
communications biology Article

https://doi.org/10.1038/s42003-024-05985-1

Aneural network-basedmodel framework
for cell-fate decisions and development

Check for updates

Mátyás Paczkó 1,2,6, Dániel Vörös1,2,6, Péter Szabó1, Gáspár Jékely 3, Eörs Szathmáry 1,4,5 &
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Gene regulatory networks (GRNs) fulfill the essential function of maintaining the stability of cellular
differentiation states by sustaining lineage-specific gene expression, while driving the progression of
development. However, accounting for the relative stability of intermediate differentiation stages and
their divergent trajectories remains a major challenge for models of developmental biology. Here, we
develop an empirical data-based associative GRN model (AGRN) in which regulatory networks store
multilineage stage-specific gene expression profiles as associativememory patterns. These networks
are capable of responding tomultiple instructive signals and, depending on signal timing and identity,
can dynamically drive the differentiation of multipotent cells toward different cell state attractors. The
AGRN dynamics can thus generate diverse lineage-committed cell populations in a robust yet flexible
manner, providing an attractor-based explanation for signal-driven cell fate decisions during
differentiation andoffering a readily generalizablemodelling tool that canbeapplied to awidevariety of
cell specification systems.

Genetic regulatory systems, which dynamically control developmental/
cellular differentiation processes, operate through activating and inhibitory
interactions among sequence-specific transcription factors (TFs) and their
target DNA sequence elements, known as cis-regulatory modules (CRMs),
that determine when and where transcription occurs1–4. Activating and
inhibitory interactions are highly combinatorial and lead to the formationof
complex gene regulatorynetworks (GRNs)3,5 which canbedecomposed into
subcircuits or functional buildingblocks that reflect thebasic logic behindan
individual component of an intricate developmental process5–7. These
functional building blocks must, on one hand, provide stability for certain
differentiation stages and, on the other hand, be able to drive the dynamics
of the system toward transitions to other states in response to internal or
external triggers, while controlling the residence time in different develop-
mental stages8–11.

However, despite substantial efforts to elucidate the core transcription
factor subnetworks associated with different cell types12 and the existence of
a largenumber of theoretical and experimental studies on lineage choice, the
regulatory roles played by the functional building blocks ofGRNs in cell fate
decisions have not yet been systematically and adequately mapped13.
Therefore, the fundamental questions of how cellular states and transitions

between them are defined, and how environmental cues and cell-intrinsic
machinery and their interplay govern these processes, remain elusive12,14.
Waddington’s epigenetic landscape concept15 and the analogous energy
landscape viewemerging fromnetworkbiologyhavehad aprofound impact
on the conceptualization of cell fate decisions in this context. According to
these insightful metaphors, a landscape consists of a series of branching
valleys that contain a set of attractors, which represent temporally stable
cellular states that are defined by the constellation of the genes character-
istically expressed in these particular states12,15. Every theoretically possible
cell state can then be characterized by an energy value depending on the
state-specific expression levels (or, according to the classical Boolean
representation, on/off statuses) of the genes considered in the system.
Hence, from an energy-based viewpoint, an attractor cell state corresponds
to one of the local energy minima-, or to the global energy minimum of the
landscape, where the gene expression statuses are aligned according to the
regulatory forces and these forces are consequently dissipated, as a result of
which the dynamics is temporarily, or ultimately relaxed (i.e., reaches a
steady state)16,17. From a more practical point of view, the most commonly
applied method to infer the shape of the landscape is based on the calcu-
lationof thenegative logarithmof the steady-state probability distributionof
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the gene expression state space18. With this approach, the elevation of the
landscape is determinedby the inverse of theprobability density function, as
a consequence ofwhich the stateswith the highest probability densitywill be
characterized by the lowest potential18,19. This landscape paradigm has
contributed to thedevelopmentof a variety ofdynamicalmodels, examining
cell differentiation and reprogramming processes from an attractor-based
perspective4,20–23. For example, it has facilitated the construction of multi-
dimensional energy landscapes ofmaster regulator genes, based on Boolean
logic operators that combine multiple input signals, thereby revealing key
attractors and identifying potential reprogramming barriers17. However, the
landscape view has its own limitations in terms of its potential to capture
experimentally validated differentiation trajectories, as it has, so far and to
some extent, failed to account for the relatively stable but still transitory
intermediate cell types observed during differentiation12,24. This challenge is
well illustrated by the fact that the majority of dynamical models of cell
differentiation exhibit a mutually exclusive dichotomy between a dynami-
cally stabilized state and inherent forward momentum25,26.

Contrary to the bottom-up approaches of, e.g., chemical reaction
networks27 or Boolean networkmodels, associative neural networks provide
a top-down alternative to investigate the topological and dynamical prop-
erties of the functional building blocks of gene regulatory networks28,29. The
key concept of this top-down approach is that associative memory within
the context of developmental gene regulation – analogous to the conceptual
idea of epigenetic landscapes – can be described by an energy descent
dynamics30 during which each gene expression (memory) pattern that
corresponds to a certain cellular differentiation stage has a particular basin
of attraction31. More specifically, the attractor feature of an autoassociative
networkmeans that it can solve the problem of recovering a particular state
(usually represented as a vector), when presentedwith an initial pattern that
resembles one of the memory vectors stored in its weights30,31. Thus, in
response to an input pattern, such a network produces the same output
pattern as the input, even if the input is burdenedwith somenoise compared
to the original pattern with which the network was trained. In hetero-
associative networks, however, the input-output vector-pairs are different
by definition31. Since the dynamical stability of, and change in, stage-specific
gene expression during differentiation can be treated as auto- and hetero-
associative memory pattern retrieval, the principles of associative neural
networks can be applied to gene regulatory systems.Moreover, given a set of
desired stable states (autoassociativity) or stage-pair transitions (hetero-
associativity), the regulatory network of a given differentiation topology can
be analytically determined by simple algebraic operations in the form of a
regulatory weight matrix32–34. With this approach, the gene expression
values across the differentiation stages will be ultimately determined by the
regulatory matrix and a shared activation function that nonlinearly maps
the summed regulatory effects (weights) of all genes into expression values.

