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Abstract
An oriented supersingular elliptic curve is a curve which is enhanced with the information of
an endomorphism. Computing the full endomorphism ring of a supersingular elliptic curve
is a known hard problem, so one might consider how hard it is to find one such orientation.
We prove that access to an oracle which tells if an elliptic curve is O-orientable for a fixed
imaginary quadratic order O provides non-trivial information towards computing an endo-
morphism corresponding to the O-orientation. We provide explicit algorithms and in-depth
complexity analysis. We also consider the question in terms of quaternion algebras. We pro-
vide algorithms which compute an embedding of a fixed imaginary quadratic order into a
maximal order of the quaternion algebra ramified at p and∞. We provide code implemen-
tations in Sagemath (in Stein et al. Sage Mathematics Software (Version 10.0), The Sage
Development Team, http://www.sagemath.org, 2023) which is efficient for finding embed-
dings of imaginary quadratic orders of discriminants up to O(p), even for cryptographically
sized p.

Keywords Isogeny-based cryptography · Cryptography · Isogeny · Supersingular ·
Supersingular elliptic curves · Orientations · Quaternion algebras

Mathematics Subject Classification 11T71 · 11R52 · 11G05

1 Introduction

Isogeny-based cryptography is a relatively new branch of post-quantum cryptography which
is based on hard problems supposedly intractable even for quantum computers. The under-
lying hard problems were first introduced publicly in 2006 by the hash-function proposal
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of Charles-Goren-Lauter [12], and the works of Couveignes [15] and Rostovtsev-Stolbunov
[56]. Since then, this field has blossomed with the introductions of new schemes such as
SIDH [31] (now broken by [10, 41, 55]), CSIDH [11], and SQISign [27]. The hardness
of all isogeny-based schemes is based on some variant of the path finding problem, which
asks to find an isogeny between two given supersingular elliptic curves. The quaternion ana-
logue of this hard problem has been efficiently solved [34], but the problem remains hard for
supersingular elliptic curves. Path finding in the supersingular isogeny graph is equivalent
to endomorphism ring computation, which was first heuristically proven in [21] and then
rigorously (assuming GRH) proven in [65]. The key recovery of CSIDH was reduced to
endomorphism ring computations in [66].

To study the hardness of the path finding problem it is natural to add some data to the
elliptic curves and study how this data interacts with the graph structure. One way to do
this is to add the information of an orientation to the elliptic curve vertices. Informally, an
orientation on an elliptic curve E is an embedding of an imaginary quadratic order O into
the endomorphism ring of E which cannot be extended to a superorder of O. The resulting
isogeny graph admits an abelian group action, which is used in cryptographic protocols such
as CSIDH [11], Scallop [26], OSIDH [13], and SETA [18]. The group action is crucial for
defining the Uber Isogeny Problem [66, Problem 4], whose hardness underlies all isogeny-
based schemes. One might suspect that being given the information of an orientation could
weaken the difficulty of the path finding problem, but this depends heavily on the given
orientation and does not typically weaken the hardness of the path finding problem [1, 66].
A natural question to consider would be how to find an orientation on a curve, given that one
exists. This is theO-Orienting Problem. It is also natural to consider the decisional version of
this problem: given a supersingular elliptic curve E and a quadratic orderO, can one decide
whether E is orientable by O?

The search version of the O-Orienting Problem underlies the security of:

• OSIDH [13, 46], and
• FESTA [3] and its variants [45], [44] due to the following observation.

In all of these schemes there is a secret isogeny of known degree d from a curve which
has small endomorphisms (usually the curve y2 = x3 + x). In all these cases the codomain
of this isogeny is primitively oriented by Z[dω] where ω is the mentioned special small
degree endomorphism. Finding this orientation will reveal the secret isogeny. Furthermore,
the problem of finding a fixed degree isogeny to a special curve (if it exists) is believed to
be a hard problem. Since the best algorithms for attacking the aforementioned schemes are
exponential time, the best algorithms for solving the O-Orienting Problem are also expo-
nential time. The problem of deciding whether a curve is oriented is semantically a weaker
problem and has not been previously studied. It is natural to question how the decision variant
relates to the search variant of this problem, e.g. can it be solved in subexponential time?
The search variant of a problem is always at least as hard as the decision variant. If there
exists a reduction from search to decision, it shows that the decision variant of the problem
reveals some nontrivial information. In cryptography, such “search-to-decision” reductions
are helpful in understanding hardness assumptions.

Interestingly, these problems are not even efficiently solved on the quaternion side, except
in very special cases. In [66] the case where disc(O) is small (i.e., disc(O) <

√
p) is studied.

This can be accomplished in polynomial time as in general this is just the smallest non-
scalar endomorphism (this argument should actually work with a small modification for
cases where disc(O) < p2/3). In [4, Appendix A] this is conjecturally improved to p0.8

using Coppersmith techniques.
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In this work, we give reductions between the search and decisional variants of these
problems, and provide algorithms for the quaternion variant of these problems.

1.1 Our contributions

1.1.1 Reduction from Search to DecisionalO-Orienting Problem

When the discriminant ofO is smaller than the characteristic p of the base field, we prove a
subexponential reduction from the computational to the decisional version of theO-Orienting
Problem. In particular, we provide an explicit algorithm (Algorithm 4.3) to find an O-
orientation of an orientable elliptic curve in subexponential time and space when given
access to an oracle deciding whether any elliptic curve isO-orientable. Access to this oracle
is unlikely to be possible, but theoretical access to such a perfect oracle shows that finding
an endomorphism is not significantly more difficult than simply deciding if one exists. In
Sect. 4.2 we provide an in-depth analysis and proof of the complexity of the algorithm (The-
orem 4.13). This proves that such an oracle gives non-trivial information since finding an
orientation automatically yields a non-scalar endomorphism and the best known algorithms
to find a non-scalar endomorphism on a supersingular elliptic curve are exponential [19, Sect.
4], [22, 28]. Note that in this paper we always invoke a perfect oracle which always returns
the correct answer. The case of imperfect oracles (i.e., oracles which return the correct answer
with probability 1− ε for some fixed ε > 0) is left for future work.

Before treating the general case, we prove a polynomial reduction whenO is the maximal
order of Q(

√−d) and d is the product of small distinct primes in Sect. 3. This allows us to
illustrate the spirit of the more general algorithm in a less complicated setting. We provide an
explicit algorithm for this case (Algorithm 3.1) and prove in Theorem 3.10 that this algorithm
runs in polynomial time.

1.1.2 Quaternion Order Embedding Problem

In Sect. 5, we consider the Quaternion Order Embedding Problem (Problem 2.6) which is the
quaternion analogue of theO-Orienting Problem. That is, given a maximal quaternion order
O ⊂ Bp,∞ and a quadratic orderOwhich embeds intoO, find an embedding ι : O ↪→ O that
cannot be extended to a superorder ofO. In Sect. 5.1 we present a general algorithm to solve
the problem of finding embeddings using a factorization oracle. We provide a complexity
analysis based on several heuristics in Sect. 5.2. In Sect. 5.5 we show that finding embeddings
which cannot be extended (i.e., orientations), only adds a small factor to the running time.
We prove efficiency for the curve with j-invariant 1728, and describe a practical method for
removing the dependence on the factorization oracle. Our algorithm improves the state of
the art, since it is efficient up to even disc(O) = O(p). We provide an implementation in
Sagemath [61] which, for small discriminant orders, is fast for cryptographically sized p.

2 Preliminaries

Weprovide a concise summary of the necessary background and the state of the art algorithms
which we use in this paper.
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2.1 Supersingular elliptic curves and quaternion algebras

Let p be a prime. An elliptic curve over Fp is called supersingular if any one of the following
equivalent conditions holds:

(1) End(E) is isomorphic to a maximal order in a quaternion algebra
(2) E[pr ] = 0E for all r ≥ 1
(3) j(E) ∈ Fp2 and the multiplication-by-p map [p] is purely inseparable
(4) The dual to the pr -power Frobenius is purely inseparable for all r ≥ 1.

See [60] for additional properties and proofs of equivalence.
We use the endomorphism ring heavily in what follows, so we describe here the necessary

definitions and properties of quaternion objects. For more generality and more detail, we
encourage the reader to see [62].

A (definite) quaternion algebra A is a noncommutative algebra which has rank 4 over Q,
and can be specified by generators i, j such that:

A = Q+Qi +Q j +Qk : i2, j2 ∈ Q, i2, j2 < 0, k := i j = − j i .

An order O in A is a Z-submodule of A of rank 4 which is also a subring. An order is said
to be maximal if it is not properly contained in any other order. For any full rank lattice
(sub-Z-module of rank 4) I in A, we define its left order

OL(I ) := {α ∈ A : α I ⊆ I }.
The right order OR(I ) is defined analogously. A full rank lattice I ofA is said to be invertible
if there exists a lattice I ′ such that I I ′ = OL(I ) = OR(I ′) and I ′ I = OR(I ) = OL(I ′). A
full rank lattice inA is said to be a left (resp. right)O-ideal ifO ⊆ OL(I ) (resp.O ⊆ OR(I )).
For every orderO ofAwe define a left class set of equivalence classes of invertible left ideals:
invertible left O ideals I , J are equivalent in the left class set of O if and only if there exists
γ ∈ A× such that I = γ J . The left class set of invertible ideals is finite. The right class set
of invertible ideals is analogously defined and is also finite.

For a fixed prime p, we define the (unique up to isomorphism) quaternion algebra Bp,∞
to be the definite quaternion algebra ramified precisely at p and∞. The endomorphism rings
of supersingular elliptic curves over Fp are isomorphic to maximal orders in Bp,∞:

Theorem 2.1 (Deuring [20])Fix amaximal order M of the quaternion algebra Bp,∞ ramified
precisely at p and ∞. There is a bijection between isomorphism classes of supersingular
elliptic curves over Fp and the left class set of the order M.

Given a supersingular elliptic curve E/Fp , one might ask to compute End(E) in dif-
ferent forms: to compute endomorphisms of E which generate End(E), or to compute the
isomorphism class of End(E) abstractly in the quaternion algebra Bp,∞. This problem is
computationally difficult in all formulations. The supersingular endomorphism problem was
recently shown to be equivalent to the problem of finding a single non-scalar endomorphism
[47]. A priori, the information of one endomorphism ω of E reveals an imaginary quadratic
order Z[ω] embedded within End(E). In Sect. 2.2, we provide more background information
on such embeddings.

2.2 Orientations

Definition 2.2 (Orientation) Let O be an imaginary quadratic order. An O-orientation of
a supersingular elliptic curve E/Fp is an embedding ι : O ↪→ End(E) which cannot be
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extended to a larger quadratic order containing O. The pair (E, ι) is called an O-oriented
supersingular elliptic curve.

Definition 2.2 corresponds to the definition of primitiveO-orientation found elsewhere in
the literature [1, 13, 46]. We omit the word “primitive" in our definition, as almost all of our
O-orientations are primitive. When we want to discuss an embedding O ↪→ End(E) which
can be extended to a superorder of O, we highlight this by using the term “imprimitive".

The notion of an orientation as in Definition 2.2 was recently introduced to isogeny-based
cryptography by Colò and Kohel [13] and was subsequently studied [1, 2, 26, 46, 66]. The
quaternion counterpart of this notion has a longer history, dating back to Chevalley, Hasse,
and Noether and often referred to as the theory of optimal embeddings.

Supersingular elliptic curves which admit anO-orientation are calledO-orientable. There
is an action of the class group Cl(O) on the set of O-oriented supersingular elliptic curves
induced by the following action of an invertible O-ideal a:

a ∗ (E, ι) := (Ea, (ϕa)∗ι),

where Ea is the codomain of the degree-N (a) isogenyϕa : E −→ Eawith kernel∩α∈a ker α.
The orientation (ϕa)∗ι : O ↪→ End(Ea) is given via (ϕa)∗ι(−) := 1

N (a)
ϕa ◦ ι(−) ◦ ϕ̂a.

For an imaginary quadratic field K , K embeds into the quaternion algebra Bp,∞ if and
only if p does not split in K . However, for a particular imaginary quadratic order O and a
particular supersingular elliptic curve E , it is generally difficult to decide if E isO-orientable.
Naturally we are inclined to study the following problems and the relationship between them:

Problem 2.3 (DecisionalO-Orienting Problem)Given an elliptic curve E and an imaginary
quadratic order O, determine if E is orientable by O.

Problem 2.4 (O-Orienting Problem) Given an elliptic curve E which is orientable by an
imaginary quadratic order O, find the orientation.

Remark 2.5 In a cryptographic context decisional problems are often defined in a slightly
different fashion. Namely an adversary is presented with two supersingular elliptic curves
E1 and E2 and an imaginary quadratic orderO one of which is oriented byO. Then one has
to decide whether E1 or E2 is oriented by O. The reason is that whenever the discriminant
is sufficiently small (i.e., much smaller than p2), then a random supersingular elliptic curve
is likely not oriented by O. Hence an adversary that always says "not oriented" succeeds in
this game with overwhelming probability.

The search-to-decision reduction shows that a decision oracle provides non-trivial infor-
mation towards finding the endomorphism ring of the curve, and this will be the focus of
Sects. 3 and 4.

We explore the following quaternion variant of Problem 2.4 in Sect. 5.

Problem 2.6 (Quaternion Order Embedding Problem) Given a maximal quaternion orderO
and an imaginary quadratic order O which embeds into O, find the embedding.

One may also consider the group action variant of the Uber-isogeny problem, originally
introduced in [18], although we do not pursue this perspective in this work:

Problem 2.7 (O-Uber Isogeny Problem) Given a supersingular elliptic curve E with anO-
orientation ι : O ↪→ End(E) and an O-orientable supersingular elliptic curve F, find an
ideal a ∈ Cl(O) such that a ∗ E = F.
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2.3 Complexity

Throughout this paper, we shall give time and space complexity results. By default, we say
an algorithm has (time) complexity O( f (n)) or terminates in time O( f (n)) when it runs in
O( f (n)) bit operations. In particular, an algorithm is polynomial in the parameter n if it runs
in number of bit operations which is bounded by a polynomial function of n. Very often,
we shall also mention time complexity in terms of arithmetic operations over Z or finite
fields Fp, Fp2 and their extensions. By arithmetic operations or simply operations we mean
additions, substractions, multiplications, inversions and random sampling (up to a bound over
Z). Unless explicitely stated otherwise, space complexity will always be counted in bits.

2.4 Computingmodular polynomials and j-invariants

Given a prime number 	  p and the j-invariant j(E) ∈ Fp2 of a supersingular elliptic curve,
we explain how to find all 	-isogenous j-invariants j(E ′) ∈ Fp2 using modular polynomials


	(X , Y ). By [54, Theorem6.3],
	( j(E), Y ) ∈ Fp2 [Y ] can be computedwith Õ(	2 log(p))

operations over Fp2 , where the Õ means that polynomial factors in log(	) are omitted.1 In
[39, Sect. 5] the authors provide an algorithm with similar complexity. We then find all the
roots over Fp2 of the degree-(	 + 1) polynomial 
	( j(E), Y ) in Õ(	2 log(p)) operations
over Fp2 [63, Theorem 14.14] to find the j-invariants j(E ′) ∈ Fp2 that are 	-isogenous to

j(E). On the whole, the computation costs Õ(	2 log(p)) operations over Fp2 .

2.5 Computing an �-isogeny between two j-invariants

Given two supersingular j-invariants j(E) ∈ Fp2 and j(E ′) ∈ Fp2 we explain how to find an

	-isogeny φ : E −→ E ′ in Õ(	2 log(p)) operations over Fp2 using a method due to Elkies.
By [7, Theorem 2], given Weierstrass equations of E and E ′, we can find (if it exists)

a normalized 	-isogeny φ : E −→ E ′ with only Õ(	) arithmetic operations over Fp2 . By
normalized, we mean that φ pulls back the invariant differential ω′ := dx ′/2y′ of E ′ to the
invariant differential ω := dx/2y of E (φ∗ω′ = ω).

