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1. Introduction

Machine learning has been recently connected to the field of differential equa-
tions by observing that numerical time integrators resemble formulae used in
residual neural networks [9,14]. The fast development of deep learning algo-
rithms has led to the study of analogues of deep neural networks, and that
of the discretization of continuous dynamical systems [7,15]. The continuous
analogue of backpropagation in deep residual neural networks is the adjoint
equation, also used in optimal control, plays a crucial role in connecting the two
fields. This recently revealed relation has been exploited along the following
two directions.

(1) Certain tasks, typically handled by deep neural networks, such as image
recognition, are treated by using the continuous analogue, that is, by
learning the parameters of a system of ODEs.

(2) Learning the parameters of a dynamical system from certain points of its
trajectories by using the continuous analogue of backpropagation, that
is, by applying the gradient method by computing the derivative of the
loss function by solving the adjoint equation.

Our work presented in this paper is mostly related to direction (2), hence
we will deal with the two directions in the introduction as follows.

• Literature overview corresponding to direction (1).
• Problem description of direction (2).
• Literature overview corresponding to direction (2).
• Novelties and structure of our paper.

The analogue between a deep residual neural network and the numerical
scheme corresponding to the discretization of an ODE is presented, and the
proposed method is applied in image classification in [7,14]. The idea is also
extended to learning neural ODE for stiff systems [8]. A linear multi-step ar-
chitecture (LM-architecture) is introduced in [9] as a generalization of ResNet,
inspired by the linear multi-step method for solving ordinary differential equa-
tions. It is shown that it achieves higher accuracy in image recognition than
ResNet and other previous neural ODE (NODE) architectures. The represen-
tative power of NODE, that is, the class of functions that these can represent
is investigated in [6]. The authors illustrate the limitations of this approach
with some simple examples, and show how the class of representable functions
can be extended by extending the state space via augmented variables.

We now turn to direction (2), and formulate the problem of learning the
parameters of a dynamical system. Let us assmue that we are given a set of
time points T ⊆ [0, 1], and a sample from a trajectory of a differential equation
evaluated at these points. We note that the choice of the unit interval is merely
an aesthetic one, which can be made without loss of generality. This is typically
either the time dependence of a trajectory component y : [0, 1] → R, or a time
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series y(τ1), y(τ2), . . . , y(τn) obtained from it. The goal is to find an initial
value problem, the solution of which fits the given data.

More precisely, given a family of right hand sides parameterized by a
k-dimensional parameter θ ∈ R

k, a d-dimensional initial condition x0 ⊆ R
d,

and a 1-dimensional initial time t0 ∈ R, we are looking for the best initial
time, initial condition, parameter triple (t0, x0, θ) in some search space S ⊆
R × R

d × R
k.

That is, given the function f : R×R
d×R

k → R
d, we consider the solution

x of the problem{
ẋ(t) = f

(
t, x(t); θ

)
, t0 < t < t0 + 1

x(t0) = x0,
(1)

and try to find the value of (t0, x0, θ), for which the distance of the functions
t �→ x(t) and t �→ y(t − t0) is minimal in some sense.

To this end, we employ a learning process, which first constructs a dif-
ferentiable loss function L : S → R, then, given an initial guess for the triple
(t0, x0, θ), applies a gradient-descent based iterative method to minimize it.
Efficient calculation of the gradients used during the iteration is made possi-
ble by the continuous backpropagation process based on the adjoint equation
[5].

As an illustrative example, the reader may have in mind the d = 1 dimen-
sional case. Then two simple possible loss functions are the following. Given a
discrete sample, we may let

L(t0, x0, θ) =
1
n

n∑
j=1

(
x(t0,x0,θ)(t0 + τj) − y(τj)

)2
, (2a)

while given the trajectory itself, we may pick

L(t0, x0, θ) =
∫
[0,1]

(
x(t0,x0,θ)(t0 + τ) − y(τ)

)2
dτ, (2b)

where we use the subscript (t0, x0, θ) to emphasize the solution’s dependence
on these parameters.