However, extant models of developmental gene regulation utilizing
the associative properties of neural networks have investigated this
phenomenon only in the context of single stage-pair transitions28,29, or
development of environment-specific adult stages from a particular
embryonic stage31, without taking into consideration intermediate
developmental stages and their stage-specific gene expression patterns.
We extend the associative network-based description of GRNs to com-
plex developmental processes by proposing an associative GRN model
(AGRN) in which the functional key components of the regulatory
mechanism are based on the appropriate combinations of elementary
associative rules. We show that this model can accurately reproduce
empirically observed developmental trajectories including intermediate
stages with their corresponding stage-specific gene expression profiles. In
terms of Waddington’s epigenetic landscape view12,15, we demonstrate
that the modeled developmental stages can be characterized by attractor
properties which enable the developmental or differentiation processes to
reside in a certain basin of the landscape for a specific time period. We
also present the simple mathematical framework which allows us to
phenomenologically describe the transition mechanisms by which
external signals can exert a lifting effect on the system residing in a basin

and provide forward momentum to the developmental trajectory to
progress toward other attractors.

Belowwe summarize the key concepts of ourmodeling techniques and
introduce the terminology that will be used in the following. We consider
three biologically important stage transitions: autonomous transition
between two stages (linear transition), divergence into different stages (fork
transition), and trigger-induced linear transition (conditional transition).
Each fork transition has a default branch, which is the branch that the
system will follow in the absence of a trigger, and a triggered branch, which
the system will follow when the trigger is enabled. The existence of such a
default output has been suggested, for example, in the case of hematopoietic
stemcells (HSCs), which, in the absence of instructive signals, are thought to
differentiate into macrophages, an evolutionarily ancient, default blood
lineage14. Triggersmodel external cues (e.g.,mechanical) or signaling factors
and could be singular or repetitive as e.g., during binary fate specification35,36.
The combination of these transitions allows us to describe almost any kind
of biologically plausible topologies in cell-differentiation trajectories. We
model gene expression changes following the associative dynamics of
Vohradsky and Szilágyi et al.28,29,31, where the state of the system at time t can
be described by a gene expression vector pðtÞ ¼ ðp1; p2; :::; pN ÞT, with its
elements representing the expression levels of different genes. Tomodel the
timeevolutionof the gene expression,we constructa regulatorymatrixM, in
which entry mij defines the regulatory effects: positive/negative values
indicate that regulatory unit j has a direct or indirect activating/inhibitory
effect on another regulatory unit i (see refs. 37,38), so that regulators can also
be regulated and units represent genes and/or epigenetic elements. The
regulatory matrix for an elementary stage transition (linear, fork or condi-
tional) can be constructed by the developmental stage vectors of the initial
and final stages of the given transition and the triggers. A developmental
stage vector is extracted from empirical data and it represents the gene
expression profile of a given stage (Fig. 1a). Note that while developmental
stage vectors are (constant) binary valued (on/off) vectors, the time-
dependent gene expression vector is continuous valued. The regulatory
matrix of a complete differentiation hierarchy results from the summation
of the matrices that implement the elementary stage transitions included in
the hierarchy within each of its alternative pathways (Fig. 1b, c, Supple-
mentary Note 1). Such a matrix can then dynamically regulate the expres-
sion states of the individual genes throughout the differentiation process in
an autonomous fashion and is therefore referred to as a regulatory program
matrix. Thus, a regulatory programmatrix, the developmental stage vectors
and the differentiation topology fromwhich thematrix is constructed serve
as themodel input (Fig. 1a, b),while the time series of gene expression levels,
characterizing the differentiation stages and determined by the regulatory
program matrix and the triggers, are the model output (Fig. 1c, d). For a
detailed mathematical description of the model, see Methods.

Results
AGRNmodel of hematopoiesis
To understand how auto- and heteroassociative rules implemented into the
AGRN model based on empirical data can reproduce experimentally vali-
dated dynamical gene expression, we first use our framework to analyze a
human hematopoiesis dataset (Supplementary Data 1). In this dataset, we
defined stage-specific gene expression profile vectors (developmental stage
vectors) for the cellular stages of the hematopoietic hierarchy (see Methods
for details). The differentiation topology we consider here39 consists of 13
differentiation stages (i.e., cell states), which are modeled by a combination
of signal-driven binary cell fate decisions (represented by fork transitions)
and autonomous linear transitions, and one conditional (signal-driven
linear) transition (Fig. 2a). Note that as hematopoietic differentiation and
cell division events are shown to be temporally separated40,41, the arrows
between the differentiation stages at fork transitions represent the potential
transition directions, rather than asymmetric cell divisions. An extracellular
signaling mechanism, which regulates the maintenance of the quiescent
state of long-term repopulating hematopoietic stem cells (LTR-HSCs) and
their transition to the active short-term repopulating hematopoietic stem
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cell (STR-HSC) stage42,43, is incorporated into the model by the conditional
transition between these two stages, where expression of an external signal-
mediating trigger (tr-3+ ) induces the transition. Thus, this transition type
provides ameans to dynamically control the residence time in the quiescent
LTR-HSCstage.Firstly, themodel performanceon thedata ismeasuredby a
set of Pearson correlation coefficients between the p(t) expression vector
(vector for the actual dynamical expression state of the genes) and the
developmental stage vectors. Figure 2b shows this measure as a function of
the time in case of two illustrated differentiation pathways. The left panel
shows that the differentiation process follows the Mesoderm→CLP path-
way as initial and terminal differentiation stages, if three external signals—
mediated by the respective triggers (tr-1+ , tr-2+ and tr-3+ )—are pre-
sented at the appropriate time (denoted by vertical arrows at the x-axis). The
right panel shows that the differentiation process follows the Meso-
derm→CFU-E pathway, if three additional external signals are mediated
(tr-4+ , tr-5+ and tr-6+ ) at the right time. Consistent with this, principal
component analysis of the model shows that linear combinations of con-
secutive samples fromthep(t) expressionvector converge to the stages of the
hematopoietic hierarchy (i.e., to the pre-defined developmental stage vec-
tors) in an appropriate order (Fig. 2c). We found that the gene expression
dynamics of this system driven by a modular AGRN regulatory network

(i.e., the same differentiation topology and developmental stage vectors,
with the only difference being that the dynamics is governed by three dif-
ferent regulatory program matrices) results in a qualitatively similar per-
formance (Supplementary Note 4, Fig. S3).

AGRNmodel of cell cycle
The combination of the elementary associative rules of the proposed fra-
mework enables us to describe cyclic dynamics as well. This property is a
critical requirement for developmental gene regulationmodels, considering
that the cell cycle is a major determinant of the temporal gene expression
patterns on a cellular level44,45. To demonstrate this model property, we
assembled a human cell cycle (CC) dataset (Supplementary Data 2) which
consists of phase-specific gene expression profiles for the four CC phases
and the associated apoptotic process (see Methods). Using this dataset, we
demonstrate that expression timing of individual genes, which are involved
in the CC dynamics and thus constitute the p(t) expression vector, exactly
follow the genes’ corresponding CC phases in a cyclic fashion (Fig. 3a, b).
We also show that, by implementing fork transitions, the model can
accurately describe a termination of the cyclic dynamics promoted by an
external signaling mechanism (Fig. 3c), where an apoptotic signal is
mediated by the expression of a trigger (tr+ ) that causes the system-level

Fig. 1 | Schematic illustration of the AGRN model. a Input components of the
AGRN framework. An AGRN model takes as model inputs: (i) the cell differ-
entiation topology of a given developmental process, i.e., the order of the sub-
sequent developmental stages corresponding to different cellular identities, and
(ii) the stage-specific binary representations of individual gene expression states in
the form of developmental stage vectors. In the developmental stage vectors,
colored cells represent on and empty cells represent off gene expression states. The
input components are then used to construct a regulatory program matrix
M according to simple, modular algebraic rules described in Eqs. (4–6). The
M matrix then governs the dynamics of the model by regulating the expression
levels of individual genes (pi) as described by the system of differential equations in
Eq. 1. (b). cOutput components of the AGRN framework. The attractor dynamics

is realized by a series of elementary transitions encoded by the associative memory
of the matrix. At fork and conditional transitions, in concert with cell-intrinsic
machinery (represented by the regulatory program matrix), instructive external
signals (triggers) determine the behavior of the system. Pinkmarbles represent the
system’s current state, continuous green- and dashed red arrows represent
default- and trigger-induced differentiation pathways, respectively. Gray arrows
with blurred end represent previous transitions. The elementary transitions cor-
respond to time series of gene expression level changes (here, for simplicity, only
the expression of one key gene per stage is shown). Tomeasure the performance of
themodel over time, we calculated the Pearson correlation coefficients (r) between
the state of the gene expression vector (p(t)) and each developmental stage vector
at all t+ Δt time points (d).
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gene expression pattern (Fig. 3d, e) to irreversibly diverge from the phases of
the cycle and to converge toward an alternative (terminal) fate.

AGRNmodel ofCaenorhabditis elegansembryonicdevelopment
Due to its well-known developmental pathways and stage-specific gene
expression patterns, the Caenorhabditis elegans embryonic development is
an ideal process to test the AGRN model functionality on a larger differ-
entiation topology with a considerably higher number of stages and genes.
For this purpose, we assembled aC. elegans embryonic development dataset
(Supplementary Data 3) that consists of 2435 genes corresponding to 1046
cellular differentiation stages (Fig. 4a, Methods and ref. 46). With large
datasets like this, where a considerable amount of different, often conflicting
associative rules are implemented into the regulatory programmatrixwhich
could pose a serious difficulty on the regulatory functionality of the system,
our aim is also to see to what extent the performance of the AGRN model
changes relative to that of the more simple systems analyzed above (i.e., the
human hematopoiesis and cell cycle models). Notably, the model success-
fully describes the gene expression changes of the illustrated differentiation
pathways with one regulatory program matrix and without a substantial
deterioration in the performance relative to more simple systems (Fig. 4b).
Principal component analysis of the model shows that linear combinations
of consecutive samples from the p(t) expression vector converge to the C.
elegans embryonic developmental stages (i.e., to the pre-defined develop-
mental stage vectors) in an appropriate order (Fig. 4c).

Alternative trajectories
Cell-lineage differentiation is often perceived as a hard-wired process but,
contrary to this notion, reprogramming studies suggest that differentiating
cells can be remarkably plastic in terms of their cellular identity changes12,47.

Even in terminally differentiated cells, it is possible towakeupdormant gene
expression programs, meaning that with the right set of transcriptional
factors or signals (triggers), developmental stages can be switched into each
other10,48. In ourmodel, if the signal corresponding to the triggeredbranch is
activated after the transition to the default branch, the developmental
pathway may converge to the triggered branch, thereby going through an
alternative pathway, where the initial stage of a certain transition is followed
by the default then the triggered stage. This alternative transition can be
utilized evennumerous forks later, or betweendistant forks aswell, if the two
expression states are not too much different. This means that in case of
natural GRNs, the chance of a successful alternative transition decreases
with topological distance as expression profiles of the stage vectors diverge
during development.

