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Abstract
This research explores the reliability of deep learning, specifically Long Short-
TermMemory (LSTM)networks, for estimating theHurst parameter in fractional
stochastic processes. The study focuses on three types of processes: fractional
Brownian motion (fBm), fractional Ornstein–Uhlenbeck (fOU) process, and lin-
ear fractional stable motions (lfsm). The work involves a fast generation of
extensive datasets for fBm and fOU to train the LSTMnetwork on a large volume
of data in a feasible time. The study analyses the accuracy of the LSTMnetwork’s
Hurst parameter estimation regarding various performance measures like root
mean squared error (RMSE), mean absolute error (MAE), mean relative error
(MRE), and quantiles of the absolute and relative errors. It finds that LSTM out-
performs the traditional statisticalmethods in the case of fBmand fOUprocesses;
however, it has limited accuracy on lfsm processes. The research also delves into
the implications of training length and valuation sequence length on the LSTM’s
performance. The methodology is applied to estimating the Hurst parameter in
li-ion battery degradation data and obtaining confidence bounds for the estima-
tion. The study concludes that while deep learning methods show promise in
parameter estimation of fractional processes, their effectiveness is contingent on
the process type and the quality of training data.

KEYWORDS
accuracy of deep learning, fractional stochastic processes, Hurst parameter estimation, li-ion
battery degradation analysis, LSTM network

1 INTRODUCTION

Fractional processes play a pivotal role in the stochastic modeling of diverse phenomena, including the wear and tear
of machinery and the valuation of financial instruments. A key parameter in these models is the Hurst exponent, which
may reflect memory decay, self-similarity, fractal dimension (FD), or all of them simultaneously, as in fractional Brownian
motion (fBm).
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2 BOROS et al.

The model’s accuracy is highly sensitive to the Hurst exponent, highlighting its criticality; even slight errors in estimat-
ing this parameter can cause significant discrepancies in themodel’s effectiveness and predictive capability. Consequently,
it is vital to comprehend and precisely quantify the margin of error associated with this parameter’s estimation. While
conventional statistical methods for estimating this parameter have been thoroughly explored, the potential of deep
learning techniques in this area warrants investigation. Our research focuses on three process types: fBm, fractional
Ornstein–Uhlenbeck (fOU) process, and linear fractional stable motions (lfsm).
Degradation modeling and reliability analysis are fundamental to the Prognostics and Health Management of complex

systems.With advancements inmeasurement technologies, a notable long-range dependence (LRD) has been observed in
the degradation patterns of various assets, including turbofan engines, blast furnaces, lithium-ion batteries, and chemical
catalysts.1–3 This LRD, also known as long-termmemory effect or persistence, indicates that correlations of asset degrada-
tion increments extend over extensive periods. Therefore, future degradation trends are not only influenced by the current
condition of the asset but are also deeply linked to its entire degradation history. The LRD’s significance extends beyond
asset performance degradation, being prevalent in fields like finance, hydrology, and biology. Consequently, numerous
models integrating LRD have been developed for asset degradation and reliability analysis.
To monitor the long-term memory LRD in degradation patterns effectively, several researchers have incorporated fBm

in asset degradation models. The memory structure of fBm is delineated by the Hurst parameter𝐻, which lies within the
range 0 < 𝐻 < 1. Specifically, when 0.5 < 𝐻 < 1 fBm exhibits LRD, making it increasingly relevant for analyzing LRD-
integrated degradation data across various assets. Examples of its application include Xi et al.’s4 model that leverages the
LRD for predicting the remaining useful life of turbo engines, Zhang et al.’s5 integration of multiple degradation modes
in an fBm-based model, Si et al.’s6 application in accelerated degradation tests, and Zhang et al.’s7 development of an
explicit probability density function for remaining useful life estimation within an LRD-integrated framework. These
models exemplify the growing scope of fBm applications in asset degradation analysis.8–10 The fBm solely relies on the
Hurst parameter to characterize the degradation process, which may not sufficiently capture complex time series data
attributes. Nonetheless, practical degradation processes typically exhibit non-Gaussian traits, whereas the fBm process
conforms to Gaussian distributions.
Conversely, Lévy stable motion exhibits non-Gaussian stable distributions and is characterized by parameters 𝛼, 𝛽, 𝛾,

and 𝛿. The parameter 𝛼, known as the stability index, controls the tail thickness of the distribution; lower values of 𝛼
suggest heavier tails, indicating a higher likelihood of significant deviations from the mean. The skewness parameter 𝛽
dictates the asymmetry of the distribution, with 𝛽 = 0 representing a symmetric distribution, positive 𝛽 values indicating
a right-skewed distribution, and negative 𝛽 values a left-skewed one. The scale parameter 𝛾 determines the width of the
distribution, influencing its dispersion, while the location parameter 𝛿 sets the center of the distribution, around which
it is symmetric in the case of 𝛽 = 0. This motion, simplifying to Brownian motion when 𝛼 = 2, is distinguished by its
heavy-tailed nature, with a probability density that diminishes following a power law. The lfsm, as an extension of Lévy
stable motion, encapsulates both non-Gaussian characteristics and heavy-tailed properties, as well as exhibiting LRD. In
this model, positive LRD is indicated when 𝐻 > 1

𝛼
, suggesting continuity in future trends with the present. Conversely,

𝐻 <
1

𝛼
denotes the absence of LRD, implying contrasting future trends (i.e., future trends that differ from or are opposite

to current trends). When 𝐻 = 1

𝛼
, the process is deemed independent of past trends. Notably, in the 𝛼 = 2 case, the lfsm

model aligns with the fBm. Thus, lfsm presents a versatile framework capable of modeling a broad spectrum of stochastic
processes, ranging from heavy-tailed to both Gaussian and non-Gaussian distributions.
In the realm of industrial production, where sensor data is abundantly collected, data-drivenmethodologies are increas-

ingly vital for predicting performance degradation in complexmechanical systems. Thesemethods are broadly categorized
into statistical and deep learning-based approaches. Deep learning techniques, including convolutional neural networks,
long short-termmemory (LSTM), deep belief networks (DBN), deep autoencoders (DAE), and transfer learning (TL), have
garnered significant attention in remaining useful life (RUL) prediction. For instance, Ding et al.11 introduced an RUL
prediction method for rolling bearings based on deep convolutional neural network (DCNN), enhancing feature learning
capabilities. Qin et al.12 developed a neural network with a gated dual attention unit for predicting the RUL of rolling
element bearings. Yan et al.13 crafted an ON-LSTM network for gear RUL estimation, integrating tree structures within
LSTM to improve prediction accuracy. Haris et al.14 combined DBN with Bayesian optimization for estimating superca-
pacitor RUL, while Wang et al.15 utilized DAE for feature extraction and LSTM for electric valve RUL prediction. Fan
et al.16 proposed a feature-based TL approach to extend RUL prediction models from simpler to more complex domains.
While deep learning approaches have achieved notable successes in predicting the RUL of equipment, these algorithms’