The minimization of this loss function is also referred to as parameter
identification problem or system identification and goes back to the seventies.
The unknown parameters are to be determined in such a way that the difference
of the model output and the measurements is minimized. The papers [4,12]
review the results and methods known and used at that time. The minimization
of the loss function can be carried out by using the gradient method, hence an
effective method for computing the gradient is desired. This has led to the use
of the adjoint equation developed in optimal control theory and also used in
sensitivity analysis. The first derivation of the adjoint equation goes back to
the idea of using Lagrangian formalism, where λ, the variable in the adjoint
equation, plays a similar role as a Lagrange multiplier. It turned out that
solving the adjoint equation backward in time yields the gradient of the loss
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function. The derivation of the adjoint equation and its relation to the gradient
of the loss function is carried out and shown in a non-precise way in several
papers. In most of them, a formal linearization leads to the adjoint equation
after neglecting higher order terms. In [11], the formal derivation using the
Lagrange multiplier analogue can be found and a specific application to stereo
tomography in geophysics is detailed. A biological application is shown in [13],
where the dynamical process is governed by a parabolic partial differential
equation that is approximated by an ODE. The loss function is defined as the
integral of the norm of the difference between the output and the observation.
The gradient of the loss function is derived formally by changing the parameter
vector infinitesimally and neglecting higher order terms. The calculations are
extended to implicit ODEs and to differential-algebraic systems in [3]. The
adjoint method has also recently been related to system identification [1,10].
The loss function, in those papers, is defined as the sum of squares of the
differences x(τj) − y(τj) (in our terms), the adjoint equation is derived only
formally. It is not verified precisely how the gradient of the loss function can
be obtained from the backward solution of the adjoint equation. The adjoint
equation helps to compute not only the gradient but also the Hessian of the
loss function. The adjoint equation is derived in a formal way by linearizing
and neglecting the higher order terms also in [5]. The identification problem,
namely finding the best parameter values of a dynamical system to fit given
data is related to optimal control and is investigated also in [15].

Having provided an overview with the aim of presenting previous ap-
proaches and contextualizing the present work, we now return to the latter
and summarize its novelties. We argue that the novelties of the paper spring
from the functional approach enabling us to treat this topic with what we feel
is more precision and elegance, but more concretely, it enables us to do the
following:

• to treat the case of discrete, and continuous samples together via a general
loss function;

• to offer a succinct and self-contained derivation of the adjoint equation;
• to present a time-differentiable homotopy as the continuous analogue of

backpropagation;
• to obtain the differential equation governing this homotopy, the solution

of which yields the gradient of the loss function.

The spirit of the functional approach is preserved in implementation via the
JAX package [2], offering composable transformations with applications that
are not limited to machine learning.

The paper is structured as follows. In Sect. 2, we present the abstract
approach, construct the general loss function from building blocks, and prove
in Theorem 2, that the adjoint equation yields the gradient of these.

Then, in Sects. 3, and 4, the adjoint equation is formulated, and the
gradient of the general loss function is derived for the case of single, and
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multiple time points, see Theorem 4. In Sect. 5, we turn to implementing the
abstract approach. In practice, to obtain the aforementioned gradient, one can
solve the initial value problem (13), which presents the computable form of
the adjoint equation, and the suitable initial condition. Lastly, in Sect. 6 we
show some numerical examples illustrating the feasibility of the method.

2. General Approach

We will use the following standard notation for the solution that enables us
to denote more clearly its dependence on the initial condition and on the
parameters. Let φ(t, s, p, θ) = x(t) denote the value of the solution of (1) at
time t satisfying the initial condition x(s) = p. Then the initial value problem
(1) takes the form

ẋ(t0,x0,θ)(t) = ∂tφ(t, t0, x0, θ) = f
(
t, φ(t, t0, x0, θ), θ

)
for t0 < t < t0 + 1. Moreover, we introduce the forward transfer operator
family ϕ(τ) : S → S by the formula

ϕ(τ)(s, p, θ) =
(
τ + s, φ(τ + s, s, p, θ), θ

)
. (3)

In words, ϕ(τ) advances the lifted dynamical system by time τ .
The function ϕ defines a dynamical system on the search space S and

satisfies an autonomous differential equation, the right hand side of which is
the lifted version of f , namely F : S → S, defined as

F (s, p, θ) =
(
1, f(s, p, θ), 0

)
,

that is, the following proposition holds.

Proposition 1. The function ϕ satisfies the group property ϕ(t+τ) = ϕ(t)◦ϕ(τ)
and the autonomous differential equation

ϕ′(τ) = F ◦ ϕ(τ)

for all t.

Proof. The group property can be derived by using the group property of φ
as follows.

ϕ(t)
(
ϕ(τ)(s, p, θ)

)
= ϕ(t)

(
τ + s, φ(τ + s, s, p, θ), θ

)
=

(
t + τ + s, φ

(
t + τ + s, τ + s, φ(τ + s, s, p, θ), θ

)
, θ

)
=

(
t + τ + s, φ(t + τ + s, s, p, θ), θ

)
= ϕ(t + τ)(s, p, θ).

The differential equation can be obtained by differentiating (3) with respect
to τ .

ϕ′(τ)(s, p, θ) =
(
1, ∂tφ(s + τ, s, p, θ), 0

)
=

(
1, f(s + τ, φ(s + τ, s, p, θ), θ), 0

)
=

(
F ◦ ϕ(τ)

)(
s, p, θ

)
.

�
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We are now ready to construct the loss function. The input of this func-
tion will be the triple (t0, x0, θ) including both the initial condition and the
parameters. This triple determines the solution of the initial value problem (1)
uniquely on [t0, t0 + 1]. The value of the loss function compares the measure-
ment y(τ) to the state φ(t0 + τ, t0, x0, θ) for some time instants τ ∈ [0, 1].

To this end, we introduce the differentiable function h(τ) : S → R, that
maps the state triple at time t0 + τ to a scalar representing the error at this
time.

One of the most typical error functions is the square of the difference,
that is used in the d = 1 dimensional cases (2a), (2b) of Sect. 1. In that case,
the function h(τ) takes the form of

h(τ)(s, p, θ) =
(
p − y(τ)

)2
.

To turn this into a function of the initial state, we compose it from the
right by the function ϕ(τ), which advances the state by time τ . The result is
the function

h(τ) ◦ ϕ(τ) : S → R.

In the case of the simple squared difference of (2a), (2b), we get(
h(τ) ◦ ϕ(τ)

)(
t0, x0, θ

)
=

(
φ(t0 + τ, t0, x0, θ) − y(τ)

)2
.

If we want to compare the solution to the measurement at several time
instants τ ∈ [0, 1], and then aggregate the resulting differences, then we take a
probability measure σ on [0, 1] that is concentrated to those time instants and
integrate the point-wise error h(τ)◦ϕ(τ) with respect to this measure, leading
to the definition of the general loss function,

L =
∫
[0,1]

h(τ) ◦ ϕ(τ) dσ(τ). (4)

To emphasize the arguments of the loss function, this definition can be written
in the form

L(t0, x0, θ) =
∫
[0,1]

(
h(τ) ◦ ϕ(τ)

)(
t0, x0, θ

)
dσ(τ).

We visualize the general loss function in Fig. 1.
The goal of the learning process is to find a minimum of the loss function

in the search space, i.e. to find the optimal values of the initial condition (t0, x0)
and the parameter θ. To this end, the efficient calculation of the gradient of the
loss function, denoted by L′, is needed. Equation (4) shows that this gradient
can be obtained from the derivative (h(τ)◦ϕ(τ))′. It turns out that computing
this derivative is numerically demanding, hence an alternative route using the
so-called adjoint equations has been developed, see e.g. [5]. Below we show
a general derivation of this equation and a new proof for the fact that the
gradient of the loss function can be obtained from the adjoint equation.
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Figure 1. The loss function L, which, in words, for each time
0 ≤ τ ≤ 1, transfers the initial state triple (t0, x0, θ) forward
by time τ , assigns a scalar score to the resulting state triple
using h(τ), and lastly aggregates these scores by integrating
over [0, 1] with respect to the measure σ. The bottom row lists
the dimensions, and shapes of the objects encountered, in a
form related to implementation. These are, from left to right:
a (row) vector, a matrix with the same number of columns,
and |T | rows, that is, one for each time instant; a column
vector with the same number of rows, and lastly a scalar

The main idea of this general approach is that calculating h(τ)′ ◦ ϕ(τ) is
relatively easy, and it is connected to the desired derivative

(
h(τ) ◦ ϕ(τ)

)′ by
a differential equation, the adjoint equation.

In other words, we show that there exists a differential equation, such
that its solution acts as a continuous transformation between the functions(
h(τ) ◦ ϕ(τ)

)′ and h(τ)′ ◦ ϕ(τ), much like a homotopy mapping one curve to
another.

Indeed, given a time 0 ≤ t ≤ τ , let us define

Λ(τ, t) = h(τ) ◦ ϕ(τ − t),

and use the group property of ϕ to split the map h(τ) ◦ ϕ(τ) as

h(τ) ◦ ϕ(τ) = h(τ) ◦ ϕ(τ − t) ◦ ϕ(t) = Λ(τ, t) ◦ ϕ(t).

Next, we introduce the desired homotopy λ(τ, t) as

λ(τ, t) =
(
h(τ) ◦ ϕ(τ − t)

)′ ◦ ϕ(t) = Λ(τ, t)′ ◦ ϕ(t).

Clearly, then λ(τ, τ) = h(τ)′ ◦ ϕ(τ), and λ(τ, 0) =
(
h(τ) ◦ ϕ(τ)

)′ hold, i.e.
λ connects the two mappings. The time evolution of λ, that is the function
t �→ λ(τ, t) satisfies a differential equation, that is generally called the adjoint
equation. This is the statement of the following theorem.

Theorem 2. The function λ(τ, ·) satisfies the differential equation

∂tλ(τ, t) = −λ(τ, t) ·
(
F ′ ◦ ϕ(t)

)
for 0 < t < τ ≤ 1. (5)
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Proof. By the group property, and the chain rule, we have that

Λ(τ, t) = Λ(τ, t + s) ◦ ϕ(s),

Λ(τ, t)′ =
(
Λ(τ, t + s)′ ◦ ϕ(s)

)
· ϕ(s)′.

Applying this to λ, we get that

λ(τ, t) = Λ(τ, t)′ ◦ ϕ(t)

=
(
Λ(τ, t + s)′ ◦ ϕ(s) ◦ ϕ(t)

)
·
(
ϕ(s)′ ◦ ϕ(t)

)
= λ(τ, t + s) ·

(
ϕ(s)′ ◦ ϕ(t)

)
.

Now we take the derivative with respect to s, and substitute s = 0.

0 = ∂tλ(τ, t + s) ·
(
ϕ(s)′ ◦ ϕ(t)

)
+ λ(τ, t + s) · d

ds
(ϕ(s)′ ◦ ϕ(t))

∣∣∣∣
s=0

= ∂tλ(τ, t) + λ(τ, t) ·
(
ϕ′(0)′ ◦ ϕ(t)

)
= ∂tλ(τ, t) + λ(τ, t) ·

(
F ′ ◦ ϕ(t)

)
,

where the last line uses
d

dτ

(
ϕ(τ)′)∣∣∣∣

τ=0

=
(
ϕ′(0)

)′ =
(
F ◦ ϕ(0)

)′ = F ′.

�

To summarize, the general approach is to solve the the differential equa-
tion (1), then the gradient of the loss function is obtained by solving the adjoint
equation backward, from t = t0 + τ to t = t0. So far we have obtained the
derivative

(
h(τ)◦ϕ(τ)

)′. In the next two sections, we derive the gradient of the
loss function when we have a single time point, i.e. the probability measure is
concentrated on a single point, and when we have several time instants.

3. The Case of a Single Time Point

Let us first consider the case of a single measurement at a fixed time τ . This
corresponds to the case where σ is concentrated on the single time instant τ .
Then, the loss function is simply h(τ) ◦ ϕ(τ), which acts on S by the formula

L(t0, x0, θ) = h
(
τ
)(

t0 + τ, φ(t0 + τ, t0, x0, θ), θ
)
. (6)

For the sake of brevity, and exploiting that τ is now fixed, we introduce the
functions h̄ = h(τ), and ϕ̄ = ϕ(τ), and we let ξ0 = (t0, x0, θ). With these, the
loss function can be written as

L(ξ0) = h̄
(
ϕ̄(ξ0)

)
.

We are interested in calculating the gradient of this function using back-
propagation, summarized in Fig. 2.
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Figure 2. The forward, and the backward pass in the case
of a single time point τ . The arrows representing the former
are dashed. During the forward pass we start from ξ0 and
calculate ϕ̄(ξ0), then h̄

(
ϕ̄(ξ0)

)
. During the backward pass we

take these values, and starting from 1 = id′(h̄(ϕ̄(ξ0))
)
, we

calculate h̄′(ϕ̄(ξ0)
)
, and lastly (h̄ ◦ ϕ̄)′(ξ0)

We note, again, that in the simple case when h̄(s, p, θ) =
(
p− y(τ)

)2, the
loss function takes the form

L(t0, x0, θ) =
(
φ(t0 + τ, t0, x0, θ) − y(τ)

)2
.

Based on the result of the previous section, the gradient of the loss func-
tion can be calculated as follows.

Corollary 3. Let the loss function be given by (6). Then its gradient can be
obtained as L′ = λ(τ, 0), where λ(τ, ·) is the solution of the adjoint equation
(5), solving it backward starting from the initial condition λ(τ, τ) = h̄′ ◦ ϕ̄ with
h̄ = h(τ), and ϕ̄ = ϕ(τ).

4. The Case of Multiple Time Points

Similarly to the single point case, we would like to find a way to transform
the various λ(τ, τ) = h(τ)′ ◦ϕ(τ) functions, possibly scaled values of which are
obtained during backpropagation, into the derivative of the loss function (4),
that is, into L′.

Given a t from the closed unit interval, let us consider how the loss
function depends on the state at time t. During the forward pass, that is, the
evaluation of the loss function L, the initial value problem (1) is solved forward
in time. This implies that the aforementioned state affects the states at later
times, that is, those at time τ for all t ≤ τ ≤ 1.

This effect is the following. First, the state is carried to time τ via ϕ(τ−t),
then the resulting state is fed into h(τ), yielding the partial loss value belonging
to time τ . Therefore, we form the composition of these two functions,

h(τ) ◦ ϕ(τ − t)
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for each t ≤ τ ≤ 1, and aggregate the results using the measure σ to get the
function

L(t) =
∫
[0,1]

I(t ≤ τ) · h(τ) ◦ ϕ(τ − t) dσ(τ),

which can be seen to be the τ−aggregated version of Λ(τ, t). This becomes a
proper loss function, in the sense that it will take the initial state to some loss
value, if we compose it from the right by ϕ(t). Indeed,

L(t) ◦ ϕ(t)

is a family of loss functions that measure the loss encountered on the interval
[t, 1]. Using that ϕ(0) is the identity, equation (4) yields L(0) = L.

We may now proceed analogously to the single point case, and define

l(t) = L(t)′ ◦ ϕ(t)

=
∫
[0,1]

I(t ≤ τ) ·
(
h(τ) ◦ ϕ(τ − t)

)′ ◦ ϕ(t) dσ(τ)

=
∫
[0,1]

I(t ≤ τ) · λ(τ, t) dσ(τ),

the τ−aggregated version of λ(τ, t), which will act as the transformation be-
tween the functions

l(0) = L′,

l(1) = σ({1}) · h(1)′ ◦ ϕ(1).

Let us describe now the time evolution of l. The case of the continuous and the
discrete sample can be treated together by assuming that σ decomposes into
the sum of an absolutely continuous and a discrete part, that is σ = σc + σd

with Radon-Nikodym derivatives ρc and ρd. Then we have that

l(t) =
∫ 1

0

I(t ≤ τ) · λ(τ, t) · ρc(τ) dτ +
n∑

j=1

I(t ≤ τj) · λ(τj , t) · ρd(τj), (7)

and the time evolution of this family is given by the following theorem.

Theorem 4.

l′(t) = −λ(t, t)·ρc(t)−
n∑

j=1

λ(τj , τj)·ρd(τj)·δ{τj}−l(t)·
(
F ′◦ϕ(t)

)
0 < t < 1

(8)
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Proof. The idea of the proof is to differentiate (7), and apply Theorem 2. For
the continuous part, we use the Leibniz rule.

l′(t) = −λ(t, t)ρc(t) +
∫ 1

t

∂tλ(τ, t)ρc(τ) dτ

−
n∑

j=1

λ(τj , τj)ρd(τj)δ{τj} +
n∑

j=1

I(t ≤ τj) · ∂tλ(τj , t)ρd(τj)

= −λ(t, t)ρc(t) −
∫ 1

t

λ(τ, t) ·
(
F ′ ◦ ϕ(t)

)
ρc(τ) dτ

−
n∑

j=1

λ(τj , τj)ρd(τj)δ{τj} −
n∑

j=1

I(t ≤ τj) · λ(τ, t) ·
(
F ′ ◦ ϕ(t)

)
ρd(τj)

= −λ(t, t)ρc(t) −
n∑

j=1

λ(τj , τj)ρd(τj)δ{τj}

−

⎛
⎝∫ 1

t

λ(τ, t)ρc(τ) dτ +
n∑

j=1

I(t ≤ τj) · λ(τ, t)ρd(τj)

⎞
⎠ ·

(
F ′ ◦ ϕ(t)

)

= −λ(t, t) · ρc(t) −
n∑

j=1

λ(τj , τj) · ρd(τj) · δ{τj} − l(t) ·
(
F ′ ◦ ϕ(t)

)
�

We take a moment to underline yet again that λ(t, t) = h(t)′ ◦ ϕ(t), and
that λ(t, t) are functions from which we obtain values during backpropagation.

Corollary 5. Consider the general loss function (4). Its gradient is L′ = l(0),
where l is the solution of the adjoint equation (8), which we solve backward in
time starting from the initial condition l(1) = σ({1}) · h(1)′ ◦ ϕ(1).

5. Application of the General Theory

In this section, we turn to the application of the general theory presented
above. As the initial setting, we are given the input to L, namely the triple
(t0, x0, θ).

During the forward pass, the initial value problem (1) is solved to produce
a solution x(t0,x0,θ), which we denote simply by x, for the sake of brevity. This is
then fed into the functions h(τ) point-wise, the results of which are aggregated
via integration by the measure σ on [0, 1].

During the backward pass, we use x, a result of the forward pass, and
solve another initial value problem backwards in time to backpropagate the
gradient obtained in the form of a function g. We note that if we have a finite
number of time points, then g is really just a finite dimensional vector.
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5.1. The Case of a Single Time Point

First, we illustrate how to apply the general theory in the case of a single
time point τ . To simplify matters as much as possible, we consider a dif-
ferential equation with a d = 1 dimensional phase space and a k = 1 di-
mensional parameter. Moreover, we pick the squared difference error function
h(τ)(s, p, θ) =

(
p−y(τ)

)2. In this case, the loss function maps R3 to R following
the formula

L(t0, x0, θ) =
(
φ(t0 + τ, t0, x0, θ) − y(τ)

)2
,

which is consistent with (2a), assuming n = 1 observation(s).
According to Corollary 3, the derivative of the loss function is L′ =

λ(τ, 0), where λ(τ, ·) is the solution of the adjoint equation (5) satisfying the
initial condition λ(τ, τ) = h(τ)′ ◦ ϕ(τ).

The adjoint equation (5) is in a functional form. Applying both the left
and the right-hand-sides to a point (t0, x0, θ) leads to a linear system of three
differential equations. Let us now expand on these. First, we introduce the
function that is going to satisfy this linear differential equation as(

a1(t), a2(t), a3(t)
)

= a(t) = λ(τ, t)(t0, x0, θ),

where components ai are now real-valued functions.
Then the adjoint equation itself is the non-autonomous linear differential

equation of the form

ȧ(t) = −a(t)A(t),

where the coefficient matrix is A(t) = F ′(ϕ(t)(t0, x0, θ)
)
. Elaborating on this,

we note that since ϕ(t)(t0, x0, θ) =
(
t0 + t, x(t0 + t), θ

)
, where x(t0 + t) =

φ(t0 + t, t0, x0, θ), and

F ′(s, p, θ) =

⎛
⎝ 0 0 0

∂tf(s, p, θ) ∂xf(s, p, θ) ∂θf(s, p, θ)
0 0 0

⎞
⎠ ,

we have that

A(t) =

⎛
⎝ 0 0 0

∂tf
(
t0 + t, x(t0 + t), θ

)
∂xf

(
t0 + t, x(t0 + t), θ

)
∂θf

(
t0 + t, x(t0 + t), θ

)
0 0 0

⎞
⎠ .

Therefore, multiplication leads us to the expanded version of the adjoint equa-
tion,

ȧ1(t) = −a2(t)∂tf
(
t0 + t, x(t0 + t), θ

)
, (9)

ȧ2(t) = −a2(t)∂xf
(
t0 + t, x(t0 + t), θ

)
, (10)

ȧ3(t) = −a2(t)∂θf
(
t0 + t, x(t0 + t), θ

)
. (11)

Thus, we need to solve the second equation for a2, first, and then a1 and a3

can be obtained by simple integration.
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Lastly, we derive the initial conditions for the unknown functions ai. The
abstract initial condition takes the form λ(τ, τ) = h(τ)′ ◦ ϕ(τ), and we have
that a(τ) = λ(τ, τ)(t0, x0, θ). Differentiating h(τ)(s, p, θ) =

(
p − y(τ)

)2 yields

h(τ)′(s, p, θ) =
(
0, 2

(
p − y(τ)

)
, 0

)
.

Using ϕ(τ)(t0, x0, θ) =
(
t0 + τ, x(t0 + τ), θ

)
, we obtain

a(τ) = h(τ)′(ϕ(τ)(t0, x0, θ)
)

=
(
0, 2

(
x(t0 + τ) − y(τ)

)
, 0

)
,

leading to the initial condition

a1(τ) = 0, a2(τ) = 2
(
x(t0 + τ) − y(τ)

)
, a3(τ) = 0. (12)

Thus, the gradient of the loss function can be obtained as

L′(t0, x0, θ) = a(0),

where a(t) =
(
a1(t), a2(t), a3(t)

)
is the solution of system (9)–(11) subject to

the initial condition (12).
For the interested Reader, it might be useful to consider the case f(p, θ) =

pθ, when system (9)–(11) can be solved analytically as

a(t) = 2
(
eθτx0 − y(τ)

)(
0, eθ(τ−t), eθτx0(τ − t)

)
,

leading to

L′(t0, x0, θ) = a(0) = 2
(
eθτx0 − y(τ)

)(
0, eθτ , τeθτx0

)
.

In this special case, the gradient of the loss function can also simply be obtained
by direct differentiation of

L(t0, x0, θ) =
(
eθτx0 − y(τ)

)2
.

5.2. The Case of Multiple Time Points

The case of multiple time points can be treated similarly to the single point
case, seen in the previous subsection.

We start by considering the general loss function L as defined in (4).
According to Corollary 3, its derivative is calculable as L′ = l(0), where l is
the solution of the adjoint equation (8), satisfying the initial condition l(1) =
σ({1}) · h(1)′ ◦ ϕ(1).

We now take (8) in its functional form, and apply its functions to the
input triple (t0, x0, θ). Given a t from the unit interval, the three functions
that we need to evaluate are l(t), λ(t, t), and F ′ ◦ ϕ(t). In doing so, we will
freely use that ϕ(τ)(t0, x0, θ) =

(
t0 + τ, x(t0 + τ), θ

)
. We start with l(t), and

define the function that is to satisfy the adjoint equation as

a(t) =
(
a1(t), a2(t), a3(t)

)
= l(t)(t0, x0, θ) ∈ R

1+d+k.
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Then, we consider source term λ(t, t) = h(t)′ ◦ ϕ(t), which might be con-
sidered the input gradient during the backpropagation step, and define the
corresponding function

g(t) =
(
h(t)′ ◦ ϕ(t)

)
(t0, x0, θ) = h(t)′(t0 + t, x(t0 + t), θ

)
∈ R

1+d+k.

Then, we mimic the previous subsection and let

A(t) =
(
F ′ ◦ ϕ(t)

)(
t0, x0, θ

)
= F ′(t0 + t, x(t0 + t), θ

)
∈ R

(1+d+k)×(1+d+k).

Lastly, we define

J(t) = f ′(t0 + t, x(t0 + t), θ
)

∈ R
d×(1+d+k),

and note that

a · A =
[
a1 a2 a3

]
·

⎡
⎣0

J
0

⎤
⎦ = a2 · J.

Still following Theorem 4, we are ready to state the initial value problem
to be solved backward in time. Indeed, we plug in the recently defined functions
to get⎧⎨

⎩
ȧ(t) = −g(t)ρc(t) −

n∑
j=1

g(τj)ρd(τj)δ{τj} − a2(t) · J(t), 0 < t < 1

a(1) = g(1)ρd(1),
(13)

where the initial value follows from the formula

a(1) = σ({1}) ·
(
h(1)′ ◦ ϕ(1)

)(
t0, x0, θ

)
= ρd(1) · g(1),

where we have used that σ = σd + σc, and σc({1}) = 0 by its absolute conti-
nuity.

To summarize, given the values {g(t) : t ∈ T }, the gradient of the loss
function can be obtained as

L′(t0, x0, θ) = a(0),

where a is the solution of the initial value problem (13).
We take a moment to state that the ith component of (13) for i = 1, 2, 3

is

⎧⎪⎨
⎪⎩

ȧi(t) = −gi(t)ρc(t) −
n∑

j=1
gi(τj)ρd(τj)δ{τj} − a2(t)∂ξif

(
t0 + t, x(t0 + t), θ

)
, 0 < t < 1

ai(1) = gi(1)ρd(1),

where (ξ1, ξ2, ξ3) = (t, x, θ). We note that this involves a nontrivial differential
equation only for i = 2, therefore having solved that first, the rest of the
components a1, and a3 may be found by integration.

We note that using a discrete set of observations in a continuous world
has its price, namely the Dirac delta terms δ{τj} mean that that a has jumps
of possibly nonzero magnitude at times τj . In practice, this means that the
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numerical algorithm used to solve problem (13) has to be able to introduce arti-
ficial bumps in the solution it is producing. Alternatively, we may introduce the
bumps by solving initial value problems on each subinterval
[τn, 1], . . . , [τj−1, τj ], . . . [0, τ1], and bumping the solution a through the initial
conditions.

To make the latter argument more precise, we firstly let τn+1 = 1, and
τ0 = 0, without introducing new time instants, and define an+1 ≡ 0. Then, for
each j = n, . . . , 0, we recursively introduce a sequence of functions

aj : [τj , τj+1] → R
1+d+k,

as the solutions to the sequence of initial value problems{
ȧj(t) = −g(t)ρc(t) − aj

2(t) · J(t), τj < t < τj+1

aj(τj+1) = g(τj+1)ρd(τj+1) + aj+1(τj+1),
(14)

solving all of which in succession, we arrive at a0(τ0) = a0(0) = L′(t0, x0, θ).
We note that the g(τj+1)ρd(τj+1) terms get added with a positive sign, since
a jump in forward time becomes the same jump, but negated, when looking
at it in reversed time.

Lastly, we underline three important special cases.
The case of continuous data assumes that continuous data is available on the
whole unit interval, that is, when y(τ) is defined for each τ from [0, 1]. We
do not wish to highlight any single time instant in particular, therefore we let
ρd ≡ 0, and we set the continuous weights to be uniform, that is, ρc ≡ 1. In
other words, σ is the Lebesgue-measure on [0, 1]. In this case, the loss function
is

L(t0, x0, θ) =
∫ 1

0

h
(
τ
)(

t0 + τ, x(t0 + τ), θ
)

dτ,

and (13) becomes{
ȧ(t) = −g(t) − a2(t) · J(t), 0 < t < 1
a(1) = 0,

(15)

since ρd ≡ 0.
The case of a single observation assumes that we have a single observation
at time τ . In this case, σ is concentrated on τ , that is, the continuous part
is zero, ρc ≡ 0, while the discrete part is zero everywhere except at τ , where
ρd(τ) = 1. We can consider three cases based on the value of τ ∈ [0, 1]. If
τ = 0, then there is no need to solve any initial value problem. If τ = 1, then
(13) becomes {

ȧ(t) = −a2(t) · J(t), 0 < t < 1
a(1) = g(1),

where the right hand side doesn’t show the Dirac delta term that sits at τ = 1,
since it is outside of the interval where this differential equation is solved. This
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is a terse version of the single point case outlined in the previous subsection.
If 0 < τ < 1, then (13) becomes{

ȧ(t) = −g(τ)δ{τ} − a2(t) · J(t), 0 < t < 1
a(1) = 0,

which is a homogeneous linear system on (τ, 1), and consequently, its solution
there is zero, because of the initial condition a(1) = 0. At time τ , a has a
jump of g(τ), and from that point, the homogeneous differential equation can
transfer the now non-zero state to something other than zero. This process
amounts to the solution of the initial value problem{

ȧ(t) = −a2(t) · J(t), τ > t > 0
a(τ) = g(τ),

which is, again, what the treatment of the single point case of the previous
subsection predicted.
The case of finitely many observations extends the previous case, allowing
for more than one, but still only finitely many observations taken at times
τ1, . . . , τn. In this case, σ is concentrated on these points, and consequently
ρc ≡ 0. For those interested in this setting, (14) is the formula to turn to,
which, given the context, becomes{

ȧj(t) = −aj
2(t) · J(t), τj < t < τj+1

aj(τj+1) = g(τj+1)ρd(τj+1) + aj+1(τj+1),

where, as previously, we assume that τ0 = 0, τn+1 = 1, an+1 ≡ 0, and the
functions

aj : [τj , τj+1] → R
1+d+k j = n . . . 0

have to be determined by solving the corresponding initial value problems in
succession, to lastly arrive at the gradient of the loss function, a0(τ0) = a0(0) =
L′(t0, x0, θ).

6. Numerical Experiments

In this section, we present the results of numerical experiments as evidence in
support of Theorem 4. We demonstrate that a gradient descent that obtains
the necessary gradients via (15) as outlined in this paper is able to lessen small
perturbations in an optimal parameter triple ξ0 = (t0, x0, θ).

The experiments proceed as follows. To obtain our input data we solve an
initial value problem (1) parameterized by ξ0, and sample the first component
of the resulting trajectory. We consider two cases.

In the first, continuous case, we assume that the entirety of this compo-
nent is available to the optimization process. To mimic measurement errors,
each time this component is evaluated, the result contains an additive error
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term that is normally distributed. In this case, the function family h is the
square of the difference between the first component of the state of the dy-
namical system and the sample y.

In the second, discrete case, we uniformly divide the unit interval into
subintervals. We then generate a discrete sample by considering the input data
of the previous case and sampling it at a time instant from each subinterval,
where these time instants are drawn from truncated normal distributions that
are centered at the intervals’ midpoints. Our input data y will then be a piece-
wise constant function, which takes the sampled value on each subinterval.
We modify the h of the continuous case by multiplying it with a weight func-
tion, which is, on each subinterval, the probability density function of the time
instant where the trajectory component has been sampled.

Then we construct the computational graph, or loss function, using our
input data y, the vector field of the initial value problem f , and the loss
function components h. Lastly, we apply a small random normal perturbation
to the true parameter triple ξ0, and initiate a gradient descent starting from
the perturbed triple, in order to reduce the loss value.

As initial value problems, we consider the SI model with a fixed popula-
tion of 10{

Ṡ = −βIS
10

İ = βIS
10 − γI

t0 = 0

{
S(t0) = 9
I(t0) = 1

2

[
β γ

]
=

[
10 3

]
,

(16)
and the Lotka–Volterra equations{

u̇ = (a − bv)u
v̇ = (du − c)v

t0 = 0

{
u(t0) = 1

2

v(t0) = 1
2

[
a b
c d

]
=

[
10 10
10 10

]
.

(17)
We have ran the experiment for each set of input data, for each initial

value problem. We have repeated each experiment 4 times, so as to get a
better idea of the loss values encountered during the iteration. The results of
the 2 × 2 × 4 experiments are summarized in Fig. 3.

The experiments have been implemented in JAX [2]. The implementation
tries to mimic the mathematics presented in this paper. In particular, it has
not been optimized for computational efficiency. In practice, calculating the
gradients requires the numerical solution of an initial value problem, and fur-
ther numerical integration. This implies that the amount of work required for
each gradient descent step depends on the numerical tolerances one specifies,
with looser tolerances implying faster iteration. On the other hand, looser tol-
erances imply less precise gradients. It is unclear how these tolerances should
be chosen, perhaps even varied during the iteration, to render the computa-
tional process more efficient in terms of the decrement of the loss value per
unit work.
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Figure 3. The two quadruples depict the results of 100 gra-
dient descent steps starting from a slightly perturbed initial
value problem parameter triple (t0, x0, θ). In each quadruple,
the first row belongs to the case of the SI model (16), while
the second to that of the Lotka–Volterra equations (17). The
first column shows the case of continuous input, the second
that of discrete input. The upper quadruple shows the input
data y, and how the current best estimate of the underlying
trajectory component varies during the iteration. The lower
quadruple shows the loss values encountered during the same
time. The latter are based on 4 repetitions of each experiment
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In the continuous case, increasing the amount of noise, the integrals be-
come harder to evaluate, which results in increased computation time and
decreased accuracy. In the discrete case, taking samples from each subinterval
according to a truncated normal distribution implies that as the temporal un-
certainty goes to zero, the value of the weight function at the midpoints goes
to infinity, which corresponds to the discrete part of (13).

The evaluation of the loss function, that is, that of the final integral, is
not necessary for the calculation of the gradients, and time may be saved by
only evaluating it when necessary.

In the examples of this section, the parameter triple the gradient descent
starts from is not far from the one which yields the input data. When the
initial parameter triple is further, then the true and the predicted trajectories
can be different enough qualitatively for the iterative process to get stuck.
In these cases, one may mimic the idea of the stochastic gradient descent by
replacing σ with a random measure for each gradient descent step. We have
had success using random normal distributions that were modified so that
the expected measure was approximately uniform on the unit interval. This
uniformity appears important in making sure that on average, the stochastic
choice of measure does not interfere with how the errors at each time instant
are weighted.
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