The existence of such a normalized isogeny φ only depends on the choice of Weierstrass
equations for E and E ′ which determine the constant λ := φ∗ω′/ω. Knowing only j(E) and
j(E ′), we have multiple choices of Weierstrass equations and we have to pick one so that
λ = 1. We fix an equation for E : y2 = x3 + Ax + B, then find an equation for E ′ so that
λ = 1. Following the method given by [58, Sect. 7] (referring to ideas introduced in [23,
Sect. 3]), we take E ′ : y2 = x3 + A′x + B ′, with

A′ := − j ′(E ′)2	4

48 j(E ′)( j(E ′)− 1728)
B ′ := − j ′(E ′)3	6

864 j(E ′)2( j(E ′)− 1728)
, (1)

and

j ′(E ′) := − j ′(E)

	

∂
	

∂X
( j(E), j(E ′))

(

∂
	

∂Y
( j(E), j(E ′))

)−1
, (2)

1 The algorithm is provided over Fp but the techniques of [54] easily extend to Fp2 .
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where

j ′(E) :=
⎧

⎨

⎩

18Bj(E)

A
if A �= 0

0 if A = j(E) = 0
. (3)

The derivatives ∂
	/∂X and ∂
	/∂Y can be precomputedwith Õ(	2 log(p)) operations over
Fp2 using the techniques in Sect. 2.4 (see [51, Remark 5.3.10]). Hence, in total, computing

an isogeny φ : E −→ E ′ costs Õ(	2 log(p)) operations over Fp2 .
The above formulas failwhen j(E)or j(E ′) ∈ {0, 1728}, andwhen ∂
	/∂Y ( j(E), j(E ′))

vanishes. However, when ∂
	/∂Y ( j(E), j(E ′)) = 0 and ∂
	/∂X( j(E), j(E ′)) �= 0, this
implies there are more than one 	-isogeny from the isomorphism class determined by j(E) to
the isomorphism class determined by j(E ′), but only one 	-isogeny in the reverse direction.
This is only possible if j(E) ∈ {0, 1728}, in which case the formulas fail anyways.

Hence, the only cases when this method does not apply are j(E) or j(E ′) ∈
{0, 1728}, which are very unlikely (probability O(1/p)) and ∂
	/∂X( j(E), j(E ′)) =
∂
	/∂Y ( j(E), j(E ′)) = 0, i.e. when ( j(E), j(E ′)) is a singular point of the affine curve
given by the modular equation 
	(X , Y ) = 0 over Fp2 . Following [58, Sect. 7], we prove
in Appendix A that this is very unlikely when log(	)  log(p) (which will be the case in
our paper).

We can still handle singular cases at a higher cost of Õ(	7/2) operations over Fp2 with a
naive algorithm. We enumerate all the cyclic subgroups of order 	 of E[	] (there are 	+ 1 of
them) and use [6] to compute each 	-isogeny with Õ(

√
	) operations over the field extension

K/Fp2 where E[	] is defined. As will be proved in Lemma 2.12, K has degree O(	) over
Fp2 so one arithmetic operation over K is equivalent to at most O(	2) operations over Fp2 .
Since singular cases are very unlikely when log(	)  log(p), we may assume throughout
this paper that computing 	-isogenies between j-invariants costs Õ(	2 log(p)) operations
over Fp2 on average by Lemma A.2.

2.6 Efficiently representing an isogeny of any degree with Kani’s lemma

Let ϕ : E −→ E ′ be an isogeny of degree d between supersingular elliptic curves E, E ′/Fp2 .
In general, we can represent ϕ with data of size O(d). We either have direct formulas to
evaluate ϕ (given by rational fractions) or equivalently, generators of the kernel (defined over
an Fp2 -extension of degree O(d)) from which we can derive these formulas by [64]. In this
case, evaluating ϕ on a point takes linear time in d . We can do much better when d is smooth
by representing ϕ as a product of small degree isogenies. This is an efficient representation,
in the sense of the following definition.

Definition 2.8 Let A be an algorithm (to compute isogenies). An efficient representation of
an isogeny ϕ : E −→ E ′ defined over a finite field Fq (with respect to A ) is given by some
data D ∈ {0, 1}∗ such that:

(i) D has polynomial size in log(deg(ϕ)) and log(q) (in bits).
(ii) On input D and P ∈ E(Fqk ), A returns ϕ(P) in polynomial time in k log(q) and

log(deg(ϕ)).

We can also efficiently represent ϕ when d is not smooth, using an idea first introduced in
the attacks against SIDH [10, 41, 52] and then reused for several other applications [16, 53,
54]: providedwe can evaluateϕ on some torsion points, we can “embed"ϕ in a smooth degree
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higher dimensional isogeny F . Knowing F , we can evaluate ϕ everywhere in polynomial
time. This provides an efficient representation of ϕ.

In this section, we explain how to obtain such an efficient representation F of ϕ when we
are given access to the image of ϕ on some torsion points (Algorithm 2.1). The evaluation
of these points may be costly but other operations to compute F take polynomial time
(Proposition 2.12).

Definition 2.9 (d-isogeny in higher dimension) Let α : (A, λA) −→ (B, λB) be an isogeny
between principally polarized abelian varieties (PPAV). We denote by α̃ the isogeny

B
λB−→ ̂B

α̂−→ ̂A
λ−1A−→ A,

where α̂ is the dual isogeny of α.
We say that α is a d-isogeny if α̃ ◦ α = [d]A, or equivalently if α ◦ α̃ = [d]B .
We use the following result due to Kani [33, Theorem 2.3]. A concise expression of this

result may be found in [52, Lemma 3.6].

Lemma 2.10 (Kani) Consider a commutative diagram of isogenies between PPAV:

A′
ϕ′ �� B ′

A

ψ

��

ϕ �� B

ψ ′
��

where ϕ and ϕ′ are a-isogenies and ψ and ψ ′ are b-isogenies.
Then, the isogeny chain F : A × B ′ −→ B × A′ given in matrix notation by

F :=
(

ϕ ˜ψ ′
−ψ ˜ϕ′

)

is a d-isogeny with d := a + b, for the product polarizations.
If a and b are coprime, the kernel of F is

ker(F) = {(ϕ̃(x), ψ ′(x)) | x ∈ B[d]}.
Let N > d be a powersmooth integer coprime with d . We can always write N = d +

a21 + a22 + a23 + a24 for some a1, a2, a3, a4 ∈ Z, by Lagrange’s four square theorem. Let
α ∈ End(E4) be the isogeny written in matrix form as follows:

α :=

⎛

⎜

⎜

⎝

a1 −a2 −a3 −a4
a2 a1 a4 −a4
a3 −a4 a1 a2
a4 a3 −a2 a1

⎞

⎟

⎟

⎠

, (4)

and α′ be its analogue in End(E ′). Let 
 := Diag(ϕ, ϕ, ϕ, ϕ) : E4 −→ E ′4. Then, 
 is a
d-isogeny, α and α′ are (N − d)-isogenies and we have a commutative diagram:

E4 
 �� E ′4

E4

α

��


 �� E ′4
α′

��
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that yields an 8-dimensional N -isogeny:

F :=
(

α ˜


−
 α̃

)

∈ End(E4 × E ′4), (5)

with kernel:

ker(F) := {(̃α(P),
(P)) | P ∈ E4[N ]}, (6)

since N and d are coprime. By the above formula, we can compute ker(F) if we can evaluate
ϕ on generators of E[N ]. We can then compute F as a product of small degree isogenies (as
in dimension 1) and evaluate ϕ efficiently everywhere as a component of F . Indeed, if we
want to evaluate ϕ(P) for some point P ∈ E , then we can compute:

F(P, 0, · · · , 0) = ([a1]P, [a2]P, [a3]P, [a4]P,−ϕ(P),−ϕ(P),−ϕ(P),−ϕ(P)).

Lemma 2.11 Let F : E4 × E ′4 −→ E4 × E ′4 be the N-isogeny defined by (5) and suppose
N =∏s

i=1 q
ei
i , where q1, · · · , qs are distinct primes. Then, we can decompose F as:

A0
F1−→ A1

F2−→ · · ·As−1
Fs−→ As,

with A0 = As := E4 × E ′4 and where Fi is a q
ei
i -isogeny for all i ∈ {1, · · · , s}.

Let K := ker(F). Moreover,

ker(F1) = K [qe11 ] = {P ∈ K : [qe11 ]P = 0} and

ker(Fi ) = Fi−1 ◦ · · · ◦ F1(K [qeii ]), for 2 ≤ i ≤ s.

Proof The decomposition F = Fs ◦ · · · ◦ F1 was proven in [16, Proposition 5.4.1].
Now, let K1 := K [qe11 ] and Ki := Fi−1 ◦ · · · ◦ F1(K [qeii ]) for all 2 ≤ i ≤ s. Then,

Fs ◦ · · · ◦ Fi (Ki ) = F(K [qeii ]) = {0}, so that

Fi (Ki ) ⊆ ker(Fs ◦ · · · ◦ Fi+1) ⊆ Ai

⎡

⎣

∏

j≥i+1
q
e j
j

⎤

⎦ .

But Fi (Ki ) ⊂ Ai [qeii ] and the primes q j �= qi for j > i , so we must have Fi (Ki ) = {0}
and Ki ⊆ ker(Fi ). Now, #Ki = #K [qeii ] = q8eii = deg(Fi ) since Fi−1 ◦ · · · ◦ F1 has degree
coprime with qi . It follows that Ki = ker(Fi ). ��

Each qeii -isogeny Fi in Lemma 2.11 can be computed with O(q8eii ) operations over the
field of definition of their kernel with the theta model [40]. We summarize this computation
in Algorithm 2.1.

Lemma 2.12 Let E/Fp2 be a supersingular elliptic curve and n ∈ Z>0. Then E[n] is defined
over an extension of degree at most 6φ(n) of Fp2 , where φ is Euler’s totient function.

Proof We first compute the characteristic polynomial of iterates of the Frobenius. Let χp2 :=
(X − α)(X − β) be the characteristic polynomial of the p2 Frobenius πp2 . Then χp2δ :=
(X−αδ)(X−βδ) is the characteristic polynomial of the p2δ Frobeniusπp2δ , for any δ ∈ Z>0.

Since E is supersingular p | Tr(πp2) = α + β, and |Tr(πp2)| ≤ 2p so Tr(πp2) ∈
{0,±p,±2p} [58, Proposition 3.6]. We consider these possibilities in three cases:
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Algorithm 2.1: EfficientRep returning an efficient representation of an isogeny.

Data: An integer D > 0 (smoothness bound), an oracle to evaluate an isogeny ϕ : E −→ E ′ between
supersingular elliptic curves and d := deg(ϕ).

Result: An 8-dimensional isogeny F of D-powersmooth degree representing ϕ.
1 Select prime powers qe11 , · · · , qess ≤ D coprime with d such that N :=∏s

i=1 q
ei
i > d;

2 Find a1, a2, a3, a4 ∈ Z such that a21 + a22 + a23 + a24 = N − d using Pollack and Treviño’s algorithm
[49, §4];

3 Let α ∈ End(E) and α′ ∈ End(E ′) as in equation 4 and 
 := Diag(ϕ, ϕ, ϕ, ϕ);
4 for i=1 to s do
5 Generate a basis (Pi,1, Pi,2) of E[qeii ];
6 Compute ϕ(Pi,1) and ϕ(Pi,2);

7 For all j ∈ {1, 2} and k ∈ {1, 2, 3, 4}, let Pi, j ,k ∈ E4[qeii ] be the tuple with Pi, j in position k and
0 elsewhere;

8 Bi ←− {(̃α(Pi, j,k ), 
(Pi, j ,k )) | 1 ≤ j ≤ 2, 1 ≤ k ≤ 4};
9 end

10 Ci ←− Bi for 1 ≤ i ≤ s;
11 for i=1 to s-1 do
12 Compute Fi of kernel 〈Ci 〉;
13 for j=i+1 to s do
14 C j ←− Fi (C j );
15 end
16 end
17 Compute Fs of kernel 〈Cs 〉;
18 Return F := Fs ◦ · · · ◦ F1;

If Tr(πp2) = 0, then χp2 = X2 + p2 = (X − i p)(X + i p) so

Tr(πp2δ ) = (i p)δ + (−i p)δ =
⎧

⎨

⎩

2pδ if δ ≡ 0 mod 4
−2pδ if δ ≡ 2 mod 4
0 otherwise

.

If Tr(πp2) = ±p, then χp2 = X2 ∓ pX + p2 = (X ∓ peiπ/3)(X ∓ pe−iπ/3) so

Tr(πp2δ ) = (±1)δ pδ(eiδπ/3 + e−iδπ/3) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2pδ if δ ≡ 0 mod 6
∓2pδ if δ ≡ 3 mod 6
±pδ if δ ≡ ±1 mod 6
−pδ if δ ≡ ±2 mod 6

.

Finally, if Tr(πp2) = ±2p, then χp2 = X2 ∓ 2pX + p2 = (X ∓ p)2 so

Tr(πp2δ ) = 2(±p)δ.

In all cases, if δ ≡ 0 mod 12, we have Tr(πp2δ ) = 2pδ , so χp2δ = (X − pδ)2. It follows
that πp2δ = [pδ].

Now, if we assume φ(n) | δ, then pδ ≡ 1 mod n, so for all P ∈ E[n], πpδ (P) =
[pδ]P = P , so that P ∈ E(Fp2δ ).

Hence, E[n] is defined over Fp2δ provided that 12 and φ(n) divide δ. If n has an odd
prime factor or n = 2k with k ≥ 2, then φ(n) is even so 12 | 6φ(n) so δ = 6φ(n) satisfy
the desired conditions. If n = 2, then E[n] is formed by 0 and the points (x, 0) where x is
the root of a cubic polynomial equation over Fp2 (Weierstrass equation of E). Hence, E[2]
is defined over an extension of degree at most 3 of Fp2 . ��
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Proposition 2.13 Algorithm 2.1 terminates and is correct. It requires:

• O(log(d)) evaluations of the input d-isogeny ϕ on points defined over an extension of
degree O(D) of Fp;

• O(D3 log(p) log(d)+ D10 log2(d)) arithmetic operations over Fp;
• and O(log2(d)+ log(d)D log log(D)) arithmetic operations over integers of size at most

O(D log(p)) bits.

Recall that by arithmetic operations, we mean addition, substraction, multiplication and
inversion. Over Fp, we count sampling as an arithmetic operation.

Proof Correctness has been justified by Eq.6 and Lemma 2.11. Termination is clear.
Now we compute the complexity. If N is only slightly bigger than d , then s = O(log(d))

and finding a suitable N on line 1 of the algorithm takes O(log(d)D log log(D)) arithmetic
operations over Z (assuming we use the sieve of Eratosthenes).

Finding the ai on line 2 costs O(log2(N )/ log log(N )) = O(log2(d)) operations over Z

with Pollack and Treviño’s second algorithm [49, §4].
For i ∈ {1, · · · , s}, a basis of E[qeii ] is defined over a field extension of degree δ =

O(qeii ) = O(D) of Fp2 by Lemma 2.12. To generate such a basis, we first sample a random
point P ′ ∈ E(Fp2δ ) and compute Pi,1 := [M/qeii ]P ′, where M := #E(Fp2δ ) until P has
order qeii . By the samemethod, we sample Pi,2 ∈ E[qeii ] until (Pi,1, Pi,2) is a basis of E[qeii ].

To sample P ′ ∈ E(Fp2δ ), we first sample x ∈ Fp2δ repeatedly (O(1) times at most)
until we find y ∈ Fp2δ such P ′ = (x, y) ∈ E . Each sampling over Fp2δ costs 2δ = O(D)

samplings over Fp . Computing y requires a square root computation in Fp2δ which costs
O(log(p2δ)) = O(D log(p))multiplications over Fp2δ by Cipolla-Lehmer’s algorithm [37].
Without loss of generality (see the proof of Lemma 2.12), we may assume that πp2δ = [pδ],
so that:

M = #E(Fp2δ ) = p2δ + 1− Tr(πp2δ ) = (pδ − 1)2

and computing M costs O(D) operations over Z. The scalar multiplication by M/qeii costs
O(log(M)) = O(D log(p)) arithmetic operations over Fp2δ . Testing that (Pi,1, Pi,2) is
a basis costs O(D) elliptic curve additions so O(D) arithmetic operations over Fp2δ (we
compute the [k]Pi,1 and [l]Pi,2 for 1 ≤ k, l ≤ qeii − 1 and conclude that we have a basis
if these two sets are disjoint). Only O(1) samplings of Pi,1 and Pi,2 are necessary before
we find a basis. Each arithmetic operation over Fp2δ costs at most O(δ) = O(D) arithmetic
operations over Fp , so the overall complexity to find a basis is O(D3 log(p)) operations over
Fp (and O(D) operations over Z).

Line 6 costs two evaluations of ϕ and line 9 costs eight scalar multiplications by the ai ,
costing O(D2 log(d)) operations over Fp each. Hence, the total cost of the loop of lines 4–9
is

O(s(D2 log(d)+ D3 log(p))) = O(log(d)(D2 log(d)+ D3 log(p)))

arithmetic operations over Fp , O(D log(d)) operations over Z and 2s = O(log(d)) evalua-
tions of ϕ.

Finally, computing each Fi costs O(q8eii ) = O(D8) arithmetic operations over Fp2 and
computing the basis C j (i + 1 ≤ j ≤ s) on line 14 costs 8(s − i) point evaluations, each

costing O(q8eii ) = O(D8) arithmetic operations over an extension of degree O(D) of Fp2 .
The total cost of the loop of lines 11 –16 is

O(sD10 + s2D10) = O(D10 log2(d))
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arithmetic operations over Fp . ��

2.7 Smoothness test and factorization with the ECMmethod

In this section, we explain how to test if an integer N is B-smooth and find its factorization
if it is the case. A naive method would be to use trial division, but it is not optimal when
B is subexponential (which will be the case in the paper). An alternate method would be
to factor N with the General Number Field Sieve (GNFS) [9] and test if its prime factors
are ≤ B. However, GNFS underperforms with smooth integers. Hence, as Lenstra himself
suggested [38, §2.12], we use the elliptic-curve factorizationmethod (ECM) for that purpose.
Finding a prime factor of N with this method is conjectured to take L	(1/2,

√
2) polylog(N )

bit operations [38, Conjecture 2.10], where 	 is the smallest prime divisor of N and with the
usual notation

Lx (α, β) := exp
(

(β + o(1))(log(x))α(log log(x))1−α
)

,

where o(1) is for x →∞. Hence, to test the B-smoothness of N , we simply apply ECM to
find a factor k | N after expected time LB(1/2,

√
2) polylog(N ). If the running time exceeds

what it should be, it means that N is not B-smooth and we stop. Otherwise, we continue and
try to factor k and N/k recursively until we have either completely factored N or concluded
it is not B-smooth. Algorithm 2.2 follows.

Algorithm 2.2: SmoothFact determining if an integer is smooth and returning its fac-
torization [38].
Data: An integer N ∈ Z>0 and a smoothness bound B > 0.
Result: ⊥ if N is not B-smooth, and primes 	1, · · · , 	r ≤ B such that N =∏r

i=1 	i otherwise.
1 if N is prime then
2 if N ≤ B then
3 Return N ;
4 else
5 Return ⊥;
6 end
7 else
8 Use ECM to find a strict divisor k | N in time LB (1/2,

√
2);

9 if ECM does not terminate in time LB (1/2,
√
2) then

10 Return ⊥;
11 else
12 R ←− SmoothFact(k, B), R′ ←− SmoothFact(N/k, B);
13 if R = ⊥ or R′ = ⊥ then
14 Return ⊥;
15 else
16 Return R ∪ R′;
17 end
18 end
19 end

If r is the number of prime divisors of N (with multiplicity), then r = O(log(N ))

and Algorithm 2.2 can terminate with at most r calls to ECM, so it terminates in time
LB(1/2,

√
2) polylog(N ). This time complexity is still a conjecture and Pomerance provides
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a proved complexity result in [50, Theorem 2.1] but we use the conjectured complexity to
obtain better results.

3 Reduction ofO-orienting problem for special discriminants

Webegin with a special case of the problem that depends on the discriminant of the imaginary
quadratic orderO. The key ideas from this special case provide a foundation for the general
cases we consider in Sect. 4.

We remind the reader that all orientations discussed are primitive orientations. The oracle
which we use to solve the Decisional O-Orienting Problem 2.3 is assumed to be perfect.

Let d = ∏r
i=1 	i be a product of small distinct primes. Let O denote the maximal order

of K := Q(
√−d), so �O = −d if d ≡ −1 mod 4 and −4d otherwise. In particular,

(�O/	i ) = 0 for all i = 1, . . . , r and O is generated by ω := (1 + √−d)/2 if d ≡ −1
mod 4 and by ω := √−d otherwise. Hence, α := √−d generates O if d �≡ −1 mod 4
or (Z + 2O) if d ≡ −1 mod 4. We use an oracle which solves Problem 2.3 to find an
endomorphism ϕ of E to which we map α, thus determining an embedding O ↪→ End(E)

either by mapping α = ω to ϕ or (1+α)/2 = ω to (1+ϕ)/2. We use the fact that the primes
	i are ramified in K .

We walk the O-oriented 	i -isogeny volcanoes in order to obtain the endomorphism ϕ

on E which is the image of the generator ω under an embedding ι : O ↪→ End(E). The
ideals li above 	i inO determine horizontal degree-	i isogenies betweenO-oriented curves,
beginning and ending with E . To see this, we need the following fact about horizontal
isogenies of O-oriented elliptic curves:

Proposition 3.1 [46, Proposition 4.1]Let (E, ι) be anO-oriented supersingular elliptic curve
and 	 be a prime number. Then:

(i) If 	 does not divide the conductor of O, there is no ascending, (�O/	) + 1 horizontal
and 	− (�O/	) descending 	-isogenies.

(ii) If 	 divides the conductor of O, there is one ascending, no horizontal and 	 descending
	-isogenies.

Let ι : O ↪→ End(E) be an orientation and ϕ := ι(α). Then deg(ϕ) = N (α) = ∏r
i=1 	i

so we may write ϕ := ϕr ◦ · · · ◦ϕ1, where ϕi is an isogeny of degree 	i for all i ∈ {1, · · · , r}.
For each i , let O	i = (li )

2. The ideals li determine the horizontal isogenies of O-oriented
curves:

Lemma 3.2 In the setting described above, all of the isogenies ϕi in the decomposition of ϕ
are horizontal.

Proof Since N (α) = ∏r
i=1 	i , we have Oα = ∏r

i=1 li , li being the unique prime ideal of
O lying above 	i for all i ∈ {1, · · · , r}. Hence, the ϕi intervening in the decomposition of
ϕ = ι(α) are horizontal isogenies given by the action of li . ��

Now, we describe the steps to obtain an endomorphism ϕ = ϕr ◦· · ·◦ϕ1 ∈ End(E)which
will be the image of α. Let E0 := E .

For i = 0, we find the unique isogeny ϕ1 : E0 −→ E1 which corresponds to the action of
[l1] on (E0, ι) by computing each of the 	1 + 1 outgoing isogenies and querying our oracle
to find the one whose codomain E1 is in fact orientable by O. We continue this process
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to compute each ϕi by using the oracle to find the correct degree-	i isogeny to another O-
orientable curve. At the last step, we compute the degree-	r isogeny from Er−1 −→ Er and
then post-compose with an isomorphism Er ∼= E0: We let ϕr denote this composition. See
Algorithm 3.1 for the algorithmic description of this process.

A question arises: If ψi : Ei−1 −→ E ′i is an 	i -isogeny with E ′i O-orientable, how do
we know that ψi is the unique horizontal isogeny ϕi given by the action of li on (Ei−1, ι)?
In fact, ϕi and ψi could be distinct horizontal isogenies for distinct primitive orientations
(Ei−1, ι) �= (Ei−1, ι′) (as inExample 3.3).Orψi could evenbe descending and E ′i O-oriented
by a different orientation than the one induced by ψi , (Ei , (ψi )∗(ι)).

Example 3.3 Let p = 41 and E0 : y2 = x3+1 defined over F412 = F41[ζ ]with ζ 2+ζ+1 =
0. Consider the Frobenius endomorphism π : (x, y) �→ (x p, y p) and the automorphism
τ : (x, y) �→ (ζ x, y). Then ϕ := π+τ satisfies the polynomial equation ϕ2+ϕ+42 = 0 so
it defines an orientation of the maximal order OK := Z

[

(1+√−167)/2] of the imaginary
quadratic field K := Q(

√−167), mapping (1+√−167)/2 to ϕ.
The prime ideal 2 splits in K so there are two horizontal 2-isogenies and one descending

2-isogeny with domain E0. However, all three of these isogenies have the same codomain E1

(up to isomorphism) with j-invariant j(E1) = 3. So E1 is bothOK -oriented and (Z+2OK )-
oriented.

In order to guarantee a unique horizontal isogeny given by the action of li on (Ei−1, ι), we
assume p > |�O|max1≤i≤r 	i and prove that there is precisely one (primitive)O-orientation
ι on Ei−1, which ensures that there is only one isogeny ϕi corresponding to the action of [li ]
on (Ei−1, ι). We also prove that codomains of descending isogenies are not O-orientable.
These are consequences of [32, Theorem 2’], that we recall below.

Theorem 3.4 [32, Theorem 2’] LetO ⊂ Bp,∞ be a maximal order in the quaternion algebra
ramifying at p and∞. Let ji : Oi ↪−→ O (i ∈ {1, 2}) be two primitive embeddings of orders
in the same imaginary quadratic field K := Q⊗O1 = Q⊗O2 of respective discriminants
�i . Assume that j1(O1) �= j2(O2). Then �1�2 ≥ p2.

Corollary 3.5 Let (E, ι) be a (primitively) O-oriented curve. Then

(i) If |�O| < p, then ι and ι : α �−→ ι(α) are the only two (primitive)O-orientations of E.
(ii) If |�O|	 < p and ψ : (E, ι) −→ (E ′, ι′) is a descending 	-isogeny, then E ′ is not

O-orientable.

Proof (i) Let ι′ : O ↪→ End(E) be another O-orientation of E . Since |�O| < p, we must
have ι′(O) = ι(O) by Theorem 3.4. Hence, ι′−1 ◦ ι is an automorphism of O, so it is either
the identity or the complex conjugation. The result follows.

(ii) Suppose E ′ is O orientable and let (E ′, ι′′) be an O-orientation. Let O′ := Z + 	O.
Then ψ : (E, ι) −→ (E ′, ι′) being descending, (E ′, ι′) is an O′-orientation and ι′(O′) �=
ι′′(O), so that �O′�O ≥ p2 by Theorem 3.4. But �O′�O = 	2�2

O < p2 by hypothesis.
Contradiction. ��
Remark 3.6 Corollary 3.5 holds for any imaginary quadratic order O, not only the special
form we consider in this section.

Assuming p > |�O|max1≤i≤r 	i , the orientation ι : O ↪→ End(E) is unique up to
conjugation, the horizontal 	1-isogeny ϕ1 : E0 −→ E1 given by the action of l1 is uniquely
determined, and it is the only 	1-isogeny with O-oriented codomain. In this case, ϕ1 can
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be distinguished from other 	1-isogenies by an oracle query. Similarly for each further i ∈
{2, ..., r}, the isogeny ϕi : Ei−1 −→ Ei given by the action of [li ] on (Ei−1, (ϕi−1 ◦ · · · ◦
ϕ1)∗(ι)) by computing each of the 	i + 1 isogenies and querying the oracle to find the
one whose codomain Ei is orientable by O. In particular, the isogeny ϕr : Er−1 −→ Er

corresponding to the action of lr on (Er−1, (ϕr−1◦· · ·◦ϕ1)∗(ι))will have codomain Er ∼= E0.
Indeed,

(Er , (ϕr ◦ · · · ◦ ϕ1)∗(ι)) = [l1 · · · lr ] · (E0, ι) = [αO] · (E0, ι) ∼= (E0, ι).

Possibly post-composing with this isomorphism, we have an endomorphism ϕ = ϕr ◦ · · · ◦
ϕ1 ∈ End(E) associated to the action of the ideal

∏r
i=1 li = αO. It follows that ϕ = τ ◦ ι(α)

for some automorphism τ ∈ Aut(E). Wemay post-compose ϕ by τ ∈ Aut(E) until the result
has trace zero, as α. The trace can be computed in polynomially many isogeny evaluations
using Schoof’s algorithm [58, Sect. 5].

Remark 3.7 (Isomorphisms) Assuming we are working with elliptic curves in Weierstrass
form, all isomorphism formulae are known. To find an isomorphism β : Er −→ E0, we
check the codomain formula for each isomorphism from Er until E0 is found.

There are additional automorphisms in the two special cases of j = 1728 and j = 0 [2,
Figure 3.1, Sect. 6]. At each step ϕi : Ei−1 → Ei where j(Ei ) = 0 or 1728, we must decide
whether or not to post-compose with these automorphisms. The automorphisms [±1] will
not affect the resulting trace, but we must check one nontrivial automorphism for j = 1728
and two for j = 0. This can be done after the algorithm is completed, as the oracle calls will
remain unaffected.

The additional running time of choosing isomorphisms can be bounded by a constant, so
does not contribute to the overall complexity.

Example 3.8 Let p = 83 andO = Z[√−21], the ring of integers of K = Q(
√−21). We see

p is inert inO so K embeds into the quaternion algebra End0(E) for any supersingular E over
Fp . Now, let E/F

2
p be theO-oriented curve y2 = x3 + x , we find the orientation by finding

an endomorphism ω with N (ω) = 21 = 3 · 7 and Tr(ω) = 0. From E we pick a 3-isogeny
to y2 = x3 + 32x + 38

√−1, this is also O-oriented. Then we pick a horizontal 7-isogeny
which has codomain y2 = x3 + 26x . This curve is isomorphic to E . By composing maps
we get ω : E −→ E . Finally we notice ω �= −ω̃ so the endomorphism has a non-zero trace.
But by post-composing with an automorphism ι on E , we get a trace-zero endomorphism of
degree 21.

If α is a generator ofO (d �≡ −1 mod 4), then ϕ determines anO-orientation and we are
done. Otherwise, Z[α] has index 2 inO (d ≡ −1 mod 4), and ω = (1+ α)/2 generatesO.
Thenϕ determines an imprimitiveZ[α]-orientation of E . This orientation cannot be primitive,
otherwise, we would have �O�Z[α] ≥ p2 i.e. 4�2

O ≥ p2, which is a contradiction since we
assumed that p > |�O|max1≤i≤r 	i ≥ 2|�O|. It follows that (ϕ + 1)/2 is well defined and
induces an O-orientation on E : ω = (α + 1)/2 �−→ (ϕ + 1)/2.

Remark 3.9 (Efficient representation) Knowing how to evaluate ϕ (as the composition ϕr ◦
· · · ◦ϕ1), we efficiently evaluate (ϕ+ 1)/2 as follows: if P ∈ E(Fpk ), we find P ′ ∈ E(Fp2k )

such that [2]P ′ = P and compute ϕ(P ′) + P ′. Assuming the 	i are polynomial in log(d),
the list of isogenies (ϕr , · · · , ϕ1) defines an efficient representation of both ϕ and (ϕ+ 1)/2.

We summarize all the steps to determine anO-orientation in Algorithm 3.1.

123



S. Arpin et al.

Algorithm 3.1: Algorithm to solve the O-Orienting Problem 2.4 with an oracle for the
Decisional O-Orienting Problem 2.3, special discriminant.

Data: A supersingular elliptic curve E0/Fp2 ; the maximal order O of Q(
√−d), where d :=∏r

i=1 	i

is a product of small distinct primes, where p > |�O|max1≤i≤r 	i ; an oracle IsOrientableO
for the Decisional O-Orienting Problem 2.3.

Result: If E0 is O-orientable, an efficient representation (as defined in 2.8) of an endomorphism
ϕ0 ∈ End(E0) defining an O-orientation of E0.

1 if not IsOrientableO(E0) then
2 Return “E0 is not O-orientable";
3 end
4 Endo←− [];
5 for i = 1 to r do

6 Compute the set {Ei−1,k }	i+1k=1 of codomains of the (	i + 1) degree-	i isogenies from Ei−1;
7 Looking←− True;
8 k ←− 1;
9 while Looking and k ≤ (	i + 1) do

10 if IsOrientableO(Ei−1,k ) then
11 Ei ←− Ei−1,k ;
12 Compute the degree-	i isogeny ϕi : Ei−1 −→ Ei ;
13 Append ϕi to Endo;
14 Looking←− False;
15 end
16 k ←− k + 1;
17 end
18 Test all isomorphisms β : Er −→ E0 until β ◦ ϕr ◦ · · · ◦ ϕ1 has trace zero;
19 Replace ϕr by β ◦ ϕr in Endo;
20 end
21 Return Endo;

Theorem 3.10 Let d := ∏r
i=1 	i be a product of small distinct primes, O be the maximal

order of Q(
√−d) and p > |�O|max1≤i≤r 	i . Then, over Fp2 , Algorithm 3.1 reduces the

O-Orienting Problem (Problem 2.4) to the Decisional O-Orienting Problem (Problem 2.3)
in polynomial time in log(p) and max1≤i≤r 	i .

Proof We justified above that this algorithm terminates and is correct. For all i ∈ {1, ..., r},
this algorithm computes the 	i + 1 curves which are 	i -isogenous to Ei−1, which costs
Õ(	2i log(p)) operations over Fp2 by Sect. 2.4. It calls the oracle IsOrientableO 	i + 1
times and computes one 	i -isogeny between j(Ei−1) and j(Ei ), which costs on average
Õ(	2i log(p)) operations over Fp2 by Sect. 2.5. The number of isomorphisms β : Er −→ E0

is O(1). Using [58, Sect. 5], we compute the trace of β ◦ϕr ◦ · · · ◦ϕ1 on line 18 of Algorithm
3.1 in polynomial time in log(p), r = O(log(p)) and max1≤i≤r 	i . Operations over Fp2 have
a polynomial cost in log(p) in terms of bit operations. Hence, the total cost is polynomial in
log(p) and max1≤i≤r 	i . ��

4 Solving theO-orienting problemwith a decision oracle

We remind the reader that all orientations discussed are primitive orientations. The oracle
which we use to solve the Decisional O-Orienting Problem 2.3 is assumed to be perfect.
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4.1 Description of the algorithms

Let O be an imaginary quadratic order with general discriminant �O. Given access to an
oracle IsOrientableO for the DecisionalO-Orienting Problem 2.3, we solve theO-Orienting
Problem 2.4 finding a anO-orientation ι : O ↪→ End(E) of any given supersingular elliptic
curve E/Fp2 if it exists, and returning Null otherwise.

The idea is similar the case of special discriminant considered in Sect. 3. We compute an
endomorphism corresponding to a generator ofO as a chain of horizontal isogenies of small
degrees. However, two difficulties arise. First, the canonical generator ω := (s +√�O)/2
with s := �O mod 2 of O is not smooth in general. We have to find another smooth
generator θ of O. Second, if we denote ϕ := ι(θ) and decompose ϕ := ϕr ◦ · · · ◦ ϕ1 as a
product of horizontal isogenies of degrees 	i , · · · , 	r respectively, we may not be able to find
the ϕi simply by using the oracle IsOrientableO as in Sect. 3. We are no longer guaranteed
that 	i | �O, so there may be 1 + (�O/	i ) = 2 horizontal isogenies of degree 	i from
a O-oriented elliptic curve. To search for ϕ, starting at root E we fill a binary tree whose
nodes areO-oriented elliptic curves and edges are horizontal isogenies.We call such a tree an
O-oriented (	1, · · · , 	r )-isogeny tree, see Definition 4.1. The endomorphism ϕ is a branch
of this tree with leaf E .

Definition 4.1 An O-oriented (	1, · · · , 	r )-isogeny tree is a binary tree of height r whose
nodes are (primitively) O-oriented supersingular elliptic curves and such that every node
Ei−1 of depth i ∈ {1, · · · , r} has children that are horizontally 	i -isogenous to Ei−1.

To optimize the tree search,wepropose ameet-in-themiddle strategywhere twohalf-depth
such trees are computed starting at E instead of a single one:

(1) Find a generator θ of O of B-smooth norm N (θ) :=∏r
i=1 	i .

(2) Starting at E , compute O-oriented (	1, · · · , 	s)-isogeny tree T1 and an O-oriented
(	s+1, · · · , 	r )-isogeny tree T2 (with s � r/2).

(3) Find a matching leaf in T1 and T2.
(4) Extract the corresponding endomorphism ϕ ∈ End(E).
(5) Infer from ϕ = ι(θ) an efficient representation of the canonical generator ϕ0 := ι(ω) (in

the sense of Definition 2.8).

We explain each step in detail in the following paragraphs.

4.1.1 Finding a smooth norm generator

LetO be an imaginary quadratic order andω be a generator.Wewant to find another generator
θ ofOwith smooth norm N (θ) =∏r

i=1 	i . The computation of ϕ = ϕr ◦ · · · ◦ϕ1 associated
to θ is exponential in the 	i and r , so we require the 	i and 2r to be subexponential in
log(|�O|). For technical reasons (see Lemma 4.3), N (θ) should also be non-square and
coprime to �O. In summary, we look for a generator θ of ns-(B, rm,�O)-smooth norm, in
the sense of Definition 4.2, with B and 2rm subexponential in log(|�O|).
Definition 4.2 An integer N ∈ N is (B, rm, d)-smooth when its decomposition into prime
factors N = ∏r

i=1 	i satisfies r ≤ rm , 	i ≤ B, and 	i � d for all i ∈ {1, · · · , r}. We say that
N is ns-(B, rm, d) -smooth when it is (B, rm, d)-smooth and not a square.

We look for θ of ns-(B, rm,�O)-smooth norm the form θ := a + ω with a ∈ Z to
be determined. There is no better known method to find a than to sample a at random and
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to test whether N (a + ω) is ns-(B, rm,�O)-smooth. To make sure N (a + ω) is close to
N (ω), we sample a ∈ {−�√N (ω)�, · · · , �√N (ω)�}. We have N (ω) = (|�O| + t2)/4 with
t := Tr(ω) ∈ {0, 1}. It follows that:

|�O|
4

= N (−t/2+ ω) ≤ N (a + ω) ≤ N (−√N (ω)+ ω) ≤ |�O|
Since B is subexponential in log(|�O|), the optimal known way to test the B-smoothness
of N (a + ω) is the method introduced in Sect. 2.7 using ECM with time complexity
LB(1/2,

√
2). Algorithm 4.1 presenting the search for θ = a + ω follows.

Algorithm 4.1: FindSmoothGen finding a smooth generator of an imaginary quadratic
order O.
Data: The discriminant �O of an imaginary quadratic order O and smoothness parameters B > 0 and

rm ∈ Z>0.
Result: A generator θ of O having ns-(B, rm , �O)-smooth norm N (θ) and its prime factors

	1, · · · , 	r (with multiplicity).
1 s ←− �O mod 2;
2 ω ←− (s +√�O)/2;
3 repeat
4 repeat
5 repeat

6 Sample a
$←− {−�√N (ω)�, · · · , �√N (ω)�};

7 until N (a + ω) ∧�O = 1 and
√
N (a + ω) /∈ Z;

8 R ←− SmoothFact(N (a + ω), B) (Algorithm 2.2);
9 until R �= ⊥;

10 	1, · · · , 	r ←− R;
11 until r ≤ rm ;
12 Return a + ω and 	1, · · · , 	r ;

4.1.2 Filling theO-oriented isogeny trees

Let E/Fp2 be anO-orientable elliptic curve and splitting primes 	1, . . . , 	s ≤ B. We explain
here how to fill T , the O-oriented (	1, . . . , 	s)-isogeny tree starting at E .

We assume p > B|�O| so any O-orientable curve admits a unique O-orientation up to
conjugation by Corollary 3.5(i). Hence, every node of T can be represented by j-invariant
(the root E0 := E included). If Ei−1 is a node of depth i ∈ {1, · · · , s} of T , its children
Ei,1 and Ei,2 are the only two O-orientable curves that are 	i -isogenous to Ei , given by
the action of ideals li , li above 	i . As in Sect. 3, to find Ei,1 and Ei,2 we compute the
codomain j-invariants of all degree-	i isogenies Ei −→ E ′ and apply the decision oracle
to see which are O-orientable. Determining such j-invariants can be done using modular
polynomials in Õ(	2i log(p)) operations over Fp2 , as in Sect. 2.4. The tree filling algorithm
TreeFill (Algorithm 4.2) follows.

4.1.3 From a tree match to a generating endomorphism

Assume we have found θ , a generator of O with ns-(B, rm,�O)-smooth norm N (θ) =
∏r

i=1 	i . Let ι : O ↪→ End(E) denote the orientation with ϕ := ι(θ). Then, we may
decompose ϕ := ϕr ◦ · · · ◦ ϕ1, where ϕi is an 	i -isogeny for all i ∈ {1, · · · , r}.
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Algorithm 4.2: TreeFill, the O-oriented isogeny tree filling algorithm.
Data: An imaginary quadratic orderO such that |�O| < p/B, anO-orientable curve E/Fp2 , splitting

primes 	1, · · · , 	s ≤ B and an oracle IsOrientableO for the DecisionalO-Orienting Problem 2.3.
Result: The O-oriented (	1, · · · , 	s )-isogeny tree T starting at E .

1 Initialize T at E0 := E ;
2 for i = 1 to s do
3 for j(Ei−1) ∈ Leaves(T ) do
4 Compute 
	i ( j(Ei−1), Y );
5 Find Si ⊂ Fp2 , the set of roots of 
	i ( j(Ei−1), Y );

6 for j(Ei ) ∈ Si do
7 if IsOrientableO( j(Ei )) then
8 Append j(Ei ) as a child of j(Ei−1) in T ;
9 end

10 end
11 end
12 end
13 Return T ;

Lemma 4.3 Assuming N (θ) = deg(ϕ) is coprime with�O, all the isogenies ϕi in the decom-
position of ϕ are horizontal.

Proof LetO1 be the order associated to ι1 := (ϕ1)∗(ι) i.e. such that ι1(O1) = End(ϕ1(E))∩
ι1(K ). Since N (θ) = deg(ϕ) is coprime with �O, 	1 does not divide the conductor ofO so
ϕ1 is horizontal or descending by Proposition 3.1(i). It follows that O1 ⊆ O. Besides,

ι1(θ) = 1

	1
ϕ1 ◦ ι(θ) ◦ ϕ̂1 = ϕ1 ◦ ϕr ◦ · · · ◦ ϕ2 ∈ End(ϕ1(E)).

Hence, θ ∈ O1 soO ⊆ O since θ generatesO. Consequently,O1 = O and ϕ1 is horizontal.
We obtain easily by induction that ϕ2, · · · , ϕr are also horizontal.

��
Since the ϕi are horizontal, we may useO-oriented isogeny trees to find these isogenies.

Let s := �r/2�, T1 the O-oriented (	1, · · · , 	s)-isogeny tree starting at E0 := E and T2
theO-oriented (	s+1, · · · , 	r )-isogeny tree starting at E . Assume we have found a common
leaf Es in T1 and T2. The branch of T1 of leaf Es is a chain of horizontal 	i -isogenies
ψi : Ei−1 −→ Ei for i ∈ {1, · · · , s} and the branch of T2 of leaf Es (taken depth first) is a
chain of horizontal 	i -isogeniesψi : Ei−1 −→ Ei for i ∈ {s+1, · · · , r}, with Er = E0 = E .
The isogeny ψ := ψr ◦ · · · ◦ ψ1 is a horizontal isogeny of degree

∏r
i=1 	i = N (θ), but we

do not know a priori if ψ = ϕ = ι(θ).

Lemma 4.4 Let (E0, ι) be an O-oriented supersingular elliptic curve and ψ ∈ End(E0)

a horizontal endomorphism of degree coprime to p. Then, there exists α ∈ O such that
ψ = ι(α).

Proof Since ψ is horizontal, ψ∗(ι) defines an O-orientation on E0, like ι. Since |�O| < p,
by Theorem 3.4, we must have ψ∗(ι)(O) = ι(O), so that ψ∗(ι) = ι or ψ∗(ι) = ι, where
ι(α) := ι(α) for all α ∈ K .

If ψ∗(ι) = ι, ψ commutes with ι(K ) (K := O⊗Z Q), so ψ ∈ ι(K ) ∩ End(E0) = ι(O)

and ψ = ι(α) for some α ∈ O.
Suppose ψ∗(ι) = ι. As Onuki proved in [46, Proposition 3.3 and Theorem 3.4], (E, ι)

and (E (p), (πp)∗(ι)) are in the same orbit of the action of Cl(O) on the set SSpr
O (p) of
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(primitively) O-oriented supersingular elliptic curves over Fp2 (πp : E −→ E (p) being
the p-Frobenius isogeny). Hence, there exists an ideal b ⊂ O of norm coprime with p,
such that (E, ι) = b · (E (p), (πp)∗(ι)), so that ψ∗(ι) = ι = (ϕb ◦ πp)∗(ι). Consequently,
π̂p ◦ ϕ̂b ◦ ψ commutes with ι(K ), so there exists α ∈ O such that π̂p ◦ ϕ̂b ◦ ψ = ι(α) and
p | N (α). Since SSpr

O (p) is not empty (it contains E0), p is either inert or ramified in K by
[46, Proposition 3.2]. The prime p cannot be ramified, otherwise we would have p | �O, so
|�O| ≥ p. If p is inert and p | N (α), then p | α so that p2 | N (α) and p | deg(ψ)N (b).
Since N (b) is coprime with p, p | deg(ψ) which contradicts our assumption.

It follows that ψ∗(ι) = ι. ��
Lemma 4.5 Let θ := a + ω ∈ O, with a ∈ Z, |a| ≤ √

N (ω). Assume N (θ) is not a square
and �O �= −3,−4. The only α ∈ O such that N (α) = N (θ) are α = ±θ,±θ .

Proof Let α := b + cω ∈ O with b, c ∈ Z such that N (α) = N (θ). Then

b2 + tbc + c2n = N (α) = N (θ) = a2 + ta + n, (7)

with t := Tr(ω) ∈ {0, 1} and n := N (ω) = (t2 + |�O|)/4.
If c2 > 1, the minimum value of b2 + tbc + c2n is reached when b = −ct/2, so

b2 + tbc + c2n ≥
(

n − t2

4

)

c2 = |�O|c2
4

≥ |�O|. (8)

But, by (7) and since |a| ≤ √n, we have:

N (θ) ≤ 2n + t
√
n < |�O|

which contradicts (8).
So c2 ≤ 1 and c ∈ {0,±1}. If c = 0, then N (θ) is a square which is not possible. If

c = 1, then (7) becomes (a − b)(a + b + t) = 0 and we have b = a or b = −a − t . If
c = −1, then (7) becomes (a + b)(a − b+ t) = 0 and we have b = a or b = a − t . Hence,
(b, c) ∈ {(a, 1), (−a − t, 1), (−a,−1), (t + a,−1)} and α ∈ {±θ,±θ}. ��
Remark 4.6 The cases of �O = −3,−4 are excluded from this lemma because in those
cases, we have a very simple way to find the orientation:

If �O = −3, then O = Z[ζ3], with ζ3 := (1 + √−3)/2 so any elliptic curve E that is
O-oriented contains an automorphism of order 3. By [60, Theorem III.10.1], we must have
j(E) = 0, so E is given by the Weierstrass equation y2 = x3 + 1 (up to isomorphism), and
ζ3 corresponds to the automorphism (x, y) ∈ E �−→ (ξ3x, y) ∈ E , where ξ3 is a primitive
third root of unity in Fp2 .

Similarly, if �O = −4, thenO = Z[i] so any elliptic curve E that isO-oriented contains
an automorphism of order 4. By [60, Theorem III.10.1], we must have j(E) = 1728, so E
is given by the Weierstrass equation y2 = x3 + x (up to isomorphism), and i corresponds to
the automorphism (x, y) ∈ E �−→ (x, ay) ∈ E , where a is a square root of −1 in Fp2 .

By Lemmas 4.4 and 4.5, we must have ψ = ±ι(θ) = ±ϕ or ψ = ±ι(θ) = ±ϕ̂. The sign
can be determined by computing Tr(ψ) using a generalization of Schoof’s algorithm [58,
Sect. 5] and comparing to Tr(θ). We recover ι or ι : O ↪→ End(E) by mapping θ to ±ψ .

However, the factors ψi of ψ have subexponential degree so they do not provide an
efficient representation of ψ (enabling to evaluate ψ in polynomial time for instance). We
applyEfficientRepAlgorithm2.1 to get an efficient representationof ι(ω)or ι(ω) = ±ψ−[a].
The search to decision reduction Algorithm 4.3 follows.

For efficiency, only j-invariants are stored in the trees and not the 	i -isogenies relating
them so we use the method of Sect. 2.5 to recover them in time Õ(	2i log(p)).
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Algorithm 4.3: Algorithm to solve the O-Orienting Problem 2.4 with an oracle for the
Decisional O-Orienting Problem 2.3.
Data: A supersingular elliptic curve E/Fp2 , smoothness parameters B, rm , D, an imaginary quadratic

order O of discriminant �O �= −3,−4 such that |�O| < p/B and canonical generator ω along
with an oracle IsOrientableO for the Decisional O-Orienting Problem 2.3.

Result: If E is O-orientable, an efficient representation F (as defined in 2.8) of an endomorphism
ϕ0 ∈ End(E) such that deg(ϕ0) = N (ω) and Tr(ϕ0) = Tr(ω), where ω is the canonical
generator of O.

1 if not IsOrientableO(E) then
2 Return ⊥;
3 end
4 θ, 	1, · · · , 	r ←− FindSmoothGen(�O, B, rm ) (Algorithm 4.1);
5 s ←− �r/2�;
6 T1 ←− TreeFill(O, E, 	1, · · · , 	s ) (Algorithm 4.2);
7 T2 ←− TreeFill(O, E, 	r , 	r−1, · · · , 	s+1);
8 Search for a matching leaf j(Es ) ∈ Leaves(T1) ∩ Leaves(T1);
9 Recover from the branch of leaf j(Es ) in T1 the 	i -isogeny ψi : Ei−1 −→ Ei for all i ∈ {1, · · · , s}
(using Section 2.5);

10 Recover from the branch of leaf j(Es ) in T2 the 	i -isogeny ψi : Ei−1 −→ Ei for all
i ∈ {s + 1, · · · , r};

11 Let ψ := ψr ◦ · · · ◦ ψ1;
12 Compute Tr(ψ) using Schoof’s algorithm [58, Section 5];
13 s ←− �O mod 2;
14 ω ←− (s +√�O)/2;
15 Let ε := Tr(ψ)/Tr(θ) and θ := a + ω;
16 F ←− EfficientRep([ε] ◦ ψ − [a], D) (Algorithm 2.1);
17 Return F ;

4.2 Complexity analysis

In the following, we shall count arithmetic operations over various rings (Z, Fp2 and exten-
sions of Fp2 ). To provide a unified way to present time complexity results, we shall count
bit operations. We shall say an algorithm terminates in time O( f (n)) when it uses at most
O( f (n)) bit operations. We shall denote by M(p) the maximal number of bit operations
required for an operation over Fp (addition, substraction, multiplication, inversion or sam-
pling of one element).

4.2.1 Complexity of the smooth norm search (Algorithm 4.1)

To estimate the complexity of Algorithm 4.1, we need to determine the probability that
N (a+ω) is ns-(B, rm,�O)-smooth.We have proven results on the distribution of B-smooth
integers among random integers but not for random values of quadratic integer polynomials.
For that reason, we introduce the following heuristic assumption.

Heuristic 4.7 Let f := X2 − t X + N ∈ Z[X ], a following the uniform distribution
in {−�√N�, · · · , �√N�}, and b following the uniform distribution in {0, · · · , N }. Then
there exist constants C > 0, c > 0 such that for all N ∈ Z>0, logc(N ) ≤ B ≤ N,
log(N )/log(B) ≤ r ≤ log2(N ) and d ≤ 4N, we have:

P( f (a) is ns− (B, r , d)− smooth) ≥ C · P(b is ns− (B, r , d)− smooth).

This heuristic assumption is supported by an estimate on the probability for a given
polynomial to take B-smooth values, which is very similar to proven estimates on the B-
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smoothness probability of integers [17, Theorem 1]. Such an estimate on polynomials has
been proved in [42, Theorem 1.1] under a dual hypothesis on the number of prime values of
polynomials when B is in a very tight range. It has been conjectured [29, Equation 1.20] that
this result holds for broader values of B.

Lemma 4.8 Let �r (x, y, d) denote the number of (y, r , d)-smooth integers ≤ x:

�r (x, y, d) = #

{

n ≤ x

∣

∣

∣

∣

n =
s
∏

i=1
	i , s ≤ r and ∀ 1 ≤ i ≤ s, 	i ≤ y and 	i � d

}

.

Then, if r ≥ log(x)/ log(y),

�r (x, y, d) ≥
(

π(y)− π(z)− ωy(d)+ � log(x)log(y)�
π(y)− π(z)− ωy(d)

)

,

with z := x1/r , π(t) the number of prime numbers ≤ t and ωy(d) the number of distinct
prime divisors ≤ y of d.

Proof The proof follows from [17, §2]. We have the following inequalities (following from
set inclusions):

�r (x, y, d) = #

{

(α	)	≤y
	�d

∈ N
π(y)−ωy(d)

∣

∣

∣

∣

#{	 ≤ y, 	 � d | α	 �= 0} ≤ r

and
∑

	≤y

α	 log(	) ≤ log(x)

}

≥ #

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(α	)z<	≤y
	�d

∈ N
π(y)−π(z)−ωy (d)

∣

∣

∣

∣

∑

z<	≤y
	�d

α	 log(	) ≤ log(x)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

≥ #

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(α	)z<	≤y
	�d

∈ N
π(y)−π(z)−ωy (d)

∣

∣

∣

∣

∑

z<	≤y
	�d

α	 ≤
⌊

log(x)

log(y)

⌋

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

To conclude, we compute the cardinality of

S(k, n) :=
{

(α1, · · · , αk) ∈ N
k
∣

∣

∣

∣

k
∑

i=1
αi ≤ n

}

for k, n ∈ Z>0 and apply it to the last set in the inequalities above. The set S(k, n) is in
bijection with the subsets of k elements in {1, · · · , n + k}, via the maps:

{s1 < · · · < sk} �−→ (s1 − 1, s2 − s1 − 1, · · · , sk − sk−1 − 1)

(α1, · · · , αk) �−→ {α1 + 1, α1 + α2 + 2, · · · , α1 + · · · + αk + k}.
It follows that

#S(k, n) =
(

n + k

k

)

.

��
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Lemma 4.9 Let ψ(x, y) be the number of y-smooth numbers ≤ x. Assume that log(y) 
log(x) and log(y) " log log(x). Then

log

(

ψ(x, y)

x

)

∼ − log(x) log log(x)

log(y)
.

Proof It follows from [17, Theorem 1] that for all 2 < y ≤ x :

logψ(x, y) =
(

log

(

1+ y

log(x)

)

log(x)

log(y)
+ log

(

1+ log(x)

y

)

y

log(y)

)

·
⎛

⎝1+ O

(

1

log(y)

)

+ O

(

1

log log(x)

)

+ O

⎛

⎝

(

1+ log(x)

log(y)

)−1⎞

⎠

⎞

⎠ . (9)

Since log(y) " log log(x), we have y " log2(x), so that

log

(

1+ y

log(x)

)

log(x)

log(y)
=
(

log

(

y

log(x)

)

+ log

(

1+ log(x)

y

))

log(x)

log(y)

= log(x)− log(x) log log(x)

log(y)
+ log2(x)

y log(y)
(1+ o(1))

= log(x)− log(x) log log(x)

log(y)
+ o(1)

and

log

(

1+ log(x)

y

)

y

log(y)
= log(x)

log(y)
(1+ o(1)).

It follows finally by 9 that

log

(

ψ(x, y)

x

)

∼ − log(x) log log(x)

log(y)
.

��

Lemma 4.10 Let ψ∗
r (x, y, d) be the number of ns-(y, r , d)-smooth integers ≤ x. Let z :=

x1/r and ε := z/y. Assume that r ≥ log(x)/ log(y), d = O(x), log(y)  log(x), log(y) "
log log(x) and log(1− ε)  log log(y). Then

log

(

ψ∗
r (x, y, d)

x

)

∼ − log(x) log log(x)

log(y)

as x, y, r , d −→ +∞.

Proof The number of squares smaller than x being bounded by
√
x , we have

ψ∗
r (x, y, d) ≥ ψr (x, y, d)−√x .

And by lemma 4.8,

ψr (x, y, d) ≥
(

n + k

k

)
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with k := π(x)− π(z)− ωy(d), n := �log(x)/ log(y)�, so that

logψr (x, y, d) ≥ log

(

n + k

k

)

= (n + k) log(n + k)− k log(k)− n log(n)

+1

2
log(n + k)− 1

2
log(k)− 1

2
log(n)+ O(1). (10)

We have π(t) = t/ log(t)+ O(t/ log(t)2) as t −→ +∞ and

ωy(d) = O(log(d)) = O(log(x)) = o(y/ log2(y)),

since y " logα(x) for all α > 0, because log(y) " log log(x). It follows that

k = π(x)− π(z)− ωy(d) = (1− ε)y

log(y)
+ O

(

y

log(y)2

)

.

Besides, we have log(1− ε)  log log(y), so

log((1− ε) log(y)) = log(1− ε)+ log log(y) ∼ log log(y)

so log((1 − ε) log(y)) −→ +∞ and (1 − ε) log(y) −→ +∞ i.e. 1 − ε " 1/ log(y). It
follows that

k ∼ (1− ε)y

log(y)
.

Furthermore, log(y) " log log(x) so

log

(

y

log2(x)

)

= log(y)− 2 log log(x) ∼ log(y)

so y/ log2(x) −→ +∞ and y " log2(x). It follows that

n2

k
∼ log2(x)

(1− ε)y log(y)
= o

(

log2(x)

y

)

= o(1),

so 10 becomes

logψr (x, y, d) ≥ n log

(

k

n

)

+ n − 1

2
log(n)+ O(1)

= log(x)

log(y)
log

(

(1− ε)y

log(x)

)

+ log(x)

log(y)
− 1

2
log

(

log(x)

log(y)

)

+ O(1)

= log(x)− log(x) log log(x)

log(y)
+ o

(

log(x) log log(y)

log(y)

)

(since log(1− ε)  log log(y))

= log(x)− log(x) log log(x)

log(y)
(1+ o(1)).

It follows that

ψr (x, y, d)√
x

≥ exp

(

1

2
log(x)− log(x) log log(x)

log(y)
(1+ o(1))

)

= exp

(

1

2
log(x)(1+ o(1))

)

−→ +∞,
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since log(y) " log log(x). Finally, we have

log

(

ψ∗
r (x, y, d)

x

)

= log

(

ψr (x, y, d)

x

)

+ log

(

1−
√
x

ψr (x, y, d)

)

≥ − log(x) log log(x)

log(y)
(1+ o(1))+ o(1).

Besides, ψ∗
r (x, y, d) ≤ ψ(x, y), so we conclude by Lemma 4.9. ��

Proposition 4.11 Let � := |�O| and ε := �1/rm/B. We assume that B is subexponential
in log(�), ε < 1 and log(1 − ε)  log log(B). Then Algorithm 4.1 has expected time
complexity (in bit operations)

TFS(�, B, rm) = exp

(

(1+ o(1))
log(�) log log(�)

log(B)

+(
√
2+ o(1))

√

log(B) log log(B)

)

,

assuming the ECM method has the complexity conjectured in [38, Conjecture 2.10].

Proof By Heuristic 4.7 (since ε < 1 i.e. rm ≥ log(�)/ log(B)), the probability to find an
ns-(B, rm,�)-smooth value of N (a + ω) stisfies

P(B, rm,�) ≥ C · ψ∗
rm (N (ω), B,�)

N (ω)
,

where C > 0 is a constant. Since N (ω) = (� + t2)/2 with t := Tr(ω) = � mod 2
and B is subexponential in log(�), we have � = O(N (ω)), N (ω) = O(�), log(B) 
log(N (ω)) and log(B) " log log(N (ω)). We also have rm ≥ log(�)/ log(B) and log(1 −
ε)  log log(B), so we may apply Lemma 4.10:

log

(

ψ∗
rm (N (ω), B,�)

N (ω)

)

∼ − log(N (ω)) log log(N (ω))

log(B)

∼ − log(�) log log(�)

log(B)
(1+ o(1)).

Hence, taking into account the ECM method complexity, Algorithm 4.1 terminates in time

TFS(�, B, rm) = LB(1/2,
√
2) polylog(�)

P(B, rm,�)
= exp

(

(1+ o(1))
log(�) log log(�)

log(B)

+ (
√
2+ o(1))

√

log(B) log log(B)

)

.

��

4.2.2 Complexity of the tree filling algorithm (Algorithm 4.2)

Proposition 4.12 With inputs B > 0, an imaginary quadratic order O with |�O|B < p,
primes 	1, · · · , 	s ≤ B splitting inO and an oracle IsOrientableO for Problem 2.3 running
in constant time, Algorithm 4.2 runs in time

O
(

2s B2 polylog(B) log(p)M(p)
)

,
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where M(p) is the time complexity of operations over Fp. It also uses O(2s log(p)) bits of
memory.

Proof Filling-in tree T in Algorithm 4.2 costs for all 1 ≤ i ≤ s, 2i−1 calls to
IsOrientableO and the computation of 2i−1 sets of j-invariants 	i -isogenous to the same
elliptic curve. Each call to IsOrientableO costs O(1) and each j-invariants computation
costs O(	2i polylog(	i ) log(p)) operations over Fp2 by Sect. 2.4. Arithmetic operations over
Fp2 cost O(M(p)). Hence, the total cost of filling tree T is

Ttree(s, B, p) =
s
∑

i=1
2i−1O

(

	2i polylog(	i ) log(p)M(p)
)

=
s
∑

i=1
2i−1O(B2 polylog(B) log(p)M(p))

= O
(

2s B2 polylog(B) log(p)M(p)
)

.

The memory used by Algorithm 4.2 is the size of tree T , which contains
∑s

i=1 2i−1 = 2s−1
j-invariants defined over Fp2 . Each j-invariant takes 2 log(p) bits to store, so the algorithm
uses O(2s log(p)) bits of memory. ��

4.2.3 Complexity of the search to decision reduction algorithm (Algorithm 4.3)

Theorem 4.13 Let � := |�O|. Assume Heuristic 4.7 and that the ECM method has the
complexity conjectured in [38, Conjecture 2.10]. Then, with smoothness parameters

B := L�

(

1

2
,

√
2

2

)

, rm := #
√

2 log(�)

log log(�)
$ + 1 and D := O(log(p))

and provided B� < p, Algorithm 4.3 terminates in time

L�(1/2,
√
2) log(p)M(p).

It also requires

O
(

2
√

2 log(�)/ log log(�) log(p)
)

bits of memory.

Proof We already have proved the termination of Algorithm 4.3 when B� < p. This is a
consequence of Lemma 4.3, Lemma 4.4 and Heuristic 4.7 (which prove that TreeFill and
FindSmoothGen terminate).

On the whole, the total time complexity (in bit operations) of Algorithm 4.3 is

T (B,�, rm, p) = TFS + 2Ttree + Tiso + Ttrace + Trep,

where:

• TFS is the execution time of FindSmoothGen (Algorithm 4.1), given by Proposition
4.11:

TFS(�, B, rm) = exp

(

(1+ o(1))
log(�) log log(�)

log(B)

+ (
√
2+ o(1))

√

log(B) log log(B)

)

.
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• Ttree is the execution time of TreeFill (Algorithm 4.2), given by Proposition 4.12:

Ttree(B, s, p) = O
(

2s B2 polylog(B) log(p)M(p)
)

.

with s = rm/2+ O(1).
• Tiso is the time taken in lines 9 and 10 of Algorithm 4.3 to recover the chain

of 	i -isogenies ψi : Ei−1 −→ Ei , given the sequence of j-invariants j(E0) =
j(E), j(E1), · · · , j(Er ) = j(E). By Sect. 2.5, recovering an 	i -isogeny from the j-
invariants of its domain and codomain costs O(	2i polylog(	i ) log(p)) operations over
Fp2 . Hence, we have

Tiso = O(rm B2 polylog(B) log(p)M(p))

• Ttrace is the time needed to compute the trace of ψ = ψr ◦ · · · ◦ ψ1. We use Schoof’s
algorithm [58, Sect. 5]. Namely, we look for primes p1, · · · , pt such that

∏t
i=1 pi >

4
√

deg(ψ) and evaluateψ on E[pi ] to find τi ∈ Z/piZ such thatψ2−[τi ]ψ+[deg(ψ)]
is zero on E[pi ] and recover Tr(ψ) by solving Tr(ψ) ≡ τi mod pi for all i ∈ {1, · · · , t}
via Chinese remainder theorem. Since deg(ψ) = N (θ) ≤ �, we can choose t =
O(log(�)) and pi = O(log(�)). Hence, the dominant cost is the evaluation via ψ of
O(log(�)) points all defined over an extension of degree O(log(�)) of Fp2 (by Lemma
2.12). This cost amounts to

Ttrace(B, rm,�, p) = O(rm B log3(�)M(p)).

• Trep is the running time of EfficientRep (Algorithm 2.1). Since deg([ε] ◦ ψ − [a]) =
N (ω) ≤ (�+ 1)/4, we can find a D-powersmooth number coprime with deg([ε] ◦ψ −
[a]) when D = O(log(�)) (line 1 of Algorithm 2.1). Hence, by Proposition 2.13, the
dominant cost of the call to EfficientRep is given by O(log(�)) evaluations of ψ on
points defined over an extension of degree O(log(�)) of Fp , which amounts to

Trep(�, B, rm, p) = O(rm B log3(�)M(p)).

It follows that:

T (B, rm,�, p) = TFS + 2Ttree + Tiso + Ttrace + Trep

= exp

(

(1+ o(1))
log(�) log log(�)

log(B)

+ (
√
2+ o(1))

√

log(B) log log(B)

)

+ M(p) log(p) exp

(

log(2)rm
2

+ 2 log(B)

)

But by Proposition 4.11, we have rm = log(�)/ log(Bε) with log(1− ε)  log log(B).
We can impose that ε −→ 0, so that log(1− ε)  log log(B) and that log(ε)  log(B), so
that rm ∼ log(�)/ log(B). Heuristically, the quantity T (�, B, rm, p) is minimal when the
arguments of the two exponentials are close, i.e. when

log(�) log log(�)

log(B)
� 2 log(B),

the other terms being negligible. Hence, we choose

B = exp

(√
2

2

√

log(�) log log(�)

)

= L�

(

1

2
,

√
2

2

)

,
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so that

T (B, rm,�, p) = M(p) log(p)L�

(

1

2
,
√
2

)

.

and

rm =
√

2 log(�)

log log(�)

(

1+
√
2 log(ε)

√

log(�) log log(�)

)−1

=
√

2 log(�)

log log(�)
− 2 log(ε)

log log(�)
.

Hence, we can set rm := #√2 log(�)/ log log(�)$ + 1, so that log(ε) = O(log log(�)) =
o(log(B)).

The space complexity is dominated by the trees T1 and T2, so Algorithm 4.3 uses

O(2rm/2 log(p)) = O
(

2
√

2 log(�)/ log log(�) log(p)
)

bits of memory by Proposition 4.12. ��
Corollary 4.14 Given an imaginary quadratic order O of discriminant �O and a prime
p > L |�O|(1/2,

√
2/2)|�O|, then, overFp2 theO-orienting Problem (Problem 2.4) reduces

to the Decisional O-orienting Problem (Problem 2.3) in time

L |�O|(1/2,
√
2) log(p)M(p),

using

O
(

2
√

2 log(|�O|)/ log log(|�O|) log(p)
)

bits of memory.

5 O-orienting problem for quaternion orders

Isogeny problems can often be translated to quaternion problems via the Deuring correspon-
dence, and in many cases, the quaternion problems are easier to solve. In this section we
consider the quaternion analogue of theO-Orienting Problem as it was stated earlier:

Problem 2.6 (Quaternion Order Embedding Problem) Given a maximal quaternion order
O ⊂ Bp,∞ and an imaginary quadratic orderO which embeds into O, find the embedding.

Similarly to the curve setting, we define a primitiveO-embedding ofO to be an embedding
ι : O ↪→ O which cannot be extended to a superorder of O, also known as an optimal
embedding [62, Chapter 30]. We also address this problem for primitive embeddings.

In this section, we present a general algorithm and analyse its complexity, noting special
cases. For complexity analysis we assume an efficient factorization oracle exists, however,
we provide a practical alternative for running the algorithm without such an oracle. For
embedding small discriminant quadratic orders O, our algorithm improves the state of the
art by being efficient up to disc(O) = O(p).

Before moving on to the actual algorithms we give a brief technical overview of the main
idea. First, we compute a short prime norm N (≈ √

p) connecting ideal between a quaternion
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order O′ isomorphic to O and a special extremal order. Our goal is to compute an element
of prescribed trace and norm in O′ and then one can easily construct an element with said
trace and norm in O as well. For simplicity assume that the prescribed trace is 0. The trace
0 part ofO′ is a rank 3 lattice and one can compute the Hermite Normal Form (HNF) of this
lattice. This means that one has a basis of the form e11i + e12 j + e13k, e22 j + e23k, e33k
and even though ei j are not likely to be integers, their denominator is a divisor of 2N . When
looking for an element of trace 0 and norm smaller than p the coefficients of this element
with respect to this HNF basis will have a very specific structure. Namely, the coefficient of
e11i+ e12 j + e13k will be smaller than p in absolute value and thus can be easily determined
by looking at the norm modulo p. Then one only has to work out the two other coefficients
which is equivalent to solving a binary quadratic form where the quadratic part is positive
definite. This can then essentially be reduced to Cornacchia’s algorithm [57]. We can extend
this to filter out imprimitive solutions.

5.1 Finding general embeddings

First, we present an algorithm for finding embeddings, and in the next section, we use this to
define primitive embeddings. Suppose we are given a maximal quaternion order O ⊂ Bp,∞
in terms of aZ-basis, and an imaginary quadratic orderO = Z[ω], by generatorω of reduced
trace t and reduced norm d .

We start with an observation: suppose an embedding ι : Z[ω] ↪→ O exists and let
α = ι(ω). Since ω2 − tω + d = 0 we must also have α2 − tα + d = 0. Hence α also
has trace t and norm d . Finding any element α of norm d and trace t is enough to define an
embedding ι, solving Problem 2.6. This is the approach we take in Algorithm 5.1, finding
α ∈ O of a given norm and trace. We make the assumption p �= 2 and conventionally use
1, i, j, k as a basis of Bp,∞ with i2 = −q and j2 = −p. If p ≡ 3 (mod 4) we take q = 1.
If p ≡ 5 (mod 8) we take q = 2. If p ≡ 1 (mod 8) we take q to be a prime q ≡ 3 (mod 4)
such that p is not a quadratic residue modulo q . While p ≡ 3 mod 4 is the most relevant
for isogeny-based cryptography, we consider general p. We fix a maximal order O0 in the
following way:

Proposition 5.1 [48, Proposition 5.2] The following definitions give amaximal order in Bp,∞
for any p �= 2:

O0 =

⎧

⎪

⎨

⎪

⎩

Z[ 1+ j
2 , i+k

2 , j, k] if p ≡ 3 mod 4

Z[ 1+ j+k
2 ,

i+2 j+k
4 , j, k] if p ≡ 5 mod 8

Z[ 1+i2 , i+ck
q ,

j+k
2 , k] if p ≡ 1 mod 8

where c is an integer such that q divides c2 p+ 1 where q and c exist by [21, Proposition 1].

Our algorithmwill work with the basis ofO in column-style Hermite normal form (HNF).
We denote the basis vectors e0, e1, e2, e3. Then we can write O as:

O = 〈e00 + e01i + e02 j + e03k,

e11i + e12 j + e13k,

e22 j + e23k,

e33k〉Z

(11)

with coefficients emn ∈ Q. For example, see the orders in Proposition 5.1 above. We know
the basis is full rank, so enn �= 0 for n = 0, 1, 2, 3, and we prove some additional properties:
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Lemma 5.2 Given the basis (emn) of a maximal order O ⊂ Bp,∞ in column-style HNF as
above, the following properties hold:

(1) emn ≥ 0 for all n,m
(2) The denominators of each rational entry emn, when expressed in simplest form, divide

K · N (I ) where K = 2, 4 or 2q depending on whether p ≡ 3 mod 4, or ≡ 5 mod 8
or ≡ 1 mod 8 respectively

(3) e00 = 1
2

(4) e22e33 ≤ N (I )
(5) e01 = 0 or e01 = 1/(2Ke22e33) where K is defined in (2)

where I = I (O0,O) := NO0O is the connecting left-ideal from O0 to O and N := [O :
O0 ∩ O].
Proof We can prove the statements as follows:

(1) Requirement of HNF.
(2) As defined, I is the connecting ideal betweenO0 andO. The ideal I is contained in both

O0 and O and N (I ) · O = I Ī ⊆ O0 [62, Proposition 16.6.15]. Therefore the largest
denominator of all emns is at most N (I ) times the largest denominator ofO0 as given in
Proposition 5.1.

(3) The trace of any element must be integral hence 2e00 ∈ Z. We must also have 1 ∈ O
hence 1 can be written as a linear combinations of the basis (ei ), where where taking the
trace gives k0e00 = 1 for some k0 ∈ Z. This implies either e00 = 1

2 or 1 and Tr(O) = Z

or 2Z respectively. The (non-reduced) discriminant of any maximal order in Bp,∞ is p2,
so by definition p2 = det(Tr(emen)) ∈ Tr(O), but p is odd, so p2 /∈ 2Z and we must
have e00 = 1

2 .
(4) As O and O0 are maximal, they both have the same discriminant. Hence the change

of basis matrix must have determinant 1 [62, Lemma 15.2.5], which means
∏

enn =
∏

fnn = 1
2·K , where ( f )n is the basis ofO0 specified in Proposition 5.1. Then using (3)

we have e11 = 1/(Ke22e33). The result follows from (2).
(5) 1 ∈ O so there is some n ∈ Z such that 1

e00
e01 − ne11 = 0. From above e00 = 1

2 , and

e11 = 1
Ke22e33

so 2e01 = n
Ke22e33

. But to be in HNF we must have already reduced e01 as
much as possible hence n = 0 or 1.

��
Further, we will also use the following lemma to bound the denominators (taken from [16,

Lemma 5.2.2]):

Lemma 5.3 Let O ⊂ Bp,∞ be a maximal order with connecting ideal I = I (O0,O), then

there exists an equivalent ideal J ∼ I with N (J ) ≤ 2
√
2

π

√
p

We now describe the algorithm. We address arbitrary trace in Remark 5.4 and Algo-
rithm 5.1 has no restrictions on the trace. However, for simplicity, we first describe the
algorithm under the assumption that the trace of ω is zero.

Step 1 :ComputeHNFPut the basis ofO into column-styleHermite normal form (HNF). In
general, we can replace the orderO by an isomorphic orderO′, having denominator
bounded by N := K · N (I ′) = O(

√
p), where I ′ is an ideal equivalent to the

connecting (O0,O)-ideal I , and where K is defined in (2) of Proposition 5.2, by
taking the ideal from Lemma 5.3. We return to this in Sect. 5.3, but for now, by
passing to the isomorphic order “closest” toO0, we assume that N is of size O(

√
p)
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Step 2 : Fix trace To find a trace zero element α of norm d , we may write an arbitrary
element in the following form:

α = α0e0 + α1e1 + α2e2 + α3e3.

Note that since we are working in Hermite Normal Form only e0 contributes to the
trace of α so we set α0 = 0 to get Tr(α) = 0.
For the condition on the norm, consider the case p ≡ 3 mod 4 for simplicity.
However, note that this generalizes for any prime p �= 2. Then we have the rational
ternary quadratic form:

(α1e11)
2 + p(α1e12 + α2e22)

2 + p(α1e13 + α2e23 + α3e33)
2 = nrd(α) = d.

Step 3 : Find α1 mod pα1 mod pα1 mod p Since α1 controls the coefficient of i it is the only term without a
factor of p. Hence working modulo p removes terms containing α2 and α3, and we
can find α1 ≡ r mod p.

r± := ±√d

e11
mod p

Fix the least positive residue class representative r = r+, as we can execute the
remainder of the algorithm a second time on r− if necessary. Then substitute α1 =
r + kp giving a rational ternary quadratic form in k, α2 and α3.

Step 4 :Abinaryquadratic formAsdefined inStep 1,wemaymultiply by the denominator
N 2 to obtain integral coefficients. Rearranging we have:

pN 2(γ 2
1 + γ 2

2 ) = N 2(d − α2
1e

2
11)

where

γ1 = α1e12 + α2e22, γ2 = α1e13 + α2e23 + α3e33.

Let v := N 2(γ 2
1 + γ 2

2 ) and notice v ≥ 0. From the right-hand side above we see its
value depends on k.

v = N 2(d − (r + kp)2e211)

p

Clearly, v decreases as k increases. Without loss of generality, we can assume k ≥ 0,
and since v ≥ 0 we get an upper bound on k. We can iterate over this range of k
which is precisely

k = 0, ...,

⌊ √
d

pe11
− r

p

⌋

where for each iteration, we compute v using the above equation, and with k fixed
are left with the integral binary quadratic form v = N 2(γ 2

1 + γ 2
2 ).

Step 5 : Cornacchia’s Algorithm Writing the above form as β2
1 + β2

2 = v we solve for
integral pairs (β1, β2) using Cornacchia’s algorithm. For a valid solution we can
write it in the form:

β1 = Nγ1 = Nα1e12 + Nα2e22

β2 = Nγ2 = Nα1e13 + Nα2e23 + Nα3e33
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and solve for α2 and α3

α2 = β1 − Nα1e12
Ne22

, α3 = β2 − Nα1e13 − Nα2e23
Ne33

.

Finally, we must check α2, α3 ∈ Z. If this is true we have a valid solution α =
α1e1 + α2e2 + α3e3. If not we continue trying the next solution to Cornacchia’s, or
move on to the next iteration of k in Step 4. If no solutions are found it means Z[ω]
does not embed into O.

Remark 5.4 (Arbitrary trace t) Suppose the element we are searching for does not have trace
zero. We can always reduce the problem to finding an element of trace zero. Suppose t ∈ 2Z,
then sinceO is a ring we have 1 ∈ O so α− t/2 ∈ O has trace zero and norm d − t2/4 ∈ Z.
We can search for this trace zero element and then use this to find α. Similarly if t is odd, we
have a trace zero element 2α− t ∈ O of norm 4d− t2. Once this is found, we translate back,
divide by 2 and check if α ∈ O in Step 5 of the algorithm. If not, we continue searching.

Note for t odd, this is not optimal as the scaling increases d by a factor of 4, and hence the
number of iterations of k by a factor of 2, which asymptotically makes no difference, but in
practice, can double the running time. Instead we can avoid this by incorporating additional
constant terms for the non-zero trace. These details are included in Algorithm 5.1, which we
use for our implementation.

The complete algorithm for arbitrary trace is summarised in Algorithm 5.1. Additionally,
we describe a few further generalisations and improvements:

Remark 5.5 Algorithm 5.1...

• results in an embedding, but this does not necessarily define a primitiveZ[ω]-embedding.
This is discussed in Sect. 5.5.

• can be adapted to work with any prime p �= 2, not specifically p ≡ 3 mod 4. For

general, Bp,∞ =
(−q,−p

Q

)

, q appears in the equations for r , v and the maximum k, and

the binary quadratic form to solve is β2
1 + qβ2

2 = v instead of the sum of two squares.
Cornacchia’s still works since for Bp,∞, q and p are always coprime.

• can be adapted to non-maximal orders. The value N gains the index of the order within
a maximal order as a factor.

• is more efficient iterating from largest k to smallest, as this minimizes the values of v

used in Cornacchia’s.
• can be improved by using a congruence condition to rule out some cases where Cornac-

chia’s does not have any solutions, before executing Cornacchia’s. In the case p ≡ 3
mod 4, we test for solutions by noting v can be written as the sum of two squares if and
only if, in its prime factorization, every prime which is 3 mod 4 occurs an even number
of times. For arbitrary p, a similar necessary but not sufficient congruence condition can
test the splitting of v to rule out some cases.

5.2 Complexity analysis of Algorithm 5.1

In this section we give results on the asymptotic complexity of Algorithm 5.1, in particular
giving average-case results and a probabilistic worst-case result. We start by giving a worst-
case running time. Note that there are three reasons why Cornacchia’s algorithm may not be
efficient at finding all solutions to β2

1 + qβ2
2 = v:
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Algorithm 5.1: Algorithm to find embeddings of quadratic order in quaternion order,
for Bp,∞, p �= 2.
Data: Maximal orderO ⊂ Bp,∞, given in terms of basis e0, e1, e2, e3. Quadratic order in the form

Z[ω] given by ω.
Result: Returns element α ∈ O, which defines an embedding ι : Z[ω] ↪→ O by ω �→ α. Or returns ⊥

if no element α exists.
1 Compute d = nrd(ω) and t = Tr(ω) ∈ Q;
2 Compute Hermite normal form of order, giving basis e0, e1, e2, e3 in form of Equation (11). Denote
coefficient n of vector m as emn ;

3 Compute α0 := t
2e00

;

4 if d, α0 /∈ Z then
5 Return ⊥;
6 end

7 Compute r± := 1
e11

(

±
√

d − (α0e00)2 − α0e01
)

mod p;

8 Set r = r+;
9 Compute N := lcm({Denom(emn) : 0 ≤ m ≤ 3,m ≤ n ≤ 3}) where Denom(n) denotes the smallest
denominator of n ∈ Q;

10 for k =
⌊

1
pe11

(
√

d − (α0e00)2 − α0e01 − re11
)⌋

decreasing to 0 do

11 Compute v = N2(d−(α0e00)
2−(α0e01+(r+kp)e11)2)

p ;

12 Run Cornacchia’s algorithm to find all solutions β2
1 + β2

2 = v. Store solutions in array C ;
13 for (β1, β2) in C do
14 Set α2 = β1−Nα0e02−Nα1e12

Ne22
;

15 Set α3 = β2−Nα0e03−Nα1e13−Nα2e23
Ne33

;

16 if α2 ∈ Z and α3 ∈ Z then
17 Return α = α0e0 + α1e1 + α2e2 + α3e3;
18 end
19 end
20 end
21 Repeat from line 8 with r = r−;
22 Return ⊥;

(1) It requires a factorization of v. To this end, we assume we have an efficient factorization
oracle such as Shor’s algorithm. See Sect. 5.3 later on for a practical alternative to using
a factorization oracle.

(2) Cornacchia’s algorithm typically only refers to finding primitive solutions where
gcd(β1, β2) = 1. To also find imprimitive solutions we must run Cornacchia’s on
β2
1 + qβ2

2 = v/g2 for every square g2 | v and scale up the solutions (gβ1, gβ2).
The number of squares dividing v can be subexponential in v. However, we can say the

probability of this for random v is very small, in fact asymptotically there is π2

6 ∼ 61%
chance v is square-free.

(3) While just solving for primitive solutions, we must iterate over all the solutions Cor-
nacchia gives. Internally Cornacchia must iterate over all solutions x to the equation
x2 ≡ −q mod v, where the number of solutions can be exponential in v if v has a large
number of distinct prime factors. For example, experimentally with p ≡ 3 mod 4 and
d ∼ p we get some integers v ∼ p where if v has lots of distinct prime factors, there
can be as many as v0.15 ∼ p0.15 solutions which is exponential. We resolve this issue by
bounding the number of factors of v by the following probability estimate known as the
fundamental theorem of probabilistic number theory:
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Lemma 5.6 (Erdős–Kac theorem [24]) For a positive integer n, the number of distinct prime
factors of n follows the standard normal distribution with mean log log n and standard devi-
ation

√
log log n as n →∞.

This gives us the following result:

Theorem 5.7 Let 0.5 ≤ P < 1. Assuming the heuristic that v is distributed like random
integers and hence the number of distinct prime factors follows Lemma 5.6, and given an
efficient Algorithm 5.1 is within

O

⎛

⎝T

(

P + 1

2

)

· log(N 2d)F( P+1
2 )+1

⎡

⎢

⎢

⎢

N

p

√

d − t2

4

⎤

⎥

⎥

⎥

· polylog(X)

⎞

⎠

with probability P. With N = 2N (I ) = O(
√
p) (Lemma 5.3) this is

O

⎛

⎝T

(

P + 1

2

)

· log(pd)F( P+1
2 )+1

⎡

⎢

⎢

⎢

1√
p

√

d − t2

4

⎤

⎥

⎥

⎥

· polylog(X)

⎞

⎠

where X is the total size of the inputs, and T (P) is a value large enough such that the
asymptotic probability that a random number has less than T (P) perfect square divisors is
larger than P. We define F as the inverse cumulative distribution function of the standard
normal distribution where a sample is less than F(P) with probability P. For example, for
P = 0.95 we have F

( P+1
2

)

< 2 and T
( P+1

2

) ∼ 4.

Proof Steps 1–3 of the algorithm are efficient as polynomial time algorithms exist for com-
puting Hermite normal form [30] [14, Chapter VII], and fixing α0 and solving α1 modulo
p is efficient. In Step 4 a worst-case input will result in iterating k over it’s full range
of values which is O( 1

pe11

√

d − (α0e00)2), where the trace is fixed through α0 = t
2e00

so

(α0e00)2 = t2
4 . And by Proposition 5.2 we have 1

e11
≤ N . Then for each iteration over k,

Cornacchia’s algorithm is used in Step 5. To be efficient at finding primitive solutions we
have to bound the number of distinct prime factors of v, by Lemma 5.6 with probability P+1

2 ,
v is less than F( P+1

2 ) standard deviations above the mean,

Number of factors of v ≤ log log(v)+ F
(

P + 1

2

)

√

log log(v)

hence it is certainly true that

Number of factors of v ≤ (F
(

P + 1

2

)

+ log log(v).

Then it follows that the number of square roots found in Cornacchia’s algorithm is less

than O(2(F( P+1
2 )+1) log log(v)) = O(log(v)(F( P+1

2 )+1)), so we can bound the running time

of Cornacchia by O(log(v)(F( P+1
2 )+1)) · polylog(v), and clearly for each v we have

v ≤ N 2d < O(pd) and hence polylog(v) = polylog(X). The final consideration is
for finding imprimitive solutions using Cornacchia’s algorithm which requires repeating for
every square dividing v. By definition this is at most T ( P+1

2 ) repetitions with probability
P+1
2 . The probability both this condition and v having the correct number of factors is at

least P+1
2 + P+1

2 − 1 = P . ��
Now we give a result for the average-case running time:
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Theorem 5.8 Making the following assumptions, regarding iterating over k:

• Each vk is distributed like random integers and hence the expected number of distinct
prime factors is log log(vk) by Lemma 5.6, and there is a high probability it only has a
few square divisors.

• Additionally, the probability each vk is the sum of two squares is independent and at least
the probability a random integer less than (Nd)2 is the sum of two squares.

• The first solution to Cornacchia’s algorithm has β1, β2 uniformly distributed modulo
e22N and e33N respectively.

Then given an efficient factorization oracle, in the case p ≡ 3 mod 4, the average-case

running time of Algorithm 5.1 is O(min{N 3, # Np
√

d − t2
4 $}× polylog(X)) and substituting

N = O(
√
p) from Lemma 5.3 it is O(min{p√p, # 1√

p

√

d − t2
4 $} × polylog(X)) where X

is the total size of all inputs.

We use the following result of Landau [35]:

Lemma 5.9 The number of integers representable as the sum of two squares from from 0 to
n ∈ N is the limit C n√

log n
as n →∞, where C ≈ 0.764 is the Landau-Ramanujan constant.

Hence for sufficiently large n, the number of integers representable is greater than 1
2

n√
log n

.

(In fact, experimentally this appears true for all n ≥ 0).

Proof of Theorem 5.8 It’s clear the running time is the product of the number of iterations
over k, and the running time of Cornacchia’s, because all other operations are polynomial
time. In the case p ≡ 3 mod 4 we are solving the sum of two squares, hence by Lemma 5.9,
and using the first assumption, we expect (for sufficiently large d) less than 2

√

log((Nd)2)

iterations until we find a k where Cornacchia’s gives at least one solution.
Now recall that finding one solution to Cornacchia’s algorithm is not necessarily enough,

since we need to satisfy the conditions α2, α3 ∈ Z. This amounts to checking:

β1 − Nα0e02 − Nα1e12 ≡ 0 mod e22N

β2 − Nα0e03 − Nα1e13 − Nα2e23 ≡ 0 mod e33N .

Therefore, by the second assumption we expect to have an integral solution after
e22N × e33N solutions from Cornacchia’s. Noting that e22e33 ≤ N/2 from Proposition
5.2, that’s N 3/2 solutions. In total we expect O(N 3

√

log(Nd)) iterations of k. This is
bounded above by the maximum number of iterations from Theorem 5.7. Finally, Cornac-
chia’s algorithm uses the efficient factorization oracle to factorize each vk and on average vk
is expected to have log log(vk) distinct prime factors by the first assumption, hence internally
Cornacchia’s computes at most 2log log(vk ) = log(vk) square roots, which is efficient. Then
to find imprimitive solutions, we only repeat Cornacchia’s a constant number of times as the
expected number of squares dividing v is very small. Overall this takes time polylog in each
vk ≤ N 2d = O(pd), so this term can be incorporated into polylog(X). ��

From this we observe the following:

Remark 5.10 (Efficient for orders close toO0)Given an efficient factorization oracle, consider
the algorithm applied to the orderO0. Here we have N = 2, hence the algorithm is efficient;
the average-case running time is polylog(X). For orders close to O0, such as a curve l-
isogenous to the curve with j-invariant 1728, we gain a factor of l in N , hence for small l the
algorithm is still efficient. However with each step from O0, N gains a factor of the degree
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of the isogeny, so it gets exponentially harder the further you walk, until we reach the point
N ∼ √

p.

For completeness, we now consider the case of arbitrary primes p �= 2. Then the quater-

nion algebra containing order O is Bp,∞ =
(−q,−p

Q

)

where q is either 2 or a prime q ≡ 3

mod 4 with Legendre symbol
(

q
p

)

= −1.
By the same argument as Theorem 5.7, with high probability P the worst-case running

time is within

O

⎛

⎝T (
P + 1

2
) · log(N 2d)F( P+1

2 )+1
⎡

⎢

⎢

⎢

N

p

√

1

q
(d − t2

4
)

⎤

⎥

⎥

⎥

· polylog(X)

⎞

⎠

which is the same as before except the additional factor of 1√
q appears requiring more

iterations over k. Then from Lemma 5.2 part (2), for a different value of K , we get N =
2qN (I ) = O(q

√
p). Applying this along with Lemma 5.3 gives:

O

⎛

⎝T (
P + 1

2
) · log(q2 pd)F( P+1

2 )+1
⎡

⎢

⎢

⎢

√

q

p
(d − t2

4
)

⎤

⎥

⎥

⎥

· polylog(X)

⎞

⎠ .

Typically, q is treated as a constant, as for random primes, q will typically be of negligible
size, so asymptotically the complexity is the same. However, q is actually unbounded; you
can construct a prime such that the minimum value for q is larger than any given threshold.
Hence we treat q as a variable in our analysis.

We have a similar variation on the average time complexity, however, the proof is more
complex:

Theorem 5.11 Given an efficient factorization oracle, for arbitrary p �= 2, making the same
assumptions as in Theorem5.8 (replacing sumof two squareswith x2+qy2), the average-case
running time of Algorithm 5.1 is

O

⎛

⎝min

⎧

⎨

⎩

q2 p
√
p

C(−4q)
,

⎡

⎢

⎢

⎢

√

q

p
(d − t2

4
)

⎤

⎥

⎥

⎥

⎫

⎬

⎭

· polylog(X)

⎞

⎠

where C is a special function generalising the Landau-Ramanujan constant, and X is the
total size of all inputs.

Proof The proof is the same as Theorem5.8, except instead of solving the sumof two squares,
we are solving x2 + qy2 = vk using Cornacchia’s algorithm. This means in the proof we
cannot use Lemma 5.9 on the sum of two squares. However, this result generalises.

Bernays proved that the number of integers between 0 and n represented by a binary
quadratic form f (x, y) converges to C(� f )

n√
log n

as n →∞, where � f is the discriminant

of the form f andC(� f ) is a constant depending on� f [5]. In our case f (x, y) = x2+qy2,
hence � f = −4q .

Additionally the bound e22e33 ≤ N
2 from the proof of Theorem 5.8 becomes e22e33 ≤ N

2q
by Proposition 5.2. And we have N = 2qN (I ) = q · O(1)

√
p. ��

For an explicit formula for C(−4q), see the results of Moree and Osburn [43], and for a
summary of results on C(·) see the work of Brink, Moree and Osburn [8].

Next, we note how the complexity changes in other contexts:
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Remark 5.12 (Suborders) Suppose you are given a quaternion orderO ⊂ Bp,∞ which is not
necessarily maximal. As stated in Remark 5.5, Algorithm 5.1 still works. The complexity is
the same with the subtlety that N is multiplied by the index of the suborder within a maximal
order.

Remark 5.13 (p-extremal orders) Suppose O is a p-extremal order, and has suborder R +
j R ⊆ O and we are trying to find an embedding into this suborder. For ω a generator of R
and α = α0 + α1ω, α′ = α′0 + α′1ω ∈ R, the norm equation is:

nrd(α + jα′) = f (α0, α1)+ p f (α′0, α′1) = d

where f is a binary quadratic form of discriminant disc(R). The approach in the KLPT
algorithm [34, Sect. 3.2] randomly samples α′0 and α′1 until d − p f (α′0, α′1) = q is a prime
which is split in R where the ideal factors of (q) are principal, and hence its generator gives
a solution to q = f (α0, α1). Assuming sampled integers q satisfy the distribution of primes
less than d , this takes roughly 2h(R) log(d) iterations. Note that we require d to be large
enough for the set d − p f (x, y) to contain enough primes.

Our algorithm is very similar but works in reverse. Also assuming d is sufficiently large
(d > p2+ε), we sample k until q = d− f (α0,α1)

p ∈ Z has a solution to the equation q =
f (α′0, α′1). By the same argument, if we wait until q is a prime, split in R, where the ideals of
norm q are principal, we are guaranteed a solution, so we also expect 2h(R) log(d) iterations,
which is efficient assuming R has a small class number.

Finally notewe do not necessarily need a factorization oracle using the technique presented
in the next section.

5.3 Rerandomization and small discriminant

Consider the special case of small discriminant orders Z[ω] in Algorithm 5.1. Previously,
the best known efficient algorithm, as stated in [66] was simply to look for small vectors in
O. This works for | disc(Z[ω])| < 2

√
p − 1 and is stated below. Note that an alternative

approach that heuristically works for | disc(Z[ω])| < p0.8 is outlined in [4].

Proposition 5.14 [66, Proposition 6] Assume that | disc(Z[ω])| < 2
√
p− 1. Then, there is a

probabilistic polynomial time algorithm that solves Problem 2.6.

Under certain heuristics, we can rerandomize Algorithm 5.1 by considering isomorphic
orders, potentially in different representations of Bp,∞, to avoid factoring and bound the
denominator N < O(

√
p). The result of this is a corollary (Corollary 5.16) which gives

a heuristic polynomial time algorithm for solving Problem 2.6 for disc(Z[ω]) in O(p), or
deciding that no solution exists.

The first step is to bound the number of values to try Cornacchia on in Algorithm 5.1.
By Cornacchia’s algorithm, here we mean finding all solutions to x2 + qy2 = v, not just
primitive ones.

Lemma 5.15 Fix a positive integer M. As in the context of Algorithm 5.1, take d = nrd(ω),
N as the common denominator of the HNF basis, and k the variable we iterate over. Suppose
we have

d ≤ qp2(M2 − 1)2

N 2 ,
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then Algorithm 5.1 performs at most M executions of Cornacchia’s algorithm, each with
some additional polynomial time arithmetic, and all other operations are polynomial time.

Proof As stated in proof of Theorem 5.7, all computations performed in the algorithm,
excluding the iterations over k, can be achieved in polynomial time. For each iteration over
k we compute a value v using basic arithmetic operations, and naively use Cornacchia’s
algorithm only once. Iterating over k happens twice, once using r+ and once using r−.
Therefore it is enough to show for each r ∈ {r+, r−} we perform at most �M/2� iterations
over k. As in proof of Theorem 5.7, and taking into account general p, we can consider the
maximum number of iterations over k for each r . It is sufficient to show this is bounded by
M/2,

⎢

⎢

⎢

⎣

1

pe11

⎛

⎝

√

d − (α0e00)2

q
− α0e01 − re11

⎞

⎠

⎥

⎥

⎥

⎦+ 1 ≤ M

2

which since e01 ≥ 0 by Proposition 5.2, is certainly true if

1

pe11
·
√

d

q
+ 1 ≤ M

2

and noting e11 ≥ 1
N , we see this is true by its equivalence to the condition in statement of

the Lemma,

d ≤ qp2(M2 − 1)2

N 2 .

��
From this, we obtain a result about disc(Z[ω]) since we can translate generator ω to either√− disc(Z[ω])/2 or (1 + √− disc(Z[ω]))/2 hence N (ω) = d ≤ (| disc(Z[ω])| + 1)/4.

Recalling that we can bound N , the denominator of O, to O(
√
p), we see that Lemma 5.15

says that when disc(Z[ω]) is in O(p), and assuming q in O(1), the only potentially expensive
part in Algorithm 5.1 is Cornacchia on a constant number of instances.

The general idea of our rerandomized version is then the common technique of only
running Cornacchia on “good” instances. However, if the discriminant is small, then the
embedding is with large probability unique, hence we might end up discarding the correct
solution. Therefore, we need to rerandomize until all O(1) Cornacchia instances are good
before the algorithm can be sure that no embedding exists.

We define a “good” instance to be x2+qy2 = vk where vk can be factorized in polynomial
time, has O(log log(N 2d)) distinct prime factors, and O(log(N 2d)) square divisors. The set
of prime numbers satisfies these conditions, and with the heuristic that the events of each vk
being prime are independent and follow from the density of primes, we expect at most some
constant multiple of log(N 2d)C iterations until C of the Cornacchia instances are primes.
With C = O(1) instances from the small discriminant condition, this is efficient.

Now we discuss how we rerandomize the order. Let O0 ⊆ Bp,∞ be a maximal order
with negligible denominator K (e.g. the “standard” maximal order from Proposition 5.1).
As has been pointed out, any maximal order O ⊆ Bp,∞ will have denominator bounded by
K N , where N is the norm of the connecting ideal from O0 to O. Hence we can consider
any equivalent ideal J = Iγ of small norm, and instead solve the problem in the isomorphic
order OR(J ) = γ−1Oγ , before transferring the solution back to O.
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Aswe rerandomize,wemight need to trymany distinct J ∼ I of small norm.Heuristically,
for random ordersO, we can expect there to be an abundance of small, equivalent ideals (i.e.
with N (J ) in O(

√
p)). The problem is that this heuristic fails completely if there exists some

equivalent ideal I ′ with nrd(I ′)  √
p, i.e. in the case that O is too “close” to O0. We

can fix this by considering other maximal orders O′
0 with negligible denominator in other

representations of Bp,∞.
Specifically, we can generate representations Bi = (−qi ,−p | Q), where we take qi to

be the smallest primes satisfying

qi ≡ 3 (mod 4),

(−qi
p

)

= −1.

These quaternion algebras are indeed ramified at p and∞ [62, Proposition 14.2.7]. In each
of these representations, regardless of congruence conditions on p, we can take a standard
choice of maximal order O0,i with denominator 2qi as

O0,i := Z⊕ Z
1+ i

2
⊕ Z j ⊕ Z

(1+ i) j

2qi
,

[62, Exercise 15.5]. Heuristically, these choices of maximal orders of the different quaternion
algebra representations are “independent” in the sense that there is no reason that these
should be close to each other, so it is enough to try a small, fixed number of such orders, as
(heuristically), the probability that O is close to all O0,i is negligible.

Finally, the explicit isomorphisms Bi ∼= Bj are also easy to find and compute, using [25,
Lemma 10]. The whole algorithm is summarized in Algorithm 5.2.

Algorithm 5.2: Rerandomized version of Algorithm 5.1
Data: A Z[ω]-orientable maximal orderO ⊂ B, where B is a quaternion algebra ramified at p and∞.

r ∈ N, a maximum number of randomizations to try.
Result: An element α ∈ O, which defines an embedding ι : Z[ω] ↪→ O by ω �→ α.

1 Compute r representations Bi = (−qi ,−p, Q) for qi ∈ O(1) of Bp,∞;
2 for i = 1, . . . , r do
3 Set O0,i ⊆ Bi to be a maximal order with denominator dividing 2qi ;
4 Compute an isomorphism ϕi : B → Bi ;
5 Set Oi = ϕ(O);
6 Let I be a connecting (O0,i ,Oi )-ideal;
7 for J = Iγ , with N (J ) in O(

√
p) do

8 Compute β by running Algorithm 5.1 onOR(J ), only running Cornacchia on prime numbers;
9 if β �= ⊥ then

10 Set α′ = γβγ−1;
11 Return ϕ−1i (α′);
12 end
13 end
14 end

This gives the following corollary:

Corollary 5.16 For arbitrary p �= 2, given amaximal orderO ⊆ Bp,∞, and a quadratic order
O with | disc(O)| in O(p), Algorithm 5.2 computes an O-embedding of O, or decides that
none exists. Under the heuristics discussed above the algorithm terminates in probabilistic
polynomial time in log(p).
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Proof By Lemma 5.15, and the subsequent discussion, the only potentially expensive step of
running Algorithm 5.1 are the (constant number of) Cornacchia instances. By only running
the Cornacchia on prime instances (or more generally, “good” instances), we expect to have
to run Algorithm 5.1 at most O(log(p)O(1)) times by the prime number theorem, and the
fact that v is in O(p). Further, it is clear that if all O(1) values to try Cornacchia on is prime,
and a solution is still not found, a solution cannot exist, hence the algorithm can conclude
that no solution exists. ��

5.4 From embeddings to primitive embeddings

Algorithms 5.1 and 5.2 find all possible embeddings ι : Z[ω] ↪→ O. Every embedding gives
a primitive Z[ω′]-embedding where Z[ω] ⊆ Z[ω′]. We separate between these two cases,
and call those embeddings which give primitive superorder embeddings Z[ω] � Z[ω′]
imprimitive embeddings. Finding primitive embeddings solves Problem 2.6, and we consider
this question in Sect. 5.5. In this section, we focus on the imprimitive embeddings. First, we
explain how to differentiate between primitive and imprimitive embeddings.

For any element α ∈ O, write α̃ for its class in the latticeO/Z. Consider the discriminant
form

� : O/Z −→ Q

α̃ �−→ Tr(α)− 4 nrd(α),

an integral quadratic form of rank 3. It does not depend on the choice of a representative α

of the class α̃, and we also write �(α). Let d be an integer. We say that a solution α ∈ O of
�(α) = d is primitive if α̃ is a primitive element of the lattice O/Z, i.e., it is not of the form
α̃ = bβ̃ for some element β̃ ∈ O/Z and integer b > 1. We now show primitive solutions
correspond directly to primitive embeddings.

Lemma 5.17 An element α ∈ O is a primitive solution of �(α) = d if and only if Z[α] ⊆ O
is a primitive embedding.

Proof Suppose α is an imprimitive solution of �(α) = d , i.e., there are integers a and b > 1
such that (α−a)/b ∈ O. Then,Z[α] � Z[(α−a)/b] ⊆ O, henceZ[α] ⊆ O is not primitive.
Conversely, suppose Z[α] ⊆ O is not primitive, so there exists β ∈ (Q[α] ∩O)\Z[α]. There
exists integers a and b > 1 such that α = a + bβ. In particular, α̃ = bβ̃, so α is not a
primitive solution. ��

Now we know primitive embeddings come from primitive solutions, we can determine
if an embedding is primitive, and if not extend it to its superorder, very fast using a gcd
computation:

Lemma 5.18 Given a maximal order O with basis e0, e1, e2, e3 and an element α ∈ O of
trace t = Tr(ω) and norm d = nrd(ω), there is a polynomial time algorithm which:

• determineswhether embedding ιdefinedby extendingω �→ α is a primitive or imprimitive
embedding of Z[ω],

• and if it’s imprimitive outputs (a, b, α′) defining a superorder Z[ω−ab ] � Z[ω] which ι

can be extended to, through the map ω−a
b �→ α′.
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Proof First convert the upper diagonal basis e0, e1, e2, e3 of O into an lower diagonal basis
f0, f1, f2, f3,

O = 〈 f0, f1, f2, f3〉Z = 〈 f00,
f10 + f11i,

f20i + f21i + f22 j,

f30 + f31i + f32 j + f33k〉Z

(12)

and compute a function applying the change of basis transformation taking coefficients of
ei s onto coefficients of fi s. This is polynomial time as a variant of the Hermite normal form
algorithm, and can be seen as precomputation. Then given a solution α, we change the basis
to obtain:

α = γ0 f0 + γ1 f1 + γ2 f2 + γ3 f3

Since O is a ring we have 1 ∈ O, and every norm is integral so it cannot contain a rational
number less than one. Hence f0 = f00 = 1. For α to be a primitive solution there should be
no a, b ∈ Z with b > 1 such that α − a = bτ where τ ∈ O. Equivalently, for any a, when
expressing α − a in terms of fi s, the coefficients should not all be divisible by any b > 1.
Note that we have:

α − a = (γ0 − a) f0 + γ1 f1 + γ2 f2 + γ3 f3

where a = γ0 can be chosen, setting the first coefficient to zero. Then the solution is prim-
itive if and only if γ1, γ2, γ3 share no factor. This can be checked with a gcd computation.
Note that if the solution is imprimitive, so we have gcd(γ1, γ2, γ3) = b > 1, we return
(γ0, b,

γ1 f1+γ2 f2+γ3 f3
b ) defining an embedding giving a primitive Z[ω−γ1

b ]-embedding. ��
Algorithm 5.3 is a concise version of this. Hence using Algorithm 5.1 for the embedding

we find we always get a primitive Z[ω′]-embedding without affecting asymptotic time com-
plexities. Furthermore, if we iterate over the full range of k in Algorithm 5.1, we find all
embeddings and hence all primtive superorder embeddings.

Algorithm 5.3: Checking if a solution is primitive, and getting primitive superorder
embedding.
Data: Element α ∈ O in terms of a basis ei which is a solution to the discriminant form of ω.
Result: True if it is a primitive solution, otherwise False and output (a, b, α′) where α′ is a primitive

solution to the discriminant form of ω−a
b .

1 Precompute lower diagonal Hermite normal form basis fi . And store operations performed giving a
linear change of basis transformation matrix M ;

2 Apply transformation M to α, giving coefficients γi such that α = γ0 f0 + γ1 f1 + γ2 f2 + γ3 f3;
3 Let S = {γ1, γ2, γ3} \ {0};
4 if |S| = 0 then return False, (γ0,∞, 0)
5 Compute g = gcd(S) using Euclidean algorithm;
6 if g == 1 then
7 return True;
8 else
9 return False, (γ0, g,

γ1
g f1 + γ2

g f2 + γ3
g f3);

10 end
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5.5 Finding primitiveZ[!]Z[!]Z[!]-embeddings-solving problem 2.6

To solve Problem 2.6 we must find primitive Z[ω]-embeddings. We have Algorithm 5.1
for finding embeddings, and we have Algorithm 5.3 which can check if an embedding is
primitive.

To combine them, we modify Algorithm 5.1 to include the pre-computation of basis fi
and the change of basis transformation at the start, then when each solution is found, check
if it is primitive using Algorithm 5.3 and only stop searching if it is. The worst-case running
time doesn’t change, since finding a primitive embedding takes at most as long as finding
all embeddings. However, the average-case running time does increase, heuristically by the
total number of solutions divided by the number of primitive solutions. We now provide a
further heuristic argument that this ratio can be bounded from above.

Let f (γ1, γ2, γ3) = λ be the solution to the ternary quadratic norm form of the order
defined in 12 with fixed trace. We have shown the solution is primitive if and only if
gcd(γ1, γ2, γ3) = gcd(|γ1|, |γ2|, |γ3|) = 1.

Consider the rational solution x1 = x2 = x3 ∈ Q such that f (x1, x1, x1) = wx21 = λ

where w ∈ Q is the sum of coefficients in the form. Then |x1| = |√λ/w| and since the norm
form is positive definite, this means if one variable were to increase, another must decrease
in absolute value. Therefore min(|γ1|, |γ2|, |γ3|) ≤ �√λ/w�.

Now reconsider our integral solution. Suppose the solution is not primitive so gcd(|γ1|,
|γ2|, |γ3|) �= 1, then there is a prime number ≥ 2 that divides all three numbers. This prime
factor must be in the set S = {2, 3, 5, ..., �√λ/w�}∩{Primes p} as it must divide the smallest
of these three numbers.

Heuristically, we assume that γ1, γ2, γ3 are distributed like random numbers in the sense
that some q ∈ S divides one of them with uniformly random probability 1/q . And assume
independence of the probabilities of different factors q1, q2 ∈ S occurring. Then the prob-
ability 2 divides all three numbers is 1/23, the probability 3 divides them is 1/33, and the
probability any q ∈ S divides them is 1/q3. Combined, the probability a number in S divides
all three is:

P[(γ1, γ2, γ3) imprimitive] =
∑

primes q∈S

1

q3
≤

∑

all primes q∈N

1

q3
= P(3) ≤ 0.175

where P(3) is the prime zeta function at 3. Hence the probability a random solution is
primitive is over 80% so if we find 5 independent solutions we would expect at least one to
be primitive. Therefore assuming the heuristics above, if we modify algorithm 5.1 to ignore
imprimitive solutions, the average running time should only increase by at most a factor of
5.

Note that this argument makes some strong assumptions. Experimentally for some param-
eters, we see the probability the first solution found is primitive is around 80%, but on other
parameter choices, it is considerably lower. With all the parameters we tested, we found
the probability is always over 50%, which still suggests the average running time is only
worsened by a small factor, but it gives reason to doubt these assumptions. In particular,
consider independence. The existence of embeddings comes with symmetry hence we may
find two solutions where there is only a change of sign in the defining formulae. This means
the probability q divides the coefficients of one solution might have a strong dependence on
whether q divides the coefficients of the second solution. We leave a more complete analysis
of the probability of finding primitive embeddings for future research.
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Appendix A Singular points on the curve8�(X,Y) = 0

If K is a field, we denote by X̃0(	, K ) the curve 
	(X , Y ) = 0 over the field K . We also
define:

S0(	, Fp2) :=
{

j ∈ Fp2 supersingular

∣

∣

∣

∣

∃ j ′ ∈ Fp2 , 
	( j, j
′) = ∂
	

∂X
( j, j ′)

= ∂
	

∂Y
( j, j ′) = 0

}

.

Lemma A.1 Assume that 2	 < p. Then, #S0(	, Fp2) = O(	3+o(1)).

Proof Let j(E) ∈ S0(	, Fp2) and j(E ′) ∈ Fp2 such that ( j(E), j(E ′)) is a singular point of
X̃0(	, Fp2) i.e. such that


	( j(E), j(E ′)) = ∂
	

∂X
( j(E), j(E ′)) = ∂
	

∂Y
( j(E), j(E ′)) = 0.

Schoof proved in [58, Sect. 7] that there exists a lift ( j(˜E), j(˜E ′)) over C of ( j(E), j(E ′))
that is also a singular point of the curve X̃0(	, C). Schoof deduced that there exists two
	-isogenies φ,ψ : ˜E −→ ˜E ′ over C that are not equal up to pre or post composition by an
isomorphism, so that ϕ := ̂ψ ◦ φ is a cyclic endomorphism of ˜E of degree 	2. Hence, ϕ is
non-scalar and End(˜E) is isomorphic to an imