that there is no tendency regarding the number of 
generations. The difference between the deviations is rather small, 
which means that from a low number of generations, it is already 
possible to obtain adequate results.

4.6. Cxpb

The parameter of the crossover probability is quite expressive as it is 
related to the diversity of the population and the propagation of the 
“best” results over the generations. In Table 8, it is observable that 
higher probabilities generate “better” results. It is evident that a 90 % 
crossover value gives a more adequate result. Furthermore, the values 
above 50 % have “better” results than the values below 50 %.

4.7. Mutpb

Table 9 shows that there is not a clear tendency in the mutation 
probability parameter behavior over the tests. The highest probability 
gives the “better” result, but there are adequate results with lower 
probabilities, as well. Moreover, there could be a possibility that higher 
mutation rates may disfigure the characteristics of the GA turning it into 
a random search.

4.8. Number_of_alt_locations

This parameter in special can have a direct relationship with the 
choice of the location as it determines the number of alternative loca
tions to keep for spatially flexible activities. It can be observed in 
Table 10 that there is a slightly decreasing tendency in the standard 
deviation with the increase of the number of places. This tendency is 
obvious as the more options are available for choosing, the higher is the 
chance of choosing more adequate options.

4.9. Fitnessweight

The fitness weights are related to the optimization parameters of the 
utility function. In this case, an overall analysis is conducted, and it is 
seen how the parameters perform. In Annex 2, the runs which do not 
return extreme values and perform “better” among all options with low 
standard deviation are analyzed. These runs show bigger weights for the 
income over cost, the calories, the time spent, the comfort of the trip, 
and the weather conditions regarding rainy occasions on the contrary of 
windy conditions. These seem to be reasonable parameters to consider 
when traveling. The other parameters of the utility function perform 
“better” in the middle range of the possible interval.

Table 11 aims to summarize the results and bring the most relevant 
information regarding the parameters.

Table 2 
Default input values.

Activity Processing time Priority label TW open TW close Demand time start Demand time close Latitude Longitude

Start 0 1 1 1439 1 1439 47,5405 19,1494
Work 480 1 360 1140 360 1140 47,4806 19,0296
University 120 1 360 1380 420 1380 47,4727 19,0600
Sport 60 3 360 1439 360 720 47,4713 19,0540
Bar & Pub 120 2 600 1439 720 1439 47,4730 19,0576
End 0 1 1 1439 1 1439 47,5405 19,1494

Fig. 2. The functioning process of the framework.

Table 3 
Start_time results.

start_time 360 390 420 450 480 510 540 570 600

max 101,98 105,67 101,75 100,93 101,72 100,62 104,18 100,82 102,28
min 92,13 91,07 93,27 92,87 91,37 92,65 93,98 93,57 91,07
mean 97,99 97,58 98,00 97,69 96,73 95,62 100,37 97,10 94,25
range 9,85 14,60 8,48 8,07 10,35 7,97 10,20 7,25 11,22
variance 9,58 24,45 9,75 7,82 15,26 5,88 7,24 7,53 11,34
st_deviation 3,10 4,94 3,12 2,80 3,91 2,43 2,69 2,74 3,37

Table 4 
End_time results.

end_time 1200 1230 1260 1290 1320 1350

max 104,13 102,63 105,67 100,75 102,63 104,13
min 92,65 91,07 92,37 94,02 95,33 89,30
mean 96,90 97,31 98,26 96,89 99,25 92,51
range 11,48 11,57 13,30 6,73 7,30 14,83
variance 10,34 9,15 13,55 4,00 8,49 25,20
st_deviation 3,22 3,02 3,68 2,00 2,91 5,02

Table 5 
Problem_solved results.

problem_solved 1 2 3 4

max 101,17 385,50 193,41 127,30
min 90,78 359,30 145,73 120,73
mean 96,53 368,88 175,29 124,02
range 10,38 26,20 47,68 6,57
variance 12,23 63,11 343,55 4,89
st_deviation 3,50 7,94 18,53 2,21
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5. Discussion

Among the papers mentioned in this work, a common search for the 
optimal values of the main genetic operators is realized. In Table 12, the 
results demonstrated by various researchers are summarized together 
with the outcomes of current work.

In their experiments, Beed et al. (Beed et al., 2017) infer that 
lowering the mutation rate gives more adequate results. On the other 
hand, increasing the number of generations does not have a huge effect 
on the outcomes. Moreover, the increase in the population size leads to 
fast convergence. Unlike other authors, Hassanat et al. (Hassanat et al., 
2019) propose a dynamic crossover and mutation rate. The researchers 

conclude that this approach gives similar results to the commonly used 
settings: 0,9 crossover rate and 0,03 mutation rate.

Current work has analogous results to other research outcomes 
showing that a higher crossover rate and population size combined with 
a lower generation number and mutation rate can provide adequate 
results (Bakırlı et al., 2011). An important observation is the discrepancy 
between the population size and the number of generations in this 
research and other studies (Beed et al., 2017); (Ulukok, 2017) ; (Kinczer 
and ̌Sulek, 2016) , which is due to the type of the algorithm that provides 
a heuristic solution. Since the algorithm is built by using low values for 
the parameters, the range of the testing interval and the step size settings 
are small, as well. Although these values are smaller than in case of 

Table 6 
Population_size results.

population_size 5 10 15 20 25 30 35 40 45

max 104,2 103,60 104,13 100,87 103,63 100,82 101,42 101,75 101,23
min 89,30 91,37 90,75 90,78 94,05 89,30 93,57 93,57 93,57
mean 96,51 99,41 96,13 96,38 97,95 95,81 97,87 98,70 97,79
range 14,88 12,23 13,38 10,08 9,58 11,52 7,85 8,18 7,67
variance 18,24 11,14 19,02 9,50 9,81 11,60 6,71 6,44 7,69
st_deviation 4,27 3,34 4,36 3,08 3,13 3,41 2,59 2,54 2,77

Table 7 
Generations results.

generations 5 10 15 20 25 30 35

max 102,52 101,72 100,82 102,78 101,75 100,82 102,28
min 92,87 91,07 91,10 91,72 91,07 91,37 91,10
mean 97,63 96,60 96,52 97,09 97,13 95,20 96,84
range 9,65 10,65 9,72 11,07 10,68 9,45 11,18
variance 9,12 13,96 14,05 10,82 14,74 10,18 13,61
st_deviation 3,02 3,74 3,75 3,29 3,84 3,19 3,69

Table 8 
Cxpb results.

cxpb 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

max 102,6 105,8 103,63 103,63 104,18 100,87 100,82 103,63 101,72
min 91,53 93,27 89,30 89,30 91,37 91,37 89,30 93,27 92,37
mean 97,68 98,06 96,45 98,17 97,33 98,10 96,43 97,31 97,73
range 10,98 12,40 14,33 14,33 12,82 9,50 11,52 10,37 9,35
variance 12,97 14,84 21,46 20,16 13,93 8,14 11,47 12,77 7,61
st_deviation 3,60 3,85 4,63 4,49 3,73 2,85 3,39 3,57 2,76

Table 9 
Mutpb results.

mutxpb 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

max 100,8 104,18 102,28 102,28 103,63 104,18 99,43 101,72 101,20
min 91,53 94,23 89,30 91,93 91,53 91,72 89,30 90,75 91,93
mean 95,52 99,35 98,87 97,80 96,01 98,17 95,63 96,57 97,12
range 9,22 9,95 12,98 10,35 12,10 12,47 10,13 10,97 9,27
variance 9,00 10,39 14,79 8,50 12,46 19,16 11,23 11,97 7,86
st_deviation 3,00 3,22 3,85 2,92 3,53 4,38 3,35 3,46 2,80

Table 10 
Number_of_alt_locations results.

number_of_alt_locations 1 2 3 4 5 6 7

max 105,67 102,78 103,63 101,17 101,98 101,23 104,13
min 91,37 91,07 91,93 92,13 89,30 94,53 94,05
mean 98,78 98,51 96,66 96,28 96,05 97,57 98,40
range 14,30 11,72 11,70 9,03 12,68 6,70 10,08
variance 15,94 8,34 16,64 9,66 25,59 3,89 8,23
st_deviation 3,99 2,89 4,08 3,11 5,06 1,97 2,87
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previous research work, such analysis aiming to optimize activity chains 
has not been performed yet. Additionally, there is an increased 
computational cost, which leads to limited space for investigation. 
Although, the analysis is realized on data collected in Budapest, 
Hungary, the results can be generally applied to any location. Finally, 
the number of considered transport modes is limited. The research does 
not include the newest mobility forms (e.g., e-scooters or shared bikes), 
yet it covers the most relevant options (car, walking, public transport, 
and bicycle). The presented results are logical within the context of the 
algorithm because of the varied population size and the number of 
generations inside a short range.

The sensitivity analysis method applied in this research provides 
significant insights into the nature of the parameters. However, the 
study might be complemented in the future by a global method for 
“better” quantifying the variability and including the effects from the 
interaction between the parameters, as indicated by ten Broeke (ten 
Broeke et al., 2016). According to the results, it can be observed that 
extreme alternative locations disturb the data and make it difficult to 
consider the value either as “noise” or not.

Regarding future works, as each transport mode has different 
behavior and peculiarities, it should be investigated more deeply. This is 
especially true for public transport since it has some inconsistencies 
related to the travel time. Regarding the genetic operators, a visible 
pattern can be seen. The pattern shows a more adequate scenario with a 
higher crossover rate and population and lower mutation rate and 

generation, which is a bit different from the applied default values. 
Therefore, a deeper investigation, which uses a wide range of possibil
ities reducing the step size and increasing the number of runs, might give 
a more accurate estimation, as suggested by ten Broeke (ten Broeke 
et al., 2016).

With the introduction of soft measures through mobile applications, 
the capacity utilization of transportation systems can be increased 
without significant infrastructural investments. The essence of the 
research is to make passenger transportation more efficient by using 
various data. This study contributes to the optimized use of activity 
scheduling applications. The behavior of the ACO algorithm is examined 
under different parameter configurations, which means more adequate 
results for the users and an increase in the reliability of the applications.

A promising future research direction is the development of an 
application for users. The application supports the planning of opti
mized activity chains and the suggestion of sustainable transport modes 
for urban travelers while considering their personal preferences, as well. 
Such a complex system using activity planning data and mobility pat
terns supporting the optimization process and the mode choice at the 
same time does not exist. Thus, it would be very valuable to elaborate 
such an application.

From the users’ point of view, the application could offer information 
about the optimal set of activities. Using the optimization algorithm 
might imply a significant travel time reduction, less emission, and more 
convenient choices. As a result of the research, personalized recom
mendations can be provided, which supports the decision-making pro
cess during traveling.

The elaborated results are based on the users, who are the main 
target group of the research, but the outcomes can be beneficial for other 
stakeholders, too. Thus, supporting the users to make more adequate 
decisions can have an impact on the transportation system and demand 
the authorities to adapt to the new patterns. In this way, policymakers 
can understand which parameters are important to the users and how to 
deal with the modified travel behavior to increase the quality of the 
provided service.

6. Conclusion

A daily activity chain can be described as a sequence of activities 
realized by a person during a day where the activities can be connected 
through an optimized schedule. The optimization is carried out by the 
application of the ACO algorithm. As solving this routing problem can 
require high computational costs, a GA implementation is used, which 
represents the problem through evolutionary processes. For the inves
tigation of the parameters presented in the algorithm, an OFAT sensi
tivity analysis is performed. The OFAT can detect the impacts of the 

Table 11 
Summary of all results.

Parameter Summary

start_time Overall small deviation, but “better” results when the time 
is higher than 480

end_time Overall small deviation, but “better” results when the time 
is higher than 1290

problem_solved Car: Same behavior of default runs 
Walking: Low speed and high impact of route change on 
time 
Public transport: Inconsistent results related to the huge 
difference between the travel time of similar routes 
Bicycle: Similar behavior to walking but less impact of 
route changes

population_size The more the population, the more consistent the results
generations Low numbers of generations already give adequate results
cxpb “Better” results with probabilities above 50 %
mutpb Adequate results with low and high probabilities, but they 

can disfigure hereditary characteristics with higher 
probabilities

number_of_alt_locations The higher the number of options, the “better” the results
fitnessweight The inputs that do not show extreme values and the ones 

with the best performance are described in Annex 2

Table 12 
A summary of the genetic operators’ values.

Author Population Generation Crossover 
rate

Mutation 
rate

Remark

Bakırlı et al. (Bakırlı et al., 2011) 250 75 0,9 0,7 The higher the values, the “better” the 
results

Srinivas et al. (Srinivas et al., 2014) 180 400 0,7 – 0,8 0,4 Fixed population size and generation during 
the tests

Kinczer et al. (Kinczer and Šulek, 2016) 2000 1000 0,75 0,05 – 0,1 The influence of the mutation rate is bigger 
than the crossover rate

Beed et al. (Beed et al., 2017) 1000 100 − 0,01 The crossover rate is not analyzed
Ulukok (Ulukok, 2017) 1000 2000 0,7 0,1 Focus on analyzing the population size: the 

higher, the “better”
Hassanat et al. (Hassanat et al., 2019) 400 1600 Dynamic Dynamic Proposed dynamic rates
Daoudi et al. (Daoudi et al., 2019) 150 40–––80 0,7 0,001 Investigation of a very low mutation 

probability
Alamri (Alamri and Effect of Varying the Genetic Algorithm Parameters 

and Operators on the Optimum PMUs Placement, , 2020)
5000 >=50 >=0,75 <=0,1 Investigation of selection functions

Present work >=40 5 >=0,5 0,1 A higher number of generations does not 
have high impact on the results
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changes caused by different parameter settings. For conducting the 
experiment, the relevant parameters connected to activity chains, 
transport modes, optimization algorithms, and fitness functions are 
identified. A parameter optimization framework capable of running all 
the tests consecutively is developed.

The primary aim of the paper is to perform a detailed parameter 
analysis and present the most suitable settings for a specific trans
portation problem. The results of this work provide relevant information 
on how the proposed algorithm works with a different set of parameters. 
Additionally, the research demonstrates that complementing ap
proaches are needed to better understand the functioning and the cali
bration of the ACO system. With a properly elaborated application, users 
can utilize the benefits of the optimization algorithm. Optimized routes 
result in a significant travel time reduction and contribute to less 
emission when planning daily activities in the field of transportation.
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Annex. 

Annex 1: Testing intervals.

Parameter A B C D E F G H I

start_time 360 390 420 450 480 510 540 570 600
end_time 1200 1230 1260 1290 1320 1350
problem_solved 1 2 3 4
population_size 5 10 15 20 25 30 35 40 45
generations 5 10 15 20 25 30 35
cxpb 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
mutpb 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
number_of_alt_locations 1 2 3 4 5 6 7
fitnessweight1 0 1 2 3 4 5 6 7
fitnessweight2 0 1 2 3 4 5 6 7
fitnessweight3 0 1 2 3 4 5 6 7
fitnessweight4 0 1 2 3 4 5 6 7
fitnessweight5 0 1 2 3 4 5 6 7
fitnessweight6 0 1 2 3 4 5 6 7
fitnessweight7 0 1 2 3 4 5 6 7
fitnessweight8 0 1 2 3 4 5 6 7
fitnessweight9 0 1 2 3 4 5 6 7
fitnessweight10 0 1 2 3 4 5 6 7
fitnessweight11 0 1 2 3 4 5 6 7
fitnessweight12 0 1 2 3 4 5 6 7
fitnessweight13 0 1 2 3 4 5 6 7
fitnessweight14 0 1 2 3 4 5 6 7
fitnessweight15 0 1 2 3 4 5 6 7
fitnessweight16 0 1 2 3 4 5 6 7

Annex 2: Summary of the fitness weight results.

Parameter Default value Best performance

fitnessweight1 0 6
fitnessweight2 0 3
fitnessweight3 0 7
fitnessweight4 4 7
fitnessweight5 0 0
fitnessweight6 4 3
fitnessweight7 4 7
fitnessweight8 4 3
fitnessweight9 4 4
fitnessweight10 7 5
fitnessweight11 0 5
fitnessweight12 0 6
fitnessweight13 0 5
fitnessweight14 7 2
fitnessweight15 0 1
fitnessweight16 4 4
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