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H-1111 Budapest, Hungary

* Correspondence: biro.laszlo@ek.hun-ren.hu

Abstract: Colloidal Cu2O nanoparticles can exhibit both photocatalytic activity under visible light
illumination and resonant Mie scattering, but, for their practical application, they have to be im-
mobilized on a substrate. Butterfly wings, with complex hierarchical photonic nanoarchitectures,
constitute a promising substrate for the immobilization of nanoparticles and for the tuning of their
optical properties. The native wax layer covering the wing scales of Polyommatus icarus butterflies
was removed by simple ethanol pretreatment prior to the deposition of Cu2O nanoparticles, which
allowed reproducible deposition on the dorsal blue wing scale nanoarchitectures via drop casting.
The samples were investigated by optical and electron microscopy, attenuated total reflectance in-
frared spectroscopy, UV–visible spectrophotometry, microspectrophotometry, and hyperspectral
spectrophotometry. It was found that the Cu2O nanoparticles integrated well into the photonic
nanoarchitecture of the P. icarus wing scales, they exhibited Mie resonance on the glass slides, and
the spectral signature of this resonance was absent on Si(100). A novel bio-nanohybrid photonic
nanoarchitecture was produced in which the spectral properties of the butterfly wings were tuned by
the Cu2O nanoparticles and their backscattering due to the Mie resonance was suppressed despite
the low refractive index of the chitinous substrate.

Keywords: bio-nanohybrid; photonic nanostructure; butterfly wing; epicuticular wax; Cu2O nanopar-
ticles; UV–visible spectroscopy; n-alkane

1. Introduction

The use of the abundantly available solar radiation to fulfill various needs of human
civilization is gaining increasing attention. Photovoltaic power generation [1–4], plas-
monics [4–9], metasurfaces [10,11], and photocatalysis [12–15] are just a few intensively
investigated methods that may help in solving some of the serious environmental chal-
lenges facing humanity. The common point in these processes is the transfer of energy
between electromagnetic radiation and matter. This transfer may be based on chemical
or physical processes or their combination, as in the case of heterogenous photocatalysis,
where the energy of light is converted directly into the desired chemical modifications
by photogenerated charge carriers and/or locally enhanced electromagnetic fields on the
surfaces of photonic crystals or plasmonic nanoparticles [16]. The efficiency of the photo-
catalytic process can be increased by exploiting the slow light effects taking place at the
surfaces of photonic crystal-type nanoarchitectures [17,18]. The energy transfer between
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light and the photocatalytic surface site can be enhanced by the incorporation of plasmonic
nanoparticles in photonic nanoarchitectures [16] or by applying a thin, conformal semi-
conductor coating of ZnO, TiO2, etc., onto the surface of the photonic nanoarchitecture,
the latter of which do not inherently possess photocatalytic properties [19,20]. In a recent
paper, we reported the enhancement of the photocatalytic activity of ZnO-coated butterfly
wings when Cu2O nanoparticles were deposited on conformally coated wings [21]. On the
other hand, it was found that the deposition of the Cu2O nanoparticles on uncoated wings
did not improve, but, on the contrary, slightly decreased the photocatalytic activity. The
more detailed investigation of the interaction of the biologic photonic nanoarchitecture and
the Cu2O nanoparticles may bring useful information in understanding this.

Cu2O semiconductor nanoparticles are interesting because they have photocatalytic
activity [22], display size-dependent optical properties [23], act as colloidal Mie resonators
and generate a physical color even in the absence of ordering [24], and may exhibit high
Rydberg states, associated with extreme sensitivity to the local environment [25]. Cu2O
is an attractive material for large-scale solar energy conversion at a low cost, due to the
abundant nature of copper and oxygen and the suitable bandgap for the absorption of
visible light [26], as well as the effective, less energy-intensive synthesis processes [27]. The
integration of such nanoparticles into photonic nanoarchitectures may present multiple
routes to enhance the efficiency of the light–matter interaction. The high-index resonant
dielectric nanostructures form building blocks for novel photonic nanoarchitectures with
low losses and advanced functionalities [28]. Cu2O nanoparticles can be synthesized with a
controlled shape and size in an aqueous environment [29] and can be stored for a long time
when dispersed in ethanol [23]. For practical applications, Cu2O nanoparticles have to be
immobilized on a certain substrate. Butterfly wings, with a structural color and intricate
surface structures from the nanometer to centimeter scale [30–33], are particularly well
suited for this purpose [21,34]. In our earlier work, we successfully confirmed that the
Cu2O nanoparticles—after being deposited on butterfly wings—could withstand 2 h of
stirring without being washed away during photodegradation measurements [21]. The
structural color of butterflies, which is used most frequently in sexual communication, has
remarkable stability both in time and over large geographical distances [35–37]. Therefore,
by breeding butterflies under controlled conditions [37], one may obtain large numbers of
photonic crystal-type samples with uniform structural and optical properties in a cheap
and environmentally friendly way. This is a similar approach to the traditional production
technology of natural silk by domesticated Bombyx mori moths [38,39]. Nowadays, this
technology produces several thousands of tons of natural silk; its worldwide production in
2021 amounted to 86,311 tons [40].