effectiveness is heavily reliant on the quality and volume of the training data, leading to inefficiencies in model training,
particularly with combinatorial networkmodels. Additionally, the determination of hyper-parameters in these algorithms
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BOROS et al. 3

often involves laborious cross-validation or heuristic methods, limiting their practical application in industrial settings.
A significant limitation of most deep learning methods is their focus on point-wise RUL predictions, which struggle to
accurately quantify the uncertainty in RUL projections under varying conditions, thereby inadequately addressing risk
assessment in predictions. In contrast, statistical data-driven methods, which do not depend on extensive degradation
data, possess intrinsic strengths in accurately quantifying the uncertainties associated with RUL predictions, offering a
more robust framework for risk assessment.
The primary aim of our research is the swift and accurate estimation or calibration of these fractional processes in com-

plex models used across various sectors, such as finance and reliability engineering. In the domain of financial volatility
modeling, the Hurst exponent frequently falls below 0.5, leading to rough paths. Conversely, in reliability engineering,
particularly in degradation or RUL analysis, the Hurst exponent often exceeds 0.5, indicating a long memory effect.
It is not our objective to find a universal structure that works for all models in degradationmodeling or in RUL analysis.

Concerning battery degradation, which is our primary motivation in the application field examined in this article, there
are two modeling practices, where either fBm/fOU or lfsm processes are utilized. Our intention was to highlight that if
we think within one modeling framework and train the network within that scope, it will not be suitable for use in the
other modeling framework. The same network structure cannot be appropriately applied in both contexts, and this is not
remedied by mixing data or fundamentally training the network with data from the other structure.
We train neural networks using extensive and accurately simulated datasets, ensuring the Hurst exponent’s variation

covers its entire spectrum from 0 to 1. To generate our training samples, we implement a sophisticated Davies–Harte-
type algorithm capable of efficiently producing sample paths from isonormal processes, encompassing the fBm and fOU
processes. For estimating parameters of the fOU process, we utilize a unidirectional LSTMnetwork, comprising two layers
and enhanced with a normalization layer.
While current deep-learning-based research predominantly concentrates on predicting risks or losses, the dynamics

of risk propagation and methods to impede this spread are comparatively underexplored. To enhance production safety,
product reliability, or financial stability, a blend of targeted risk response strategies and an ambient, all-encompassing risk
prevention framework is essential. In addressing this, we propose integrating the study of propagation dynamicswith deep
learning methodologies to thoroughly model and scrutinize the spread of risks. Keeping this perspective, our goal is to
utilize deep learning to unravel the dynamic parameters of stochastic processes that underlie or stimulate risk propagation.
In recent years, a number of works have emerged that utilize neural networks for parameter estimation problems.17 It is

particularly so in estimating theHurst parameter of fBm. Those applyingmultilayer perceptions (MLPs) have to cope with
the required fixed input size and hence have one of the following alternatives: either inference can be performed only on
a fixed-length series,18,19 or inference is made on a set of process-specific statistical measures enabling a fixed size input
to the neural networks.20,21 A more recent signature-based method, described in Bonnier et al. (2019),22 is also capable of
estimating fBm’s Hurst parameter. In executing that, the extracted statistical descriptors are processed by an LSTM.
The hybrid application of statistical descriptors and neural networks employed in the mentioned methods does not

bring significant improvement compared to our purely neural network solution while increasing the computational time
sometimes unbearably. Another common weakness of the recently published methods is that they do not address the
possible limitations caused by scaled inputs.
A major advancement of our research lies in the creation of a neural network-based methodology, which markedly

surpasses traditional statistical methods in determining the parameters of the fBm and fOU processes. This method excels
in accuracy and speed compared to previous statistical and deep learning approaches. To achieve it, we need large-scale
teaching of the network, and to do that, we have successfully invented a very fast generation of extensive fBm datasets for
training purposes.

2 TEACHING THE NEURAL NETWORK

2.1 The processes

A fBm,23 denoted as 𝐵𝐻(𝑡), is a Gaussian process starting from zero and characterized by continuous time, zero mean,
and the autocovariance function

𝐸[𝐵𝐻(𝑡) ⋅ 𝐵𝐻(𝑠)] =
1

2

(|𝑡|2𝐻 + |𝑠|2𝐻 − |𝑡 − 𝑠|2𝐻).
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4 BOROS et al.

The fBm is notable for having stationary and dependent increments and is recognized for being a self-similar process
with fractal paths. The Hurst exponent 𝐻 is its sole parameter. According to Robert Adler’s seminal work, Brownian
motion and Stochastic Differential Equation driven diffusion processes invariably exhibit FDs of 1.5. That highlights
the inadequacy of these processes for modeling phenomena with varying FDs, thus underscoring the significance of fBm.
Notably, the FD of fBm paths varies with the Hurst parameter𝐻, so that FD = 2 − 𝐻.
A fOU process is defined24 by a fractional stochastic Langevin differential equation

𝑑𝑋(𝑡) = 𝜅(𝜃 − 𝑋(𝑡))𝑑𝑡 + 𝜎𝑑𝐵𝐻(𝑡), (1)

where the process is driven by an fBm 𝐵𝐻(𝑡)withHurst parameter𝐻 ∈ (0, 1). Both the drift parameter 𝜅 and the volatil-
ity parameter 𝜎 are positive real constants. The solution to the fOU equation is known to exist and is unique, subject to
an initial condition. It can be expressed explicitly, particularly for a 0 initialization and expectation, as follows:

𝑋(𝑡) = −𝜎 ∫
𝑡

0

e−𝜅(𝑡−𝑠)𝑑𝐵𝐻(𝑠).

The fOU process is an isonormal25 (Definition 1.1.1) 1 and, therefore, a Gaussian process belonging to the first Wiener-Ito
chaos driven by fBm. It achieves a unique stationary solution when initiated in a stationary state. The paths of the fOU
process inherit their FD from the driving fBm. The fOU process is characterized by four parameters:𝐻, 𝜅, 𝜃, and 𝜎.24,26,27
The definition of the fOU process24 we use includes the parameter 𝜃. This inclusion allows for the mean-reverting

behavior, which is especially relevant in financial modeling contexts where such dynamics are prevalent. In the finan-
cial literature it is almost exclusively referred to as the rough Vasicek model,28 and widely recognized for modeling
interest rates.
When 𝜃 is set to zero, the model simplifies to a standard fOU process, which does not exhibit mean-reverting behavior.

This flexibility in defining the fOU process allows for a broader application range, catering to various scenarios encoun-
tered in financial time series analysis and beyond. Since the application in the present paper is not of financial nature, we
did not find appropriate to refer to the model by Vasicek’s name.
The fBm has different extensions to the 𝛼-stable case. One of the most commonly used is the linear fractional stable

motion (lfsm). This process is also called linear fractional Lévy motion (lfLm) or fractional Lévy stable motion (fLsm).
The lfsm 𝐿𝛼

𝐻
(𝑡) is defined as the stochastic process given by the integral29 (formula: 7.7.4)

𝐿𝛼
𝐻
(𝑡) = ∫

∞

−∞

(
((𝑡 − 𝑥)+)

𝐻−1∕𝛼
− ((−𝑥)+)

𝐻−1∕𝛼
)
𝑑𝑀(𝑥)

where 0 < 𝛼 < 2, is the parameter of stability, 0 < 𝐻 < 1, 𝐻 ≠ 1

𝛼
is the Hurst exponent and 𝑀 is an 𝛼-stable random

measure on ℝ with Lebesgue control measure. For any 𝑧 ∈ ℝ (𝑧)+ = 𝑚𝑎𝑥(𝑧, 0).
The lfsm is a fractional self-similar stable process with stationary increments (H-sssi), where 𝐻 is the Hurst

exponent of fractionality (for more details, see Samorodnitsky & Taqqu, 199429). The parameter 𝐻 characterizes the self-
similarity property of lfsm. Themarginal distribution of 𝐿𝛼

𝐻
(𝑡) is 𝛼 stable. It follows that 𝑃(𝐿𝛼

𝐻
(𝑡) > 𝑥) ∝ 𝑡𝛼𝐻𝑥−𝛼 as 𝑥 → ∞,

and that the generalized dispersion defined in the quantile sense satisfies 𝐷(𝐿𝛼
𝐻
(𝑡)) ∝ 𝑡𝐻 , which is similar to the behav-

ior of fBm. If 1∕𝛼 < 𝐻 < 1, and 𝛼 ∈ (1, 2), this process may be shown to present LRD in some extended sense given in
Samorodnitsky and Taqqu (1994).29 It has to be clearly differentiated from the stable time-changed Brownian motion
described in Huillet.30
Let us recall that the path properties of an lfsm strongly depend on the interplay between the parameters H and 𝛼. When

𝐻 > 1∕𝛼, the lfsm paths are Hölder continuous on compact intervals of any order smaller than𝐻 − 1∕𝛼. If𝐻 < 1∕𝛼, the
lfsm explodes at jump times of the driving Lévy process; in particular, it has unbounded paths on compact intervals.
Clearly, in this approach, the stable character of the resulting process has been favored, and this model is the natural
extension of the fBm in this respect.

1We say that a stochastic process𝑊 = {𝑊(ℎ), ℎ ∈ 𝐻} defined in a complete probability space (Ω, , 𝑃) is an isonormal Gaussian process (or a Gaussian
process on 𝐻) is𝑊 is a centered Gaussian family of random variables such that 𝐸(𝑊(ℎ)𝑊(𝑔)) = ⟨ℎ, 𝑔⟩𝐻 for all ℎ, 𝑔 ∈ 𝐻.
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BOROS et al. 5

2.2 The neural network structure

There are three kinds of invariances that we might require from the network: shift, scale, and drift invariance. In order to
make an fBm Hurst-estimator that works well in practice, we want to rely on all three of the above invariances. We can
obtain shift invariance by transforming the input sequence to the sequence of its increments. Differentiating the input also
turns drift invariance to shift invariance. By performing a standardization on the sequence of increments, we can ensure
drift and scale invariance. The standardizing phase can also be considered as an additional layer to the network, applying
the transformation 𝑥 ↦ (𝑥 − 𝑥)∕𝜎̂(𝑥) to each sequence of increments 𝑥 in the batch separately, where 𝜎̂(𝑥) is the sample
standard deviation over the sequence 𝑥, and 𝑥 is the arithmetic mean over 𝑥. Note that the sample standard deviation is
a biased estimator of the true one because of the autocorrelated samples. The bias, however, is negligible because of the
relatively long sample length.
In order to create an fBm Hurst estimator that is effective in practical applications, it is crucial to ensure the model

exhibits three kinds of invariances: shift, scale, and drift invariance. Achieving shift invariance can be done by converting
the input sequence into a sequence of its increments, which also transforms drift invariance into shift invariance when
differentiating the input.
To address both drift and scale invariances, we perform a standardization on the sequence of increments. This is where

our approach diverges from the conventional pre-processing methods. Given the nature of our model, which generates
newdata in every training epoch,we integrate the standardization process as an intrinsic part of the network. This involves
applying the transformation 𝑥 ↦ (𝑥 − 𝑥)∕𝜎̂(𝑥) directly to each sequence of increments 𝑥 within the batch. Here, 𝜎̂(𝑥)
denotes the sample standard deviation across the sequence 𝑥, and 𝑥 represents the arithmetic mean of 𝑥.
Incorporating this standardization step as an additional layerwithin the network architecture allows for dynamic adjust-

ment to the newly generated data’s properties, ensuring that each batch is standardized based on its current statistics.
This method not only maintains the required invariances for the fBm Hurst estimator but also enhances the model’s
adaptability and performance across varying data distributions. It is important to note, though, that while the sample
standard deviation is a biased estimator due to the autocorrelated nature of the samples, this bias is negligible owing to
the sufficiently long sample length, ensuring the effectiveness of our standardization approach.
By embedding the standardization within the network, we offer a robust solution to maintain shift, scale, and drift

invariance in the face of dynamically generated training data, thereby improving the reliability and accuracy of the fBm
Hurst estimator in practical scenarios.
After the layers to ensure invariances, the next layers constitute a sequential regressor. This part of the network first

transforms the input sequence into a higher dimensional sequence, after which each dimension of the output is averaged
out, resulting in a vector. Finally, a scalar output is obtained by anMLP. In the present analysis, we only consider an LSTM
network.31 We found that the specific hyperparameter configuration does not have a significant effect on its performance.
The following are the hyperparameters that we used in the experiments below.
The applied network consists of an unidirectional LSTM with two layers; its input dimension is 1, and the dimension

of its inner representation is 128. In both models, we use an MLP of three layers (output dimensions of 128, 64, and 1),
with a parametric rectified linear unit (PReLU) activation function between the first two layers. Adaptive moment esti-
mation with weight decay (AdamW) optimization on the mean squared error (MSE) loss function was used for training
the models.32
The choice of the LSTM architecture was primarily influenced by its prevalent use in current applications. Our main

objective was to critically evaluate its effectiveness in managing time-series data by exploring its operational reliability
under various conditions.
Our experimental analysis led to the selection of rectified linear unit (ReLU) over other activation functions like Gaus-

sian error linear unit (GELU) and exponential linear unit (ELU) due to its superior performance in the MLP layers. The
experimentation also revealed that incorporating dropout layers negatively impacted model performance, leading to their
exclusion from the final design.
We initially tested multiple hidden layers but settled on a two-layer LSTM structure. Adding a third layer provided

marginal improvements, which did not justify the additional computational resources required.
Our trials with varying batch sizes and series lengths showed these factors had minimal impact on model performance.

Similarly, adjustments to the alpha parameter mainly influenced training speed rather than outcome quality, while high
values of the mu parameter detrimentally affected learning, suggesting issues with model fitting.
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6 BOROS et al.