In order to demonstrate that these alternative developmental pathways
are possible to achieve by the AGRN model, we recreated the alternative
routes shown in ref. 49. (see Fig. 5). We concluded that most of the alter-
native pathways from the reference model are accessible in our model
framework. Three pathways are unattainable, as they are default cell fates.
This shows that this model provides the correct amount of flexibility to
describe natural cell differentiation processes.

Robustness against perturbations
In order to dissect the behavior of the AGRN model framework in case of
perturbations, we analyzed the consequences of the following two different
types of perturbations on the model performance: (i) multiplicative and
nullifying perturbation of regulation strengths in the regulatory program
matrices, which can be interpreted as perturbed interactions among tran-
scriptional factors (e.g., by mutation of binding sites); and (ii) perturbation
of the expression vector with mistimed gene expression, which can be

Fig. 2 | Illustration of the hematopoietic cell differentiation process with an
associative GRN. aHematopoietic differentiation topology of themodel. Uppercase
letters with rounded and colored background represent cell differentiation stages,
the arrows between them represent transitions between the stages. The fork tran-
sitions and the conditional transition are controlled by the expression of transition-
specific triggers (denoted as tr-1, tr-2, …). The two differentiation pathways
demonstrated here are highlighted with black arrows. b Realizations of stages, as
measured by Pearson correlation coefficients between the p(t) expression vector and
the stage-specific developmental stage vectors (Supplementary Data 1). Color code
for the lines that correspond to the cellular differentiation stages is given at (a). cThe
first two principal components of the differentiation stages of the hematopoietic

hierarchy and the dynamical trajectories of the system. Principal components for the
stages are obtained from the developmental stage vectors. PCA trajectories of the two
realized pathways are obtained from the p(t) expression vector sampled at Δt = 0.1
frequency. Color code for the time scale of consecutive sampleswith the timing of the
corresponding triggers is shown on the right. In the nomenclature and topology of
the differentiation hierarchy, we followed ref. 39. Abbreviations׃ EC endothelial cell,
LTR long-term repopulating, HSC hematopoietic stem cell, STR short-term repo-
pulating, CMP common myeloid progenitor, CLP common lymphoid progenitor,
GMP granulocyte-macrophage progenitor, MEP megakaryocyte erythroid pro-
genitor, BFU-E burst forming unit erythroid, BFU-meg burst forming unit mega-
karyocyte, CFU-E colony-forming unit erythroid.

https://doi.org/10.1038/s42003-024-05985-1 Article

Communications Biology |           (2024) 7:323 4



interpreted as injecting a complete set of gene products from an other cell
residing in a different stage, i.e. partial cytoplasm fusion. As Fig. 6a shows,
the C. elegans P5.p vulval precursor cell differentiation (Fig. S4) and the
human cell cycle (Fig. 3) models are exceptionally robust against multi-
plicative perturbations. In contrast, the hematopoieticmodel system, which
incorporates a larger number of fork transitions (Fig. 2a), has a steeper drop
in the performance at small perturbation strengths. In general, the perfor-
mance of the model systems decreases slowly with increasing perturbation;
even if σ = 5, 80%of the simulations go through the proper pathwaywithout
error. The biologically more implausible nullifying perturbation type
(Fig. 6b) is more adverse; zeroing 2% of elements of the regulatory program
matrix halves the performance. Note that the differentiation topologies of
different size and complexity are of remarkably similar characteristics of
performance.

We also analyzed the effects of misexpression of cellular identity
determining key genes (i.e., mistimed expression of developmental stage
vectors in the p(t) expression vector) on the dynamics. We found that
following such perturbations, the characteristic behavior of the

hematopoietic system (Fig. 7a) is a typical down-regulation of the sub-
sequent stages. However, at the same time, the system demonstrates sub-
stantial robustness against perturbationswith regard to the convergence and
stability of the target stage and other stages, non-proximal to the pertur-
bation sites, see Fig. 7b, c. This behavior is independent of the timing of the
misexpression (in the beginning, in the middle, or at the end of the
expression of a given stage).

Discussion
We have shown how the neural network-inspired associative approach to
GRNs28,29,31 allows the construction of arbitrarily large networks with
required properties regarding the trajectories and rest points of important
developmental processes. Froma technical point of view, the question arises
whether the black-box treatment of the common regulation function f is
sufficient or not, given that it can be expressed by different formulae with
different parameters for different genes50–52. Here we used a scaled sigmoid-
type activation functionwidelyused in theoretical neuroscience (the original
context of this dynamics), but its applicability to genetic regulatory systems

Fig. 3 | Demonstration of the AGRN model functionality to describe cyclic
dynamics on the human cell cycle (CC) data. a, bGene expression time evolution of
individual genes in the p(t) expression vector. Expression levels are normalized by
the maximal gene expression rate (τ/δ) of the model. c Positions of the checkpoints
considered in the cycle. d, e Realization of phases, as measured by Pearson corre-
lation coefficients between thep(t) expression vector and the cell cycle phase-specific
gene expression profile vectors (Supplementary Data 2) as a function of the time.

Note the common x-axes with (a) and (b). Color code for the lines that correspond to
the phases is given at (c). Termination of the cyclic dynamics and converging into the
subsequent apoptotic pathway after two complete cycles is triggered by the
expression of an apoptotic signal-mediating trigger (tr+) at theG1/S (a,d) and at the
G2/M (b, e) checkpoints. The exact expression times of the triggers are denoted by
vertical arrows on the horizontal axes.
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is likely an oversimplification as there is a plethora of different genetic
regulatory interaction types.