Butterfly wings are superhydrophobic [41–44]. This property arises, on one hand, from
the micro- and nanoscale morphology of the wing scales and from the native wax layer
covering the insect exocuticle, constituted mainly by n-alkanes [45–48]. The solid n-alkanes
with carbon atom numbers from 20 to 44 are soluble in ethanol at room temperature [49];
moreover, their solubility has a strong temperature dependence [49,50]. Therefore, the
presence of the wax in butterfly wing scales may influence the outcomes of nanoparticle
deposition from ethanol-based solutions. Understanding the temperature dependence of
the wax removal process helps in achieving more reliable sample preparation.

This paper focuses on the preparation of 3D hybrid nanoarchitectures consisting of a
bio-based template and Cu2O nanoparticles. We investigated the dissolution of the wax
present in the wing scales of male Polyommatus icarus butterflies and the possibility of the
removal of the wax prior to the deposition of the Cu2O nanoparticles, and we compared the
optical properties of the nanoparticles deposited on butterfly wings, glass slides, and Si(100)
single crystals. The glass and Si substrates were used as a comparison to the butterfly
wing (nchitin = 1.56), using one insulator with a low refractive index (nglass = 1.5) and a
semiconductor with a high refractive index (nSi = 3.4).
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2. Materials and Methods
2.1. Materials

The blue wings of Common Blue male butterflies, Polyommatus icarus (Rottemburg,
1775) (Arthropoda: Insecta: Lepidoptera: Lycaenidae), were used in this study. This butter-
fly species is not subjected to any restrictions. The range of the species covers the entire
Palearctic region [51], and, recently, their presence was reported in the Nearctic too [52].
Their structural color variation in a given local population is limited to ±10 nm [53], while
a spectral difference in the order of only 20 nm can be found between specimens originat-
ing from Europe and Asia [35,36]. The structural color is also resilient to environmental
influences, which facilitates the laboratory breeding of the species [37]. The samples used
in this study were bred in a custom-made insectarium [37].

For the octahedral Cu2O nanoparticles, slight modifications and upscaling were ap-
plied in a recently published protocol [54]. Briefly, 1 mL Cu(NO3)2 solution (0.1 M) was
added to 91.8 mL ultrapure water in a Schott glass and stirred for several minutes. Upon
introducing the base solution (200 µL of 1 M NaOH), the solution turned light blue due
to the formation of Cu(OH)2, which was reduced by the swift addition of a hydrazine
solution (3 mL, 0.2 M) under vigorous stirring. The solution turned orange within the first
minute, and the growth proceeded for 10 min. The particles were collected and washed
via centrifugation and redispersion with ethanol–water mixtures (50:50 V/V%), and the
Cu2O nanoparticles were redispersed in 105 mL of absolute ethanol. The stock solution was
prepared by redispersing the washed particles in 10 mL of absolute ethanol. Then, from this
solution, 796 µL was diluted to 10 mL with absolute ethanol to reach a Cu2O concentration
of 0.045 M. This latter solution was drop-cast on the wings. The Cu2O nano-octahedra
were derived from the same batch as the ones used in ref. [21] and had a base edge length
of 136 ± 12 nm. The SEM, TEM and XRD characterization of the nanoparticles and their
measured optical extinction spectra were reported in refs. [21,23].

2.2. Sample Preparation

The sample preparation followed the same general outline as used in ref. [21], with
a major difference being that the original PTFE frames were replaced with glass frames
and a new high-temperature wax removal procedure described below was applied. The
samples were prepared after removing all four wings from the body of the dried butterfly
specimen. The wings were fixed onto glass slides using a very thin layer of poly(methyl
methacrylate) (PMMA) and were left to dry overnight. Their reflectance spectra were
measured the next day using an integrating sphere setup. After the measurement, two
different treatments were applied with absolute ethanol (≥99.8%, AnalaR Normapur, VWR
Chemicals, Radnor, PA, USA) to remove the epicuticular waxes from the surface of the
photonic nanoarchitecture: overnight soaking (~16 h) at room temperature (ETA) or 8 h
soaking at 50 ◦C (ETA50).

The Cu2O sol was used to prepare samples on clean butterfly wings by drop casting.
PDMS rings (silicone sealing ring for GL threads (16 × 8 mm), DWK Life Sciences, Mainz,
Germany) were pressed mechanically onto the surface of the glass-mounted wing to avoid
the leakage of the sol, similar to the procedure used in ref. [55]. We used 120 µL of the
sol introduced in the 8-mm-diameter central opening of the ring, measured with a Biohit
Proline (Biohit Healthcare Ltd., Helsinki, Finland) automatic pipette. The samples were left
to dry overnight; then, the PDMS rings were removed, and the samples were characterized.
Glass and Si samples were prepared using the above-mentioned protocol.

2.3. Microscopy

The presented optical micrographs and images with an extended depth of focus (EDF)
were obtained using a Zeiss Axio Imager A1 (Carl Zeiss AG, Jena, Germany) and a Nikon
Eclipse LV150N (Nikon Instruments, Tokyo, Japan), respectively.

For scanning electron microscope inspection, wing pieces of a few mm2 were cut
and fixed on metallic sample holder stubs with conductive tape. In order to maintain the
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original state of the samples, no other treatment was applied. Images were taken using a
Scios 2 DualBeam (Thermo Fisher Scientific, Waltham, MA, USA) device.

Cross-sections of the wings used for TEM examination were prepared first by embed-
ding the pieces of the wings in a specific resin (EMbed 812, Electron Microscopy Sciences,
Hatfield, PA, USA). These samples were then cut into 70-nm-thick sections with an ultrami-
crotome and transferred to copper grids. The sections were examined using a TECNAI 10
(FEI Company, Hillsboro, OR, USA) transmission electron microscope.

2.4. Spectroscopy

Attenuated total reflectance spectra were taken by a Bruker Vertex 80 (Bruker Corpo-
ration, Billerica, MA, USA) Fourier-transform spectrometer using a multibounce (45 reflec-
tions) KRS5 ATR crystal. The solutions were drop-cast on the surface of the ATR crystal
and allowed to dry at room temperature. For each measurement, 128 scans with a 4 cm−1

spectral resolution were taken. The resulting ATR intensities were converted to absorbance
and baseline-corrected.

Reflectance spectroscopy measurements were conducted using an Avantes (Avantes
BV, Apeldoorn, The Netherlands) modular fiber-optic system consisting of a high-sensitivity
spectrophotometer (AvaSpec-HSC1024x58TEC-EVO), a stabilized deuterium–halogen light
source (AvaLight-DH-S-BAL), an integrating sphere (AvaSphere-30-REFL), and a white
diffuse tile (WS-2) as a reference. Microspectrophotometry was conducted using the
above-mentioned setup supplemented with a custom-made adapter tube, which allowed
the attachment of the spectrophotometer to the 100× objective (LD C Epiplan-Neofluar
100×/0.75, FWD = 4.0 mm, Carl Zeiss AG, Jena, Germany) of a Zeiss Axio Imager A1
optical microscope.

For hyperspectral imaging, we used a custom-made setup consisting of an Optics
Focus (Beijing, China) Motorized XY-Axis Stage and Avantes normal-incidence bifurcated
fiber-optic probe (FCR-7UV200-ME-SR). A custom LabView (Austin, TX, USA) application
was used to synchronize the movement of the stage and for the storage of the data from
the spectrometer. A detailed description of the setup can be found in ref. [56]. Due to
the angular dependence of the reflectance on the local incident angle when using the
normal-incidence probe of the fiber-optic spectrometer to carry out the hyperspectral
measurements, the measured reflectance values exhibited a larger standard deviation as
compared to integrating sphere measurements.

3. Results
3.1. Structure of Dorsal Wing Surface and Cover Scales of Male P. icarus Butterflies

The dorsal wing surface color of the male P. icarus butterfly—as in the case of many
other Lycaenid males—is dominantly and uniformly blue–violet [53]. When examined with
an optical microscope, one may observe three types of scales (Figure 1a): (i) the upper layer
of blue-colored cover scales; (ii) the dark brown ground scales below them; and (iii) the
androconia, which are better seen in the low-magnification scanning electron microscopy
image (Figure 1b–d). Gradually increasing the SEM magnification (Figure 1b–f) reveals the
details of the photonic nanoarchitecture. Cross-sectional transmission electron microscopy
through these scales shows that the photonic nanoarchitecture has a complex 3D structure
(Figure 2), responsible for the blue color: the proper spacing of the chitinous layers of the
nanoporous multilayer structure reflects light primarily in the 300–500 nm wavelength
range [53].
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Figure 1. Photonic nanoarchitecture in the blue dorsal wing scales of a male Polyommatus icarus but-
terfly. (a) Optical microscope image of the wing scales; (b–f) SEM images showing the details of the 
photonic nanoarchitecture in increasing magnification steps; (b) overview of the scales on the dorsal 
wing surface; (c) detailed view of the three types of scales on the dorsal wing surface; (d) the blue 
color generating cover scales; (e) the blue color generating photonic nanoarchitecture; (f) a high-
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Figure 2. Cross-sectional transmission electron microscope image of a male P. icarus cover scale. The 
photonic nanoarchitecture with a complex 3D structure can be seen in the lumen of the scale. 

Figure 1. Photonic nanoarchitecture in the blue dorsal wing scales of a male Polyommatus icarus
butterfly. (a) Optical microscope image of the wing scales; (b–f) SEM images showing the details
of the photonic nanoarchitecture in increasing magnification steps; (b) overview of the scales on
the dorsal wing surface; (c) detailed view of the three types of scales on the dorsal wing surface;
(d) the blue color generating cover scales; (e) the blue color generating photonic nanoarchitecture;
(f) a high-magnification detail of the blue color generating photonic nanoarchitecture.
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3.2. Wax Dissolution in Ethanol and Acetone

The four wings of three male P. icarus butterflies were detached from the bodies of the
insects and soaked in acetone for 5 days at room temperature. A similar procedure was
applied using ethanol to another three males and three females to determine any possible
chemical composition differences between the sexes. The ethanol and acetone solutions
were dried, and the residues were investigated by attenuated total reflectance infrared
(ATR-IR) spectroscopy. The spectra in Figure 3, compared to the spectra of n-alkanes C22H46
(docosane) and C44H90 (tetratetracontane), clearly show that indeed the wings are covered
by a thin wax layer constituted of such n-alkanes.
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3.3. Optical Effect of Wax Removal

As the optical properties of photonic nanoarchitectures are very sensitive to the ad-
dition or subtraction of constituents, we investigated the effect of wax removal on the
reflectance of the blue butterfly wings. Two different ethanol-based wax removal proce-
dures were tested: overnight soaking (~16 h) at room temperature (ETA) and 8 h soaking
at 50 ◦C (ETA50). Figure 4 shows the reflectance modification averaged over 40 wings
(10 butterflies × 4 wings). The individual spectra and their statistical evaluations are given
in Figure S1. The effect of the removal of the wax layer can be clearly identified, while the
nature of the effect is dependent on the temperature at which the ethanol treatment of the
wings is carried out (room temperature or 50 ◦C).
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P. icarus males: in pristine state, after ETA treatment, and after ETA50 treatment.



Materials 2024, 17, 4575 7 of 17

3.4. Hyperspectral Characterization

Hyperspectral imaging was carried out on the four wings of a male P. icarus individual
before and after the ETA or ETA50 treatment. Peak wavelength maps were generated from
the reflectance measured at each point, and peak wavelength histograms were calculated
from these, as shown in Figure 5. In agreement with the spectral measurements carried out
using the integrating sphere, the ETA50 treatment (Figure 5d) was more effective for the
removal of the wax from the wings compared to the room-temperature ethanol treatment
(Figure 5c), resulting in homogeneous wing surfaces with less variability in structural color.
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Figure 5. Hyperspectral reflectance characterization of the wings of a male P. icarus butterfly after
different ethanol treatments. False color images of reflectance peak wavelengths of (a,b) wings before
ETA or ETA50 treatment. False color images of reflectance peak wavelengths of wings after (c) ETA
or (d) ETA50 treatment. The color scale on the right-hand side applies for all panels of the image.
Histograms of reflectance peak wavelength measured on (e,f) wings before and wings after (g) ETA
or (h) ETA50 treatment were calculated.

3.5. Ethanol Dissolution of an n-Alkane Mixture

The same n-alkanes, C22H46 and C44H90—as used for the ATR-IR measurements—were
mixed in equal amounts, molten, and drop-cast onto glass slides. After solidification, the
samples were subjected to the ETA or ETA50 treatment, followed by optical microscopic
examination (Figure S2). The microscope images clearly showed that the ETA50 treatment
removed significantly more of the wax mixture as compared to the ETA treatment.

3.6. Cu2O Deposition on Butterfly Wings

The characterized Cu2O nanoparticles originated from the same batch as the ones
used in ref. [21] and reported in refs. [21,23]. The drop casting of the Cu2O nanoparticle
sol was carried out after wax removal via the ETA or ETA50 treatment from the individual
butterfly wings fixed onto glass slides. The SEM images of the wing cover scales show
the deposited nanoparticles, which can penetrate the topmost nanoporous layers of the
photonic nanoarchitecture (Figure 6a,b).
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Figure 6. SEM images of the cover scales of a P. icarus wing after drop casting Cu2O nanoparticle sol.
The deposited Cu2O nanoparticles can be seen (a) on the surface and (b) inside the upper layers of
the photonic nanoarchitecture.

The reflectance spectra measured on the Cu2O nanoparticle-deposited wings after ETA
or ETA50 pretreatment can be seen in Figure 7a,b. For comparison, the same amount of
pure ethanol was deposited also on an untreated wing as a control sample (Figure 7c). As is
shown in Figure 7, both the ETA and ETA50 treatments, similarly to the results presented in
Figure 5, caused an increase in the reflectance amplitude and a shift in the peak towards UV.
The subsequent deposition of the Cu2O nanoparticles redshifts the reflectance maximum,
and this effect is dependent on the removal degree of the native wax layer. When no wax
removal occurred prior to the deposition of the Cu2O NP sol, the structural color change
was difficult to separate from the effect of pure ethanol deposition.
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Figure 7. Reflectance spectra of P. icarus wings in glass-mounted state, after ethanol pretreatment,
and after application of 120 µL of Cu2O nanoparticle sol. (a) ETA50, (b) ETA, and (c) no pretreatment
wings are shown. In all panels, the red curve reflects the application of 120 µL pure ethanol on an
untreated butterfly wing.

3.7. Cu2O Deposition on Glass and Si(100)

To test the effects of different substrates on the optical properties of the deposited
Cu2O nanoparticles, the same sol in the same amounts as used for the butterfly wings was
drop-cast on microscope glass slides and Si(100) single crystals. Reflectance measurements
were carried out using the same setup and similar conditions as used for the butterfly wings,
while the relative reflectance spectra were calculated using the glass/Si(100) substrate as a
reference (Figure 8).
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Figure 8. Integrating sphere reflectance spectra of Cu2O nanoparticles as measured with respect to
the substrate. The clean glass or Si(100) surface was taken as a reference.

The distribution of the nanoparticles was similar on flat substrates, glass, and Si. One
may observe both single or a few particles and large clusters of nanoparticles (Figure S3).
The single particles have a bluish green color on glass, whereas, on Si(100), all nanoparticles
have a dark orange color. These observations are confirmed by the microspectrophotometry
measurements in Figure S3c,g. One has to emphasize here that, in the case of macroscopic
reflectance measurement with an integrating sphere, all reflected light is collected from
the upper hemisphere, while the 100× objective of the microscope used in the microspec-
trophotometry measurement collects the light only from a limited angular range. Despite
this, the two types of measurements are qualitatively similar. The large clusters appear
in an orange or dark brown color on glass (optical micrograph in Figure S3b, reflectance
measured with the microspectrophotometer in Figure S3d) and on Si(100) (Figure S3f,h).
Even the microspectrophotometry spectra of the large clusters on glass exhibit a small peak
at around 500 nm (corresponding to the resonant Mie scattering of the nanoparticles), but
this has a much smaller amplitude than the plateau over 200% in the range of 625 nm to
700 nm (corresponding to the orange color of the large aggregates).

To test whether the observed difference between the glass and Si(100) substrates was
related to the particular imaging conditions used in the microspectrophotometry setup,
images were acquired using a focus stacking microscope too. The micrographs are shown
in Figure 9; one may observe that the Cu2O nanoparticles and small clusters have a bluish
green color on glass, whereas, on Si(100), they are brown–orange. The large clusters on
both substrates have an orange color. The observed colors are in good agreement with the
measured spectra in Figure 8 and Figure S3.



Materials 2024, 17, 4575 10 of 17Materials 2024, 17, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 9. Focus stacking optical micrographs taken from Cu2O nanoparticles on (a,b) glass and on 
(c,d) Si(100). Note that, in (a,c), single particles and small clusters are visible, while, in (b,d), large 
clusters are also present. On glass, the small clusters clearly show a bluish green color, in good 
correspondence with the reflectance peak measured around 500 nm. 

3.8. Optical Microscopy and Microspectrophotometry of BuĴerfly Wings with Deposited 
Nanoparticles 

The wing scales of an ETA50 sample with the deposited Cu2O nanoparticles were 
investigated using the same microspectrophotometry setup as used for the glass and the 
Si(100) samples (Figure 10). Three individual spectra are given for small particles and 
large clusters, in all of which the pristine wing was taken as a reference. Micrographs of 
pristine wing scales, of a small particle on a wing scale, and of a large Cu2O cluster on a 
scale are given. Neither the spectra taken on small particles nor those taken on large clus-
ters show similar peaks as measured macroscopically with an integrating sphere for Cu2O 
on glass over an area corresponding to a circle with a 6 mm diameter (Figure 8) or with 
the microspectrophotometer for small particles (Figure S3a,b). 

Figure 9. Focus stacking optical micrographs taken from Cu2O nanoparticles on (a,b) glass and on
(c,d) Si(100). Note that, in (a,c), single particles and small clusters are visible, while, in (b,d), large
clusters are also present. On glass, the small clusters clearly show a bluish green color, in good
correspondence with the reflectance peak measured around 500 nm.

3.8. Optical Microscopy and Microspectrophotometry of Butterfly Wings with Deposited
Nanoparticles

The wing scales of an ETA50 sample with the deposited Cu2O nanoparticles were
investigated using the same microspectrophotometry setup as used for the glass and the
Si(100) samples (Figure 10). Three individual spectra are given for small particles and large
clusters, in all of which the pristine wing was taken as a reference. Micrographs of pristine
wing scales, of a small particle on a wing scale, and of a large Cu2O cluster on a scale
are given. Neither the spectra taken on small particles nor those taken on large clusters
show similar peaks as measured macroscopically with an integrating sphere for Cu2O on
glass over an area corresponding to a circle with a 6 mm diameter (Figure 8) or with the
microspectrophotometer for small particles (Figure S3a,b).
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Figure 10. Optical micrographs and microspectroscopy reflectance measurements of Cu2O nanopar-
ticles on male P. icarus butterfly wing scales. (a) Pristine butterfly wing scale that was taken as a
reference for the microspectroscopy of (d,e). (b) Micrograph of a small cluster of Cu2O nanoparticles.
(c) Micrograph of a large cluster of Cu2O nanoparticles. (d) Reflectance spectra acquired on three
similar small clusters as seen in (b). (e) Those acquired on three large clusters as in (c).

4. Discussion
4.1. Photonic Nanoarchitectures of P. icarus Butterflies

The photonic nanoarchitectures of male P. icarus butterflies are reproduced generation
by generation with a very high degree of stability [35–37], because they play an important
role in prezygotic sexual communication [53]. This makes them a very suitable platform
for experiments where a large number of samples with optical properties within a narrow
range of variation are needed, or even for large-scale applications if laboratory breeding
is implemented [37]. We explored the conditions suitable for the integration of Cu2O
plasmonic Mie resonators into the photonic nanoarchitectures of butterfly wings. Our
work was motivated by the possibility of using such bio-hybrid nanoarchitectures in
photocatalysis applied for water remediation [21]. Cu2O nanoparticles are intensively
studied for photocatalytic applications [22,57,58]. In order to be used for water remediation
applications, they have to be immobilized on a substrate, preserving their photocatalytic
properties. The hierarchical structure of butterfly wings (Figures 1 and 2), from tens of
nanometers to tens of millimeters, may constitute a cheap and environmentally friendly
solution to this problem. Beyond the advantage of the hierarchical structure, a further
benefit may arise from the structural color present on the wings of many butterfly species,
such as the males of P. icarus. The photonic nanoarchitectures of this species have many
similarities to so-called photonic balls [59]. These are spheres that are tens of micrometers in
diameter, containing assemblies of nanoparticles and nanopores with spacing comparable
to the wavelength of light. The disordered but still correlated nanostructured building
elements generate a structural color with a reduced angular dependence by a very similar
mechanism to that used in the wing scales of P. icarus males. In model calculations [59], the
high refractive index value of 1.52 and the low index value of 1 for air fit well with the case
of chitin and air in butterflies (nchitin = 1.56 [60,61]).

4.2. Wax Removal

The first modification step performed on the butterfly wings, the removal of the wax
layer, has the effect that one may expect with the removal of the thin film that coats the
photonic nanoarchitecture conformally: the blueshift of the main reflectance peak. The
presence of the wax constituted by n-alkanes is clearly shown in the ATR-IR results in
Figure 3. A difference in the composition of the ethanol or acetone extract of the wings
was found between the males and females, which may be attributed to the presence of
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androconia on the wings of the males (Figure 1), responsible for the release of pheromones
during courtship to attract females [62]. The androconia are absent from the wings of the
females, while they have the same wax coverage as the males.

When comparing the ETA and ETA50 treatments (Figures 4 and 5), one finds that
the ETA50 treatment is more effective and reliable. This is a consequence of the strong
temperature variation in the solubility of the n-alkanes in ethanol [49,50]. As the dissolution
of the artificial wax layers shows in Figure S2, for the same wax layer, the ETA50 treatment
was more effective in removing the wax coverage. The hyperspectral data in Figure 5
clearly support the same behavior for the butterfly wings too.

If the removal of the wax layer is not performed, then the overall effect of the appli-
cation of Cu2O nanoparticles dispersed in ethanol would originate from two sources: the
modification induced by ethanol alone and the modifications produced by the deposited
Cu2O nanoparticles. The clear separation of the two effects may not be straightforward
(Figure 6).

4.3. Cu2O Deposition on Butterfly Wings

The deposition of Cu2O nanoparticles decreases the amplitude of the reflectance maxi-
mum and redshifts the peak (Figure 7). Using the absorbance of the Cu2O nanoparticle sol
from ref. [23], one can calculate the transmittance of a sparsely deposited Cu2O nanoparticle
thin film (Figure S4a). The illuminating light has first to cross the Cu2O layer in order to
interact with the photonic nanoarchitecture of the wing. Using the calculated transmittance
of Cu2O NPs, the expected modification on the reflectance of the butterfly wing with the
Cu2O nanoparticles can be estimated (Figure S4b,c) for the ETA50 wing. The differences
in the measured and calculated curves in the region of the reflectance maximum of the
P. icarus wing show that the behavior of the nanohybrid photonic nanoarchitecture is clearly
different from that of a “wing + thin film filter”-type structure, as no peak shift was found
at the calculated reflectance, while Cu2O nanoparticle deposition resulted in the redshift of
the main reflectance peak. These findings are consistent with our recent results [55], where
in situ grown Au nanoparticles integrated inside a photonic nanoarchitecture induced a
redshift to the reflectance peak, while the physical vapor deposition of a Au thin film only
showed “filter”-type behavior with the reduction of the peak amplitude.

The integration of the Cu2O nanoparticles in the photonic nanoarchitecture of the
ethanol-pretreated wings (Figure 6) and the untreated wing was compared to the effect of
the same amount of pure ethanol applied under identical conditions as in the nanoparticle
sols (Figure 7). The main effect of the application of pure ethanol is the redshift of the
reflectance maximum of the pristine wing, with an almost negligible reduction in the
amplitude and an alteration in the shape of the reflectance maximum. These effects are
attributed to the dissolution of the native wax layer and its redistribution in the deep pores
of the photonic nanoarchitecture upon the evaporation of the solvent. To avoid this effect,
the wax layer must be removed prior to the application of the ethanol-based sol. If this
is not conducted beforehand, the modifications induced in the spectra have two sources:
(i) the effect of the ethanol alone and (ii) the effect produced by the presence of the Cu2O
nanoparticles (Figure 7).

4.4. Cu2O Deposition on Glass and Si(100)

The same amounts of nanoparticle sols as used for the butterfly wings under identical
conditions were deposited on glass slides and p-type Si(100) wafers using PDMS rings
with an inner diameter of 8 mm. The samples were evaluated using reflectance spectropho-
tometry, where clean pieces of substrates were used as references (Figure 9). While, on the
glass substrate, a clear reflectance peak is found at 500 nm (Figure S3c), on the Si substrate
(Figure S3g), no such peak appears. At wavelengths between 600 nm and 800 nm, both
samples exhibit similar reflectance amplitude values. This range corresponds to the orange
color of the bulk Cu2O [63,64].
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Cu2O nanoparticles are known to be excellent Mie resonators [24]. Unlike the surface
plasmon resonance of metal nanoparticles, which consists mainly of electric multipolar
modes, high-refractive-index dielectric nanoparticles possess magnetic multipole modes,
as well as electric ones [65]. Ohmic losses and the resultant heating in plasmonic metal
nanoparticles can be avoided in dielectric Mie resonators. Another exciting feature is the
possibility to tune their far-field scattering by choosing different substrates or particles of
different sizes [66]. For example, the peak wavelength of a Si nanoparticle on a silica, Si,
Au, or Al substrate can vary from 450 nm to 700 nm; the intensity of the scattered light can
vary by a factor of ten [65]; and, depending on their size, the scattered peak wavelength
of Cu2O nanoparticles can change from 450 nm to 650 nm [67]. In our experiment, Cu2O
nanoparticles with a well-controlled size and octahedral shape [23] were integrated into a
photonic nanoarchitecture of biological origin, producing, in this way, a bio-nanohybrid
photonic nanoarchitecture with novel optical properties. The single-particle scattering
of these nanoparticles, measured under dark-field epi-illumination was found to be at
480 nm on ITO [23]. When the Cu2O NPs were deposited on a flat glass substrate, using
the same procedure as used for the butterfly wings and measuring the sample with the
integrating sphere (Figure 8), a clear reflectance maximum was found at 500 nm, whereas
the same NPs on p-type Si(100) do not exhibit a reflectance maximum in this range. In the
region of 600 nm to 800 nm, the reflectance spectra on glass and Si are similar and show
a broad plateau, which corresponds to the brown–orange color of the aggregated Cu2O
nanoparticles. The micrographs taken with a focus stacking microscope (Figure 9) are in
good agreement with the measured spectra (Figure 8). The differences found between
the glass and the Si substrate show that the single Cu2O NPs and their “oligomers” [65]
behave like Mie resonators and are characterized by the substrate modulation of their
electromagnetic resonances [68,69].

Like the glass substrate, the chitin-based photonic nanoarchitecture is an insulator,
and, in contrast to Si, it is a low-refractive-index material, even in bulk form (nchitin was
found to vary between 1.54 and 1.58 [60] or 1.6 and 1.63 [61] in the visible range). The
experiments show that, on butterfly wing scales, the Cu2O nanoparticles do not backscatter
light at around 500 nm. Considering that the effective refractive index of the butterfly
photonic nanoarchitecture constituted from air and chitin (Figures 1f and 2) must be lower
than that of bulk chitin, the absence of the Mie scattering cannot be attributed to a simple
substrate effect, as in the case of Si. On the other hand, the spectra shown in Figure 6
clearly demonstrate the absence of the reflectance peak around 500 nm, irrespective of the
pretreatment applied to the butterfly wing before the deposition of the Cu2O NPs. The
reflectance spectra taken from small particles on the butterfly wing (Figure 10d) also lack
the reflectance peak at 500 nm. The spectra taken from large clusters on the butterfly wing
(Figure 10e) show only the expected reflectance increase in the range of 500 nm to 700 nm,
associated with the bulk color of Cu2O [63,64].

Such changes in Mie scattering for a Si-Au heterodimer [70] were reported earlier. The
backward scattering of a Si nanoparticle with a diameter of 120 nm at 522 nm almost equals
the forward scattering intensity. After the formation of the Si-Au dimer, the backward
scattering at 522 nm is suppressed and a broad maximum in forward scattering appears
at 600 nm. The color of Mie resonator array band-pass filters can be tuned across the
visible spectrum [71]. These experimental results show that the behavior of Mie resonator
nanoparticles can be altered by other nanoparticles or thin films in their vicinity [72]. The
suppression of the reflectance at 500 nm measured on glass, when the Cu2O nanoparticles
are placed on the photonic nanoarchitecture of the butterfly wing, is attributed to such
effects. In contrast to the case when the Cu2O nanoparticles are placed on a substrate
with a high refractive index, like Si, the coupling of the complex electromagnetic field
of the biological photonic nanoarchitecture with the Mie-resonant particles causes the
suppression of the backscattering at 500 nm and a redshift in its reflectance peak. The hybrid
bio-nanoarchitecture possesses novel properties as compared to each of the constituting
components. In this way, Cu2O nanoparticles on butterfly wings can be used to accomplish
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three goals at the same time: (i) to provide a suitable substrate for the immobilization of the
nanoparticles, (ii) to tune the reflectance maximum of the new hybrid bio-nanoarchitecture
to the desired spectral range, and (iii) to achieve the most advantageous overlap with
the absorption of the pollutant to be degraded [20]. Moreover, the Cu2O nanoparticles
themselves can increase the photocatalytic efficiency due to their photocatalytic activity in
the visible range [21].

5. Conclusions

Butterfly wings, with their complex hierarchical nanoarchitecture, which can be pro-
duced in a cheap and environmentally friendly way, constitute a promising substrate for
the immobilization of photocatalytic Cu2O nanoparticles and other similarly sized nano-
objects. A simple ethanol pretreatment is sufficient to remove the native wax layer covering
the butterfly scales. If wings possessing structural colors are used, novel bio-nanohybrid
architectures of colloidal Cu2O nanoparticles and chitin-based photonic nanoarchitec-
tures can be produced. We found that the Cu2O nanoparticles integrated well into the
photonic nanoarchitecture of the P. icarus wing scales; they exhibited Mie resonance on
the glass slides, and the spectral signature of this resonance was absent on Si(100). The
novel bio-nanohybrid photonic nanoarchitectures based on butterfly wings and Cu2O
nanoparticles exhibit properties that differ from their constituents and allow the tuning
of both their spectral properties and the properties arising from the Mie resonance of the
Cu2O nanoparticles.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ma17184575/s1, Figure S1: Individual reflectance spectra and
averaged spectra of 40 Polyommatus icarus males after different processing steps. Figure S2: Optical
microscope images in reflected light of the molten mixture of C22H46 and C44H90 on glass after the
ETA or ETA50 treatment. Figure S3: Optical micrographs and spectra acquired with a microspec-
trophotometer on Cu2O nanoparticles. Figure S4: Comparison of the measured reflectance spectra
with the calculated ones using the absorbance spectrum of the Cu2O nanoparticle sol.
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