Among the different optimizers tested, stochastic gradient descent (SGD) was outperformed by ADAMW. Further tun-
ing of ADAMW’s parameters like learning rate and weight decay proved unbeneficial. The model consistently achieved
optimal loss values by around 35 epochs, with no substantial gains observed up to 50 epochs.
In theMLP layers, no significant advantages were noted when using a pyramid-like configuration of neurons compared

to uniform layers, leading to a simplified and more resource-efficient structure.
In sum, the architecture and parameters of our network were methodically determined through extensive testing to

ensure optimal performance across various scenarios.

2.3 The training procedure

When facedwith limited real data, the use of synthetic data generators enables the training of neural networks on virtually
unlimited datasets. In this approach, the loss calculated on new data batches serves as the validation loss, as each batch
consists entirely of new, synthetically generated data. Thismethod helps to prevent overfitting by ensuring themodel does
not specialize too heavily on the training data and also highlights the critical importance of the quality of the synthetic
data generator.
In the literature, there are generally two types of generation procedures discussed: Exact methods and Approximate

methods. During the data generation phase, we tested the method by Davies and Harte, as well as Cholesky from the
exact methods category. Cholesky was quickly discarded due to its computational complexity of 𝑂(𝑛3), which made it
increasingly slower as we trained the model on longer sequences.
A large and high-quality simulated sample from both fBm and fOU processes is applied for effective training of the

neural network. We utilized Kroese’s method,33 a variation of the Davies–Harte procedure, to generate fBm trajectories.
The Hurst parameter for these trajectories is set randomly, according to the uniform distribution in the [0,1] interval.
For generating the fOUprocess,weused theEuler scheme,where the drivingnoisewas derived from fractionalGaussian

noise, since we cannot directly produce fOU using the Davies and Harte method. Additionally, for fractional Lévy stable
motion, we used both the rlfsm package available in R and another implementation available in Python.
To ensure the quality of the simulation, we assess Gaussianity, compare the empirical autocovariance to the theoretical

model, and re-estimate the parameters using classical statistical estimators, such as the R/S, Whittle, variogram, Higuchi,
and Peng’s detrended fluctuation analysis.
In addressing the issue of stationarity for the simulated sequences used in our study, specific measures were taken to

ensure that the sequences exhibit the required statistical properties, especially for fOU and fBm processes.
For the fOU process, we initiated the simulation from zero and discarded the first 100 values. This burn-in period is

considered sufficient to achieve stationarity in the generated sequence, thereby mitigating the transient effects from the
initial condition. This approach is based on the characteristic of the fOU process where the increments tend to stabilize
as the process evolves.
In the case of fBm, the focus is on the increments of the process, which are inherently stationary. This is a fundamental

property of fBm, as the increments over equal time intervals are statistically identical, a characteristic that is crucial for
our applications involving modeling long-range dependent data.
It is important to note thatwhile statistical tests are employed to verify the empirical properties of these distributions, the

theoretical underpinnings of the generation methods for both fBm and fOU have been rigorously proven.34,35 Theoretical
proofs provide a solid foundation for the reliability of thesemethods in generating data that accurately reflects the intended
stochastic properties.
Therefore, our approach integrates robust theoretical validation with practical statistical tests to ensure that the data

generated for our simulations adheres to the required criteria of stationarity and other statistical properties. This strategy is
employed specifically to verify that no inconsistencies or errors arise during implementation that would conflict with the
theoretical foundations. By ensuring this compatibility, we can confidently utilize these simulations for further analysis
and applications in modeling and forecasting tasks.
While the original Davies–Harte method for generation is accessible in existing Python packages, our application of

Kroese’s method necessitates a custom implementation using efficient Python framework tools. Our implementation
strategy preserves the covariance structure, saving it to avoid redundant computations, thereby significantly enhancing
computational speed. As the lfsm process does not belong to the class of isonormal processes, the generation has to rely on
different principles. In this case, we were unsuccessful in developing a similarly efficient generator; therefore, we cannot
train the network on lfsm trajectories. Instead, we use the package rlfsm in R to generate lfsm sample paths. Simulation
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BOROS et al. 7

of the sample paths is done via Riemann-sum approximations of its symmetric 𝛼-stable stochastic integral representation
while Riemann sums are computed efficiently using the Fast Fourier Transform algorithm. However, it is much slower,
so creating a proper training set is not feasible this way. Therefore, we had to contend with analyzing the estimation of
the Hurst parameter of lfsm processes by the LSTM network trained on fBm or fOU processes.
Speed is a critical factor in this context, as we employ up to 107 trajectories of the length of 1600 or 6400 for training

the network, meaning 16–64 billion data.
The neural network training is carefully designed to accommodate this complex setup. Themodel utilizes a learning rate

of 0.0001 with the AdamW optimizer, a combination chosen for its precision in model tuning and effective convergence.
In our research, we conductedmultiple training sessions and evaluations using different loss functions to investigate their
individual impacts on the model’s performance. Each loss function was applied in its own separate training context, with-
out combining themor using them simultaneouslywithin a single session. For loss functions, both L1Loss (MeanAbsolute
Error [MAE]) and MSE are employed, crucial in refining the model’s prediction accuracy by appropriately weighting dif-
ferent types of errors. The training spans various epoch lengths – 25, 50, and 100 epochs – with each epoch generating
100,000 sequences. This strategy allows the model to learn at multiple depths and assess the impact of different train-
ing durations. Moreover, the batch sizes are set at 32 for training and 128 for validation, ensuring efficient learning with
smaller batches during training, and a broader assessment of data during validation. We execute several trainings with
trajectory lengths of 400, 1600, and 6400 and analyze the obtained estimator.
The overall success of thismethod depends significantly on the generator’s accuracy and reliability. If the generator fails

to closely approximate the desired distribution, there’s a risk that the model might learn the generator’s errors, leading to
distorted results.

3 ANALYSIS OF THE HURST PARAMETER ESTIMATION

3.1 Evaluation of the LSTM estimator on fBm and fOU samples

For benchmarking, we choose the estimator obtained by training the network on fBm trajectories of length 1600 with a
training span of 100 epochs. Increasing the number of epochs or the length of the training series does not result in much
decrease in the loss function; hence, the choice. We choose the MSE and the MAE for the loss function. The root mean
squared error (RMSE) is minimized by the conditional mean, making it most useful when large errors are particularly
undesirable. Given the constraint on the estimated values, large errors are of less concern in this case. TheMAE is a linear
score, which means that all the individual differences are weighted equally in the average. Minimizing MAE will make
the fit closer to the median and eventually more biased.
The trained network is then used to estimate theHurst parameter of 10,000 fBmand fOU trajectories of length 400, 1600,

and 6400, respectively. We evaluate the estimation in terms of the RMSE, the MAE, and the mean relative errors (MRE).
TheMAE and the RMSE can be used together to diagnose the variation in the errors in a set of predictions. The RMSEwill
always be larger or equal to the MAE; the greater the difference between them, the greater the variance in the individual
errors in the sample. The Hurst parameter is an exponent; therefore, the absolute or the relative deviation will heavily
affect the modeling accuracy, necessitating their analysis. It is not just the overall variability of the errors that reflects the
loss or risk in the model. Rarely occurring severe errors can be very much intolerable in some applications. Therefore,
beyond the mean error values, we also calculate the 95% quantiles and the medians of the absolute and relative errors
together with the maximum of the absolute error. The reason is that in real applications, we estimate the Hurst exponent
trajectory-wise, and even if the estimation’s significant inaccuracy occurs only in a small percentage of the observations
(i.e., stock prices, degradation of sensitive machine parts, etc.), it still can cause unbearable loss or risk.
In the first instance, we analyze the evaluation of the estimator on samples of the same length, that is, of 1600, as the

training was conducted. The visual representation of the results is displayed in Figure 1.
The upper right panel shows the estimated values versus those set for generating the trajectories. The overall perfor-

mance of deep learning seems quite appealing in the graph. While the Hurst exponent values were chosen uniformly in
the generation, the estimated values slightly deviate from that, as seen in the upper mid-panel histogram. The deviation
indicates the presence of a bias at large – close to one – Hurst parameter values. With a few exceptions, the raw errors
seem to follow normal law, as illustrated by the normal plot in the upper right corner.
Turning to absolute errors, its growth with the true Hurst value, as the lower left plot shows, is noteworthy. The his-

togram of the absolute errors in the middle of the lower row shows the skewed distribution close to that of an absolute

 10991638, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qre.3641 by M

T
A

 A
lfred R

enyi Institute of, W
iley O

nline L
ibrary on [17/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 BOROS et al.

F IGURE 1 LSTM estimation and its errors. The network is trained and subsequently validated equally on 1600-length fractional
Brownian motion samples. LSTM, long short-term memory.

value of a Gaussian variable. Remark, however, that two-sided deviations from the normal law add up, and the skewness
of the absolute errors is 1.16, while the absolute value of a Gaussian variable has a skewness of 1. The maximum absolute
error value is almost 0.06, more than four times the raw error’s standard deviation (0.0147). That is regarded as extreme
under the Gaussian law. It hints at a heavier-than-normal tail of the error distribution. The lower right plot exhibits the
relative error. Understandably, when the “true” generated Hurst value is extremely low, it induces high relative error even
from a small absolute error. For this reason, we cut the graph and do not display the relative error when the generated
Hurst value is lower than 0.02; such low values are not plausible in real applications anyway. As can be seen, the relative
error depends heavily on the true value of the Hurst parameter. For that reason, together with the overall 95% quantiles,
we also calculate localized values. To a given generated Hurst value 𝐻, we take the 𝐻 − 0.1,𝐻 + 0.1 interval around it
and calculate the relative error quantiles from generated trajectories with true Hurst value from that interval. We present
these quantiles, calculated in 0.1 steps, by the red line in the lower right plot.
Wemay change the loss function in the training fromMSE toMAE, pushing the optimization to the conditionalmedian.

Not knowing what feature of the samples LSTM learns, it is difficult to understand the difference between the two opti-
mizations. However, the difference in errors is really minuscule: RMSE: 0.014774 versus 0.014866, MAE: 0.011582 versus
0.011659 MRE% 3.694370 versus 3.631601 the first two to the advantage of the MAE, the last one to the MSE. Neither of the
loss functions can be preferred, and the result indicates that well-balanced samples are generated for training.
For comparison, we present a similar analysis with the Higuchi estimator, noting that very similar results – with alter-

nate asymmetries though – can be obtained by the detrended fluctuation analysis and the Whittle estimators, and results
are significantly worse for the variogram-based estimator, not to mention the classical R/S estimator. We evaluate the
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BOROS et al. 9

F IGURE 2 Higuchi estimation and its errors. The estimator was tested on 1600-length fractional Brownian motion samples.

Higuchi estimator on 10,000 simulated fBm trajectories of length 1600 with uniformly distributed random Hurst param-
eters. The plot of estimated versus “true” generated values is shown in the upper left corner of Figure 2. Bias is now
observable for the smallest (close to 0) and the largest (close to 1) values, as the histogram in the middle of the upper row
discloses. According to the normal plot in the upper right corner, the estimator does not have a normal distribution; it has
heavier than normal tails.
The absolute errors slightly exceed that of the LSTM estimator and have heavier tails; this is how the first lower left

corner plot and the histogramnext to it show. The relative errors are notmuchhigher than the ones for the LSTMestimator,
though. That can be observed in the lower right plot. The quantiles are also similar in the low end of the Hurst parameters;
however, they grow higher than that of the LSTM at high Hurst values.
Evaluating on fOU processes the LSTM estimator trained on fBm, we proceed similarly to the fBm case. The results are

also very similar to the fBm case concerning both the LSTM and the Higuchi estimators. Therefore, we do not present
a similar figure and detailed assessment separately; it would simply repeat what has been presented so far. In the first
two blocks of rows in Table 1, we exhibit the performance indicators of the LSTM network trained on fBm samples of
length 1600 and evaluated on 10,000 shorter (length 400), equally long, and longer (length 6400) samples of both fBm
and fOU. The accuracy grows significantly by increasing the sample length; the errors almost halve when quadrupling
the sequence length.
We also evaluate the LSTMon fOUprocesseswhen trained on 1600-long fOUprocesses. The generation of fOUprocesses

is slower than fBm-s; hence, we are forced to contend with shorter epochs in training, consisting of 10,000 trajectories
only. The third block of rows in Table 1 reveals that the network’s performance is almost as good as the one trained on
fBm despite the shorter training on fOU. Compared to the second block of rows, we may notice that the evaluation is
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10 BOROS et al.

TABLE 1 Performance metrics for LSTM and Higuchi Estimator evaluated on fractional Brownian motions and fractional
Ornstein–Uhlenbeck processes.

Absolute error Relative error (%)

Type
Evaluation
length RMSE MAE MRE (%) Max. q95% q50% q95% q50%

LSTM trained on fBm
1600 and evaluated on
fBm

400 0.0311 0.0241 7.32 0.1482 0.0630 0.0194 24.45 4.66
1600 0.0149 0.0117 3.63 0.0592 0.0300 0.0094 11.73 2.21
6400 0.0079 0.0066 2.43 0.0389 0.0165 0.0056 9.80 1.24

LSTM trained on fBm
1600 evaluated on fOU

400 0.0307 0.0238 7.06 0.1279 0.0620 0.0190 22.59 4.56
1600 0.0156 0.0122 3.69 0.0710 0.0316 0.0097 11.95 2.34
6400 0.0079 0.0062 2.02 0.0293 0.0157 0.0051 6.54 1.20

LSTM trained on fOU
1600 evaluated on fOU

400 0.0295 0.0229 7.02 0.1270 0.0599 0.0184 22.53 4.33
1600 0.0157 0.0122 3.62 0.0708 0.0321 0.0098 11.51 2.31
6400 0.0107 0.0085 2.28 0.1169 0.0233 0.0063 6.65 1.60

Higuchi Estimator on
fBm samples

400 0.0445 0.0342 10.5 0.2507 0.0903 0.0268 33.69 6.57
1600 0.0246 0.0182 4.93 0.1257 0.0515 0.0136 14.34 3.40
6400 0.0152 0.0104 2.61 0.0895 0.0332 0.0071 7.51 1.84

Note: The LSTM network was trained on 1600-long fractional Brownian motion samples.
Abbreviations: fBm, fractional Brownian motion; fOU, fractional Ornstein–Uhlenbeck; LSTM, long short-term memory; MAE, mean absolute error; MRE, mean
relative error; RMSE, root mean squared error.

slightly better on shorter (400) samples, but on longer (6400) samples, its performance does not improve as much as the
fBm-trained network. When the training and the evaluating sample lengths are equal, the two training types perform
almost equally well. The higher maximum and quantiles of absolute errors in the 6400-long evaluation are due to several
outliers. We guess that those outliers are the result of the shorter training. The skewness of the absolute errors is 2.3558,
highly different from 1, the skewness of the absolute value of a normal distribution. It is unprecedentedly high, considering
all of our experiments.
In summary, the LSTM estimator of the Hurst coefficients trained on fBm samples performs better than the traditional

statistical estimators in every aspect. True, the LSTM halves the root mean squared errors compared to statistical esti-
mators; however, it cuts the MAE to 60%–70% and the MRE to 75%–90% only, depending on sequence length. LSTM also
performs well on the maxima and the quantiles of the absolute errors; it almost halves those. However, RMSE and MAE
are not sensitive to which range of the original parameter the errors occur. That points out the relevance of the relative
errors, and in that terms, the performance of LSTM is not that excellent. In particular, when the 95% quantiles of localized
relative errors are considered, in the low range of the Hurst parameter, LSTM, and the statistical estimators are almost
equally bad, nearing or even exceeding 20%. On the high end of the parameter space, nearing one, however, LSTM again
significantly outperforms theHiguchi and other statistical estimators, as the latter’s relative errors start to grow even along
the Hurst values.

3.2 Evaluation on linear fractional α-stable motions

In our research on RUL estimations, specifically focusing on lithium-ion battery degradation, we have delved into the
nuances of the two predominant modeling practices in this field. The first widely adopted approach involves the applica-
tion of fBm and fOU processes. These stochastic models, frequently discussed in the literature for their effectiveness in
modeling time-dependent deterioration, include significant contributions detailed in references such as Refs. [4, 36], and
[37].
The second approach employs linear fractional stable Lévymotion (lfsm), which has been increasingly recognized for its

capability to accurately represent non-Gaussian distributions and capture heavy-tailed phenomena and extreme events.
Such characteristics are especially critical in modeling lithium-ion battery degradation, where unpredictable operating
conditions and outlier events can drastically affect the battery’s performance and lifespan. Essential studies on lfsm, such
as those by [28] and [1], offer a comprehensive framework for understanding the complex dynamics typical of real-world
battery degradation scenarios.
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BOROS et al. 11

F IGURE 3 Hurst exponent estimation of linear fractional stable motions of 𝛼 = 1.8, 1.5, 1.2 by LSTM and Higuch methods and its
errors. The network is trained on 1600-length fractional Brownian motion samples. The evaluation length is also 1600. LSTM, long short-term
memory.

In view of the explicit solution formula of the Langevin equation, the fOU process can be represented as a time-changed
and scaled fBm, so it is not very surprising that the network trained on fBm samples performs well on fOU samples, too.
Therefore, it is quite exciting to overstep this class and analyze the performance of LSTM on lfsm process samples.
As it has been said before, we cannot train the network on lfsm samples due to the lack of a fast generator at themoment.

This is why we use the network trained on fBm and fOU samples. For the evaluatory analysis, we chose our benchmark,
the LSTM network taught on 1600-long fBm samples in the span of 100 epochs. The evaluatory samples are generated by
the rlfst package of R. We choose 𝛼 from the range (1,2) with the values 1.8, 1.5, and 1.2. With these parameters, the lfsm
features LRD. As Figure 3 demonstrates, the LSTM network cannot properly detect the true Hurst parameter value, and
the higher the index of stability, the more LSTM underestimates it. To the contrary, the Higuchi method estimates the
Hurst exponent correctly, albeit with higher variance than in the case of fBm or fOU.
Even though the result concerning LSTM is negative, it is still valuable, as it points out the limitations of the described

setup and training when evaluating the fBm-trained network on lfsm samples.

3.3 The effects of training cycles and training sequence length

In what follows, we consider the estimation quality depending on the training and evaluation length of the series. To
better understand the sample-length dependence on the quality of learning, we refined the resolution. While keeping the
methodology unchanged, we included further series of lengths 800 and 3200 in the training and 100, 200, 800, and 3200
long series in the evaluation. As it is partially indicative of the other error types, we restrict the evaluation to the RMSE
only. The resulting errors are displayed in Table 2.
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12 BOROS et al.

TABLE 2 Root MSE losses of LSTM-based models trained on different sequence lengths.

Root MSE losses by evaluation seq. length
Training seq. length 100 200 400 800 1600 3200 6400
400 0.0691 0.0449 0.0307 0.0218 0.0168 0.0140 0.0127
800 0.0693 0.0447 0.0302 0.0210 0.0152 0.0116 0.0094
1600 0.0708 0.0459 0.0311 0.0211 0.0149 0.0106 0.0079
3200 0.0738 0.0472 0.0312 0.0213 0.0149 0.0105 0.0080
6400 0.0748 0.0480 0.0318 0.0217 0.0151 0.0110 0.0083

Abbreviation: MSE, mean squared error.

F IGURE 4 The changing of RMSE and MAE losses as training progresses. 25 epoch long training = blue, 50 epoch long training=coral,
100 epoch long training = green. MAE, mean absolute error; RMSE, root mean squared error.

Understandably, the performance is very weakwhen evaluated on the short series. Generally speaking, when trained on
shorter sequences, the performance of LSTM improves when tested on longer sequences but is slower than LSTM variants
trained on longer sequences. LSTM variants trained on longer sequences still performed well on shorter sequences but
not as well as dedicated variants. The differences in these cases are marginal, except for the very short series. The LSTM
trained on 1600-long samples has the best performance, hardly distinguishable from the LSTM of 3200-long samples.
However, training time is considerably less for the 1600-long, which is why we have chosen that setup as the reference.
Training on 6400-long sequences does not improve the RMSE loss; the network probably reached its limit of learning,
given the current architecture.
We analyzed the 1600-long fBm trajectory training, studying the loss dependence on training length in terms of the

spanned epochs. Figure 4 exhibits the loss changes during two series of 100, 50, and 25-long training, with MSE andMAE
loss function choices, respectively. AlthoughMSE is the loss function in the algorithm, we display the RMSE instead of the
MSE in the figure and use it in the comparisons because of the very smallMSE values. The graphs start from the 6th epoch.
In the first 5 epochs, the loss is still so high that it would suppress the visibility of the changes in the remaining training
epochs; hence, we omitted to display it. It is remarkable that the losses closely follow each other in independently started
network teachings. Shorter teaching losses simply follow the beginning part of longer teaching. By the 50th training, the
RMSE decreases to 95.1% that of the 25th training, and by the 100th training, it decreases significantly less, to 98.6% that of
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BOROS et al. 13

TABLE 3 Detailed data generation times for various processes and data sizes.

Process/Data size Time for 10,000 sequences (length 1600) Time for large data sets
fBm in Python 6–10 s N/A
fOU in Python 18–22 s N/A
lfsm in Python 80–85 min 250k: 8–9 min
lfsm in R 20–25 s 1250k: 43–45 min
Pre-generated data from R (lfsm) 250k 8–9 min

1250k 43–45 min
2500k 86–90 min

TABLE 4 Validation errors of LSTM when training it on mixed datasets containing fractional stable motion (lfsm) in 0 (i.e., no mixing),
0.1, and 0.5 proportions.

No lfsmmixed Proportion lfsm 0.1 Proportion lfsm 0.5
fBm fOU fBm fOU fBm fOU

RMSE 0.0149 0.0156 0.0325 0.0337 0.4087 0.4816
MAE 0.0117 0.0122 0.0244 0.0245 0.221 0.2552

Note: The evaluation was performed on fractional Brownian motions and fractional Ornstein–Uhlenbeck processes.
Abbreviations: fBm, fractional Brownian motion; fOU, fractional Ornstein–Uhlenbeck; MAE, mean absolute error; RMSE, root mean squared error.

the 50th training. At the 75th step, the RMSE is only 0.3% higher than the final RMSE loss. The same concerns the MAE
losses in the respective teachings. The actual MAE loss percentages are: 50th/25th= 95.5, 100th/50th= 97.5%. At the 80th
step, the MAE is only 0.5% higher than the final MAE loss. So, we may say that when using 1600-long fBm samples, there
is no practical indication to increase the teaching epoch numbers above the 80th. Nevertheless, we used the 100 epochs
in our analysis as the longest (and benchmark) teaching.

3.4 Training and evaluation on mixed data

In the context of our experiments involving the training of neural networks on time-series data generated from fBm,
fOU, and lfsm processes, we encountered significant challenges when including lfsm in the training datasets. Despite its
potential theoretical advantages, incorporating lfsm data did not yield the expected performance improvements. On the
contrary, it led to a degradation in model performance on fBm and fOU data.
Our training approach involved generating a substantial test set of 10,000 instances for each process, employing random

Hurst parameters. This was facilitated by the PyTorch framework, which allowed efficient data handling within Python.
Table 3 below illustrates the time required to generate this test data:
The significantly longer generation times for lfsm, especially in Python, highlight the computational challenge. Training

durations extendedmarkedly when lfsm data constituted a larger portion of the dataset. Specifically, training for 25 epochs
on a dataset with 10% lfsm content required around 23 hours, and with 50% lfsm, it extended to 48 h.
We even considered the rlfsm package in R for its faster data generation capabilities, conducting model fittings with

datasets containing varying proportions of lfsm to evaluate if improvements could be achieved under different conditions.
These extensive training periods were not justified by the results. Although there is an improvement in the Hurst esti-

mation for lfsm data, in particular for small stability parameters, it is still far from the accuracy of the Higuchi estimator.
Figure 5 illustrates these outcomes.
On the other hand, the accuracy of estimations for fBm and fOU processes worsened, thus leading to overall diminished

model efficacy. It is demonstrated in Table 4.
These findings strongly suggest that while lfsm may theoretically enrich a mixed training dataset, in practice, it

complicates training without significantly improving model accuracy, thereby necessitating further investigation into
more suitable architectural adjustments or alternative strategies. Additionally, issues with data conversion significantly
slowed down the training process, further contributing to its inefficiency and ineffectiveness. This highlights the need
for optimized data handling methods to improve training dynamics and potentially enhance model performance under
varying conditions.
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14 BOROS et al.

F IGURE 5 Generated versus estimated Hurst coefficients when the LSTM network is trained on a mixture of linear fractional stable
motion (lfsm) and fractional Brownian motion processes. The proportion of lfsm processes in the training set is either 0.1 or 0.5. LSTM, LSTM,
long short-term memory.

4 AN APPLICATION TO LI-ION BATTERY DEGRADATION

In our study, we utilized a dataset provided by the NASA Prognostics Center of Excellence, which includes experiments
on li-ion batteries involving charging and discharging at different temperatures and recording the impedance as the
damage criterion. The dataset is available at https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-
health/pcoe/pcoe-data-set-repository/.
We determined the capacity associatedwith the cycles, applying a 70% threshold as the criterion for battery degradation.

We present the obtained series in Figure 6. Our objective was to estimate the Hurst parameter of the process, assuming it
follows fBm, based on the obtained data series.
We use the madogram to estimate the fractal dimension 𝐷, returning a Hurst exponent estimate by 2 − 𝐷, and the

Higuchimethod for statistical benchmarking. Themadogram yielded a value of 0.8558, while theHiguchimethod resulted
in 0.6189.
In contrast, among our trained LSTMmodels, the best results frommodels trained on fBm samples were obtained from

the 100- and 200-long training length, which estimated Hurst parameter values of 0.9312 and 0.9641, respectively. In Sub-
section 3.3, we concluded that the best estimate can be achieved when the network is taught on the same length series
as the sample, for which to estimate the Hurst parameter. It may explain why the short training lengths provide the best
results in the sense of being closest to the benchmark. The closest result to the madogram estimation was obtained from
a model trained on a 200-length fOU process, with a value of 0.8294, and the 400-length fOU-trained network provided
0.7726 as the estimated Hurst parameter. The advantage of our approach is that we can also come up with confidence
intervals in terms of absolute deviation and relative error. For the 100-long fBm training, the 95% quantile of the abso-
lute errors is 0.1280, whereas for the 200-long fBm training, the same 95% quantile is 0.0875. Considering that the Hurst

 10991638, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/qre.3641 by M

T
A

 A
lfred R

enyi Institute of, W
iley O

nline L
ibrary on [17/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-health/pcoe/pcoe-data-set-repository/
https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-health/pcoe/pcoe-data-set-repository/


BOROS et al. 15

F IGURE 6 Capacity losses caused by structural degradation of li-ion batteries.

TABLE 5 Summary of Hurst parameter estimations and confidence intervals.

Method Hurst parameter estimate 95% Confidence interval
Madogram 0.8558 N/A
Higuchi 0.6189 N/A
LSTM (100-long fBm) 0.9312 (0.8032, 1)
LSTM (200-long fBm) 0.9641 (0.8361, 1)
LSTM (200-long fOU) 0.8294 (0.744, 0.9148)
LSTM (400-long fOU) 0.7726 (0.7114, 0.8338), (0.7047,0.8404)
Shao and Si Model 0.8 - 0.9 N/A
Liu, Song, and Zio Model (lfsm) ∼0.6 N/A

Abbreviations: fBm, fractional Brownian motion; fOU, fractional Ornstein–Uhlenbeck; LSTM, long short-term memory.

parameter is less than one, these quantiles produce 95% confidence intervals (0.8032,1) and (0.8361,1) for the two esti-
mations, respectively, both containing the madogram-based estimation. Turning to the fOU-trained LSTM estimates, the
absolute error’s 95% quantile is 0.0854 for the 200-long and 0.0612 for the 400-long training. These quantiles result in the
95% confidence intervals (0.744,0.9148) and (0.7114,0.8338) for the corresponding estimates, respectively. Considering rel-
ative errors, the 95% quantiles are far too large, being around 25%. The exception is the case of the 400-long fOU trained
network when the 95% relative error quantile localized around the 0.8 Hurst value is 8.78%. It results in a confidence inter-
val of (0.7047,0.8404). Summarizing, we may say that in all models, Hurst values between 0.8 and 0.83 belong to the 95%
confidence interval as can be seen in Table 5.
In Shao and Si,38 several results obtained values between 0.8 and 0.9 for the Hurst parameter estimation using their

model, whichwas defined as𝑑𝑋(𝑡) = 𝜇𝑑𝑡 + 𝜎𝐵𝐻(𝑡), where𝑋(𝑡) represents the degradation process. Thisway, they assume
a linear trend in the process. When modeling by fOU, as we did by applying the fOU-trained network, we introduce a
trend of exponential (and random) characters that may play a similar role to the linear one. That may explain why ours
and their estimations of the Hurst parameter are close to each other. Remark for clarity that the fOU used in the modeling
is not stationary.
In Liu, Song, and Zio,1 an lfsm, called by them as fractional Lévy stable motion, was applied for modeling the degra-

dation of lithium-ion batteries, where the Hurst parameter estimation yielded values around 0.6, aligning closely with
our Higuchi estimation. The 𝛼 parameter value in their modeling was consistently around 1.8–1.9. Given that the LSTM
estimator does not perform satisfactorily in the lfsm case, there is no controversy in our and their findings. Note the
well-known fact that when 𝛼 = 2, the lsfm process reduces to an fBm.
Both articles focused on modeling the degradation of lithium-ion batteries, similar to our study, providing valuable

insights and benchmarks for our analysis.
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TABLE 6 MSE losses of different Hurst-estimators for fractional Brownian motion by sequence length.

MSE loss (×𝟏𝟎−𝟑)
seq. len. 𝑴SI

LSTM DeeperSigNetSD 𝑴SD
LSTM

100 4.07 N/A (Error) 𝟎.𝟐𝟏𝟒

200 1.91 N/A (Error) 𝟎.𝟎𝟖𝟐𝟔

400 0.917 0.131 𝟎.𝟎𝟑𝟔𝟔

800 0.453 0.0870 𝟎.𝟎𝟏𝟒𝟏

1600 0.224 0.199 (ep 34/100) 𝟎.𝟎𝟎𝟕𝟏𝟓

3200 0.114 2.02 (ep 8/100) 𝟎.𝟎𝟎𝟑𝟕𝟑

6400 0.0579 54.2 (ep 1.75/100) 𝟎.𝟎𝟎𝟔𝟒𝟔

12, 800 0.0297 87.5 (ep 0/100) 𝟎.𝟎𝟎𝟑𝟏𝟖 (ep 37/100)

Note: “SI” indicates scale-invariant models, “SD” indicates non-scale-invariant models.
Abbreviations: ep, epoch; LSTM, long short-term memory; MSE, mean squared error.

5 CONCLUSIONS

Our research demonstrates that a neural network with a standard architecture, when trained with a substantial volume of
data, significantly outperforms traditional statistical estimators in both accuracy and speed for estimating process param-
eters, provided it is trained on appropriate process types. The application of various machine learning methods may also
be considered as, for example, in ref. [39] but our research primarily focused on the applicability within the realm of neu-
ral networks. Consequently, we decided not to include these methods in our current analysis. However, skewness in the
data can adversely affect the accuracy of the deep learning estimator, particularly in scenarios involving rare but signifi-
cant losses or risks, as highlighted by the error quantiles. Despite the overall high performance, the relative errors in the
estimations can still be considerable under certain parameter configurations.
The training phase of the neural network may extend to several hours, but the estimation time remains significantly

lower – by one or two orders ofmagnitude – compared to conventionalmethods. In terms of cross-process applicability, the
network trained on fBm data also shows commendable performance when applied to fOU processes, but its effectiveness
is reduced for fractional Lévy stable motions.
Our research is dedicated to exploring and comparing these two methodologies, with a particular focus on the fBm and

fOUmodels. We concentrate on estimating the critical parameters within these frameworks and have observed that these
estimations are not directly transferable to the alternative lfsm framework. This insight underscores the distinct nature
of each modeling approach and highlights the necessity of tailoring the analytical methods to the specific characteristics
and challenges of the data involved in battery degradation.
The methodology is applied to estimating the Hurst parameter in li-ion battery degradation data. The obtained

confidence bounds conform with the findings of previously published research.
The proposedmethodology, which includes the integration of lfsm, reveals certain limitations under specific conditions,

particularly in terms of the reliability of the estimates when the underlying process structures are altered or when the
driving noise is not fBm. These findings suggest that the methodology might not only fail to maintain the same level of
estimation reliability as observed with fBm and fOU processes but also struggles with fitting even within fBm models
under less-than-ideal conditions. Therefore, while the network can perform effectively under certain specific conditions,
its ability to generalize across diverse scenarios, especially those involving non-fBm noise types or imperfect fits within
fBmmodels, is limited. This points to a need for caution when applying this methodology to processes driven by different
types of noise or also when the fit of fBm-driven models are weak.
Our results suggest that transforming the evaluation data can lead to impractical slowdowns in the estimation process,

indicating that approaches like signature transform or certain transformer classes may not be promising alternatives.
However, the current introduction of the iTransformer40 offers a promising alternative. The iTransformer inverts the
duties of the attentionmechanism and the feed-forward network, focusing on embedding individual time series as variate
tokens to capturemultivariate correlations effectively. The iTransformer’s ability to handlemultivariate correlationsmakes
it a highly viable and efficient backbone for time series forecasting, addressing the limitations of traditional Transformer-
based forecasters. Therefore, we intend to exploit its novel capabilities in our further research.
However, the deep signature transforms22 emerge as a promising solution in scenarios where scale invariance is not

a primary concern, offering more accurate results compared to the models we evaluated. The trade-off here is the lack
of scale invariance and significantly longer training times for extended sequences, which is a critical consideration. To
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illustrate this point, we present a comparative table showcasing the performance differences between deep signature
transforms and the models previously discussed.
Table 6 presents themean squared error (MSE) losses of various fBmHurst estimators across different sequence lengths.

It is evident that scale-invariant models, such as 𝑀SI
LSTM, generally exhibit higher MSE losses as the sequence length

increases, whereas non-scale invariant models, particularly𝑀SD
LSTM, demonstrate significantly lower losses, indicating bet-

ter performance. Notably, the DeeperSigNetSD model failed to produce results (Error) in several instances, and where it
did provide results, the losses were substantially higher, especially for longer sequences.
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