Consistent with Waddington’s epigenetic landscape view, the dyna-
mical approach to development adapted by theAGRN framework proposes
a generative model of gene expression changes upon differentiation based
on attractor properties of certain stages12,15. Given an energetic or epigenetic
landscape, a long-standing question iswhether the landscape is static or not;
in other words, whether cell fate decisions at critical points of a differ-
entiation process are driven by noise or signals13,18. Although purely noise-
driven cell fate decisionmodes have been the subject of serious debates and

the eligibility of the sharp dichotomy between signal and noise-driven
modeshasbeenquestioned53,54, a fewstudies pointedout that somecellsmay
exist in an essentially stationary landscape and the main driving force of
their differentiation is gene expression noise13,55,56. In contrast, it has been
suggested that the landscape itself is dynamic; recurrently distorted by
extrinsic signals that tightly regulate lineage commitment through several
potential feedback mechanisms, thereby providing homeostatic control
with a flexible means to quickly adjust the cellular output according to the
needs of the organism13,57–59. While recognizing the potentially important
role of gene expression noise in cell-fate decisions, the present study focused

Fig. 4 | C. elegans embryonic development with an associative GRN.
a Differentiation topology of the model representing developmental stages and
pathways. Black lines indicate linear transitions or the default branches of fork
transitions, while gray lines illustrate the triggered branch of forks. The text labels at
the tip of the tree indicate the tissue type that develops from the lineages. In the
nomenclature and topology of the differentiation hierarchy, we followed ref. 46.
bRealizations of stages, as measured by Pearson correlation coefficients between the

p(t) expression vector and the stage-specific developmental stage vectors (Supple-
mentary Data 3). c The first three principal components of the differentiation stages
and the dynamical trajectories of the system. Principal components for the stages are
obtained from the developmental stage vectors. PCA trajectories of the two realized
pathways are obtained from the p(t) expression vector sampled at Δt = 0.1 fre-
quency. Color codes for the time scale of consecutive samples with the timing of the
corresponding triggers are shown on the right.
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on the behavior of signal-driven, deterministic and tightly regulated sys-
tems. Regulatory program matrices in our model, constructed from
empirical stage-specific gene expression vectors, are capable of completely
reproducing eachpossible alternative differentiationprogramwithin a given
differentiation topology in an autonomous manner, while incorporating a
certain level of sensitivity for external cues (trigger-induced transition
directions), thereby providing plasticity60 for a particular developmental
process. Our results therefore fit into a broader picture of cellular

differentiation as a process in which the interplay between environmental
cues and cell-intrinsic machinery acts in a manner that (i) multipotent cells
simultaneously exhibit co-accessibility of multiple lineage programs and
have in place transcriptional circuits capable of responding to multiple
extrinsic signals14,61, (ii) gene expression noise is not a necessary condition
for the corresponding gene regulatory networks to be able to generate
diverse lineage-committed cell populations (i.e., drive the dynamics to dif-
ferent attractors) in a robust and yet flexible manner, thereby underpinning
the role of dynamic, signal-driven landscapes in cell fate decisions13. Amore
thorough future investigation on the structure of the regulatory interactions
among the elements in the AGRN regulatory program matrices – which
describe not only direct gene-gene regulatory interactions, but rather they
represent composite regulatory effects of genes, TFs, proteins62, and epige-
netic elements – may give a further insight into what kind of network
features, such as the frequency of different motif (subcircuit) categories (see
Supplementary Note 6 and Supplementary Table 1 in the present study)
couldbe associatedwith the attractorproperties of thedynamicsand towhat
extent these network features as structural design principles are dependent
upon certain cell differentiation topologies. Such investigationsmay help to
better understand the regulatory principles behind these developmental
processes, for example, by providing a means to categorize the corre-
sponding regulatory networks into different network classes6.

One possible future application of the AGRN approach relates to
reprogramming studies (for a review, see: ref. 63), aiming to find
potential transdifferentiation pathways and predict their feasibility by
utilizing the attractor properties of cell differentiation landscapes17. In
this context, our investigation on the attractor pool sizes in the hema-
topoietic cell differentiation hierarchy suggests that the definitive endo-
thelial cell stage can be characterized by the largest basin of the landscape,
as this is the stage into which the system-level gene expression pattern
(the p(t) expression vector) converges most frequently in response to
different mistimed triggers and perturbed genes (Fig. S1). We emphasize,
however, that the latter statement is valid only under the assumption of
the presence of these disruptive factors, which result in alternative dif-
ferentiation trajectories, representing available reprogramming pathways
(Supplementary Note 2).

From a broader perspective, our framework is relevant for simulating
embryo-scale developmental processes and more generally toward devel-
oping a theory of development. An essential component of such a theory is a
model to simulate gene-expression trajectories across cell lineages. Our
framework achieves this for arbitrarily large differentiation topologies and
their corresponding binarized gene-expression profiles, with a natural
applicability to genetic and epigenetic regulation of gene expression64,65. We
also suggest that our model can be used as plugin into more detailed spatial
cellular models integrating GNRs with morphogenesis. Ourmodel can also
be refined by fitting the activation function to experimental data for specific
gene families or individual genes. TheAGRNapproach can also be useful to
synthetic biologists aiming to construct complex, but still robust network
topologies66, or to find biologically-inspired artificial circuits with special
dynamical properties67. The AGRNs seem to have a useful balance between
simplicity and complexity in that they offer a scalable tool to account for
complex behavior.

Methods
Gene expression dynamics
Following Vohradsky and Szilágyi et al.28,29,31 we formulate gene expression
dynamics using associativenetworks formalism.Consider anorganismwith
N genes, and let us represent the expression state of the system (on a cellular
or individual level) at a particular time t by a vector pðtÞ ¼ ðp1; p2; :::; pN ÞT
with each element being the quantity of the product of a gene. The dynamics
can be described by the differential equation (see refs. 28, 29,31)

dpiðtÞ
dt

¼ �δpi tð Þ þ τf Mp tð Þ� �
i

� �
ð1Þ

Fig. 5 | Possible alternative pathways in C. elegans embryonic development. The
chart represents the differentiation topology ofC. elegans embryonic development with
the corresponding developmental stages and pathways. Black lines indicate the default
branches of forks transitions, while gray lines illustrate the triggered branch of forks.
Colored arrows indicate alternative pathways illustrated in ref. 49, which can be inter-
preted in our model. Color of the arrows represent reproducibility: greens are feasible,
while red arrows illustrate the alternative pathways that are not achievable.

Fig. 6 | The effects of regulatory interaction perturbations. The performance of
three AGRNmodel systems (human hematopoiesis, human cell cycle andC. elegans
P5.p vulval precursor cell differentiation) as a function of the standard deviation (σ)
of multiplicative perturbations (a); and as a function of the proportion of nullified
elements (b) in the regulatory programmatrices. The performance was measured as
the fraction of successful runs (for detailed explanation, see Methods). Parameters
are from the standard parameter set.
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where δdenotes the decay rate of gene products, τdenotes themaximal gene
expression rate, f(.) is the activation function, and regulatory program
matrixM represents the gene regulatory network (see refs. 37,38)

The mij elements of this regulatory program matrix define the
pairwise regulatory effects between regulatory units: positive/negative
values indicate that regulatory unit j has a direct or indirect activating/
inhibitory effect on regulatory unit i. The overall regulatory effect on any
single gene is determined by the scalar product of the gene expression
vector and the corresponding row of the regulatory program matrix,
which is then mapped through a nonlinear activation function, in our
model f ðxÞ ¼ 1þ tanh ω x þ ξð Þð Þ½ � /2. Here ω and ξ are the scale and
shift parameters of the activation function, respectively. According to
Eq. 1, in equilibrium, each element of the expression vector can be either
pi ¼ 0 (no expression) or pi ¼ τ/δ (maximal expression). If not stated
otherwise, we used the following standard parameter set: τ = 1, δ = 0.2,
ω = 50, ξ = 0.05.

For the representation of the expression profile of certain develop-
mental stages that the system goes throughwe use {0,1}-membered (binary)
stage vectors (hereafter developmental stage vectors), where 1 denotes that
the given genes are expressed in the relevant stage. The organization of these

vectors are the following: theheadpart contains stage-specific genes (a single
gene for each stage that is expressed only in the given stage); the next vector
part includes all the other genes that can be expressed in one or more stages
and the tail of the vector contains triggers that govern the system (see later).
Stage-specific genes are necessary for reliable operation, especially when the
expression profiles of some developmental stages are similar (if there is no
such a unique gene for a given stage in the empirical data, one has to
introduce an artificial one).

Note that this organizationof thedevelopmental stage vectors is just for
clarity anddoesnot alter theoutcomeof the simulations. In the following the
stage vectors will be denoted by x; y; z; . For the simple formalization of the
modelex;ey;ez; . . . denote themodified version of the stage vectors, where the
elements of the middle part are set to zero (the stage-specific and trigger
elements will be unchanged). The regulatory program matrix M is for-
malized with the help of these vectors.

Associative rules of the AGRN model
The associative feature of the system means that given two stages X and Y,
with the corresponding binary gene expression vectors x and y, it is possible
to derive a regulatory matrix that initiates a transition from X to Y. The

Fig. 7 | Subsequent stage transitions with expression level perturbations. a The
structure of the differentiation topology. b Perturbation with three consecutive
misexpressions: the first at the end of an expressed stage (t = 22), the second in the
middle (t = 55), and the third at the beginning of an expressed stage (t = 108). c Single
perturbations of the system with the same misexpression and at the same time as in

(b). The notation and the color of the misexpressed stages are in line with (a). The
level of misexpression is 5% of the maximal expression level (0.05⋅τ/δ). Dashed lines
show the correlations of the unperturbed system (same as in Fig. 2b right panel),
continuous lines indicate the perturbed ones. For the nomenclature and topology of
the differentiation hierarchy, see Fig. 2.
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correspondingmatrix is the dyadic product of the two expression vectors as:

MX⇢Y ¼ ð2y � 1Þ � x; ð2Þ

where 1 denotes the all-ones vector. This formulamakes intuitive sense; the
right-hand term selects the genes implying a regulatory effect (the expressed
ones in the present stage), whereas the left-hand termdetermines the sign of
the regulation (depending on the desired high or low expressions in the
target stage). In the following we denote this heteroassociative rule by
X⇢Y. In the special case of X = Y, the X⇢X transition implies
autoassociativity, rendering the given stage a stable point of the dynamics.
This can be described by the following matrix

MX⇢X ¼ ð2x � 1Þ � x: ð3Þ

These two associative rules will serve as elements of the functional
building blocks of the described GRNs.

Based on these two main associative rules and due to considerations
described in the main text, three biologically important transition types
should be distinguished; autonomous transition between two stages, fork-
and conditional transition.The combinationof these transitions allowsus to
describe almost any kind of biologically plausible interaction topologies.
Being components of a network, these transitions are not independent,
because each internal stage is involved in at least two transitions (as a
departure and a target stage). This poses challenges as any internal stage
should be fully expressed, but must not be stable as the system has to go to
the next stage. These seemingly contradictory issues can be resolved by
proper combinations of auto- and heteroassociative rules as follows.

Linear transition
The simplest task is when the gene expression changes fromX to Ywithout
any external or internal triggers. Initiating a change from X toward Y
requires an X⇢Y heteroassociative rule (directionality condition), but this
rule itself does not guarantee that the trajectory actually approaches Y. The
desired target stage Y must also be autoassociative (attractivity condition)
(see ref. 31), that guarantees the high level of expressionof the state. The sum
of these two conditions yields the regulatory matrix that realizes this tran-
sition (Fig. 8a):

MX!Y ¼ MX!Y þMY!Y ¼ ð2y � 1Þ � ~x|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
X⇢Y

þ ð2y � 1Þ � ~y|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Y⇢Y

: ð4Þ

Fork transition
Developmental or differentiation processes are flexible; the gene expres-
sion patterns may follow different pathways depending on internal or
external conditions. This type of transition can be expressed by fork
transitions in the present framework. Depending on the on/off state of a
trigger, an X stage may develop into either stage Y or stage Z. This can be
considered as a X→ Y linear transition by default, which becomes an
X→ Z transition if the control gene is expressed in stage X (denoted by X’
stage). Therefore, on one hand the activation of the control genemust turn
off theX⇢ Yheteroassociativity, andon the other hand itmust turnon the
X⇢ Z heteroassociativity. Similar to the considerations presented for the
linear transition case, both the Y and Z stagesmust also be autoassociative.
Incorporating these requirements into the regulatory matrix expression

Fig. 8 | Construction of regulatory program matrices in the AGRN framework.
a Three elementary stage transition types of the model. Linear (upper), fork (mid-
dle), and conditional transitions (bottom). Uppercase letters with rounded back-
ground represent developmental stages with the corresponding expression profile of
the developmental stage vectors in which genes with an on, or off state are indicated
by value 1, or 0, respectively. Black outline of the squares denotes stage-specific
genes; gray outline refers to triggers (tr). The elements of the corresponding reg-
ulatory matrix M indicate the nature of the pairwise regulatory interactions (nega-
tive: repressor, positive: activator, zero: neutral). b Illustration of the model
functionality on a simple differentiation hierarchy.Due to the fork transition in stage
C, there are two possible developmental pathways depending on tr-1. C→D is the
default pathway that needs no trigger, while C→ F is the triggered branch that the

differentiation process follows, if the tr-1 trigger is on. The conditional transition
between D and E stages requires a second signal (tr-2+). We used minimal
expression representation: stage A corresponds to a stage vector in which the first
element is 1, while in stage F the 6th value is 1; the 7th and 8th values of the stage
vectors correspond to triggers tr-1 and tr-2, respectively. The lower left panel shows
the system’s state as a function of time, as measured by the expression levels of the
stage-specific genes in case of the two possible developmental pathway realizations
(line colors correspond to the colors of the stages as shown in the upper panel).
Arrows denote the time of the induction of the trigger signals. The regulatory
program matrix M corresponding to this system is shown in the rightmost panel.
This matrix is derived by a combination of the elementary transition rules depicted
in (a) and defined in Eqs. 4–6. We used the standard parameter set (see Methods).
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(Fig. 8a) yields:

Ms
X⇉Y;Z ¼ MX⇢Y þMX0�X⇢�Y þMX0�X⇢Z þMY⇢Y þMZ⇢Z ¼

¼ ð2y � 1Þ � ~x|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
X⇢Y

� ð2y � 1Þ � s|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
X0�X⇢�Y

þ ð2z� 1Þ � s|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
X0�X⇢Z

þ ð2y � 1Þ � ~y|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Y⇢Y

þ ð2z� 1Þ �~z|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Z⇢Z

¼

¼ ð2y � 1Þ � ~x þ 2ðz� yÞ � sþ ð2y � 1Þ � ~y þ ð2z� 1Þ �~z
ð5Þ

where for sake of notational simplicity we introduce s ¼ x0 � x which
stands for the expression vector of the trigger (composed of zeros except for
the trigger element). Note that the alternative transition is implemented by
giving the rules of the alternative pathway relative to the default; X0 � X
difference leads to Z−Y difference. The autoassociative terms on stages Y
and Z ensure the stability of the final stages.

Conditional transition
Developmental transitions are often triggered by some external or internal
cues. Depending on the on/off state of a trigger, anX stagemay develop into
an Y stage or remain in X. This can be considered as a stable X stage by
default, which becomes an X→Y transition when the trigger is on (X’
stage). The expression of the control gene turns off the X⇢X auto-
associativity, and it turns on the X⇢ Y heteroassociativity simultaneously.
By adding theY⇢Yautoassociative term towarrant the stability of thefinal
stage, we obtain the regulatory matrix (Fig. 8a) expression:

Ms
X↛Y ¼ MX0�X⇢�X þMX0�X⇢Y þMY⇢Y ¼

¼ �ð2x � 1Þ � s|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
X0�X⇢�X

þ ð2y � 1Þ � s|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
X0�X⇢Y

þ ð2y � 1Þ � ~y|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Y⇢Y

¼

¼ 2ðy � xÞ � sþ ð2y � 1Þ � ~y

ð6Þ

where s = x’− x stands for the expression vector of the trigger as before.
Note that in all types of transitions the target stages are stabilized by an

autoassociative term that ensures the high level of expression of the
respective stage and the stability of this high level if it is the last state of a
series of transitions. This autoassociative step can be placed before the
departure stage or can be appended to the target stage; this is a matter of
definition (we used the latter), but it is important to avoid duplication. A
conditional transition can be considered as a special fork transition, where
one branch leads fromX toY, and the other branch leads back toX. Figure 8
illustrates the basic building blocks of the three elementary stage transitions
considered in the model and the functionality of the derived regulatory
program matrix for a simple artificial differentiation topology. A step-by-
step guide for building the simple model system described in Fig. 8 can be
found in Supplementary Note 1.

Expression length optimization
Since the basic parameter set assumes the same δ degradation rate for all
gene products, by default, the expression lengths of different stages are
almost the same. Therefore, in the cell-cycle model (Fig. 3), we adjusted the
expression lengths to mimic the empirically observed relative stage lengths.
For this purpose, we used an evolutionary algorithm (for details, see: Sup-
plementary Note 3) by which we set different decay rates for different gene
products, resulting a decay rate vector δi; ði ¼ 1; . . . ;NÞ, where N is the
numberof geneproducts.Our analysis suggests that using this approachone
can obtain arbitrary phase lengths. Moreover, our simulations indicate that
the δ decay rate can also be used as a scaling parameter for the characteristic
time of the transitions (the time difference between two consecutive
expression level peaks of two stage-specifically expressed gene products, see
Fig. S2).

Robustness analysis
Under the first perturbation scenario, i.e., in the regulation strength per-
turbation analysis (i), we investigated the robustness of the functionality of
the regulatory program matrices against multiplicative and nullifying per-
turbations. For these analyses, we used gene expression data from the

following three systems: human hematopoiesis (Supplementary Data 1),
human cell cycle (Supplementary Data 2), and C. elegans P5.p vulval pre-
cursor cell (VPC) differentiation (Supplementary Data 4). In case of mul-
tiplicative perturbations, we perturbed random 1% of the elements of the
respective matrix of the system according to the following: m0

ij ¼ mij �
N 1; σð Þ; where m0

ij is the perturbed element and Nð1; σÞ is a random
number drawn from a normal distribution with unit mean and σ standard
deviation. To avoid the biologically implausible change in the sign of the
regulations if the random number is less than zero, we use zero instead of
minus values of the distribution. In case of nullifying perturbations, a given
proportion of the total elements of an M matrix was set to zero assuming
that some mutations destroy particular binding sites, leaving the rest
unmodified. Theperformance of the systemwasmeasuredby the fractionof
successful simulations, i.e. the fraction of the cases, when the system fol-
lowed a predetermined pathway without errors, and all involved gene states
were clearly expressed with at least 0.95 Pearson correlation (computed
between the p(t) expression vector and the stage-specific developmental
stage vector). The target was the P5.pVPC→vulA pathway in theC. elegans
P5.p vulval precursor cell differentiation model (Fig. S4a), and the Meso-
derm→CFU-Epathway in the humanhematopoiesismodel (Fig. 2a). In the
human cell cycle model (Fig. 3), simulations were considered to be suc-
cessful, if the cyclic dynamicswas sustained and the systemdid not enter the
apoptotic pathway (Fig. 3c). We made 10000 repeats for each investigated
value of the standard deviation σ and for each investigated proportion of
nullified elements.

Under the second perturbation scenario, i.e., in the misexpression
analysis (ii), we analyzed the effects of the mistimed expression of cellular
identity determining key genes on the functionality of the hematopoietic
system (Fig. 7a, see Fig. 2b right panel). The performance of the system in
this case was measured by Pearson correlation coefficients between the p(t)
expression vector (vector for the actual dynamical expression state of the
genes) and the developmental stage vectors.

Publicly available data
The human hematopoiesis dataset (Supplementary Data 1) consists
of developmental stage vectors for the cellular stages of the hema-
topoietic hierarchy. These vectors include binary expression states for
15 key genes whose differential expression is thought to be a major
determinant of the cellular identity in differentiating hematopoietic
cells39,68. For 14 of these genes (GATA-1, GATA-2, PU.1, SCL, Bra,
Flk-1, Runx1, VE-cadherin, c-myb, NF-E2, c-kit, EKLF, EpoR, Fli-1),
stage-specific expression was obtained from ref. 39, and for BMP4,
from refs. 69,70. Three-membered regulatory subcircuits extracted
from the regulatory matrix of this system are shown in Supple-
mentary Table 1.

The human cell cycle (CC) dataset (SupplementaryData 2) is based on
a gene expression profiling meta-analysis71. In this dataset, we defined
binary expression states for the 48 high confidence CC genes that have been
identified in at least three of the five primary sourceCCdatasets44,72–75 which
the original meta-analysis71 considered, and their expression states were
determined identically with respect to each stage in all of these datasets (the
apoptotic process is simply represented by the expression of an apoptosis-
specific gene).

The C. elegans embryonic development dataset (Supplementary
Data 3) includes gene expression information on 2435 genes (considering
only the non-unique ones) corresponding to 1046 differentiation stages.
These data were collected from refs. 76,77. after which we fused the two
datasets, filtering out genes that were not present in either of them. The
considered stages are those from the early development of C. elegans
embryonic cell lineages, starting from the P0 cell with 454 fork and 137
linear transitions (Fig. 4a).

We also used C. elegans as a model to test the performance of the
suggested AGRN framework on a system that implements organogenesis
(i.e., vulva development from the P5.p and P6.p vulval precursor cells; see
Supplementary Data 4 and Supplementary Data 5, respectively). For this
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analysis, we collected gene expression data from refs. 78–80, results of the
detailed analysis are shown in Supplementary Note 5.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
External data sources for Figs. 2, 3, 4, 6, 7 and Figs. S1, S3, S4 and Supple-
mentary Table 1 were assembled into Supplementary Data 1-5 and are
provided with the paper. All further data supporting the results and the
conclusions are included within the article and the corresponding publicly
available repository81.

Code availability
Software for simulation and visualizationwerewritten inC++, Bash andR.
Scripts, required software packages, and instructions are available at https://
zenodo.org/records/1055658581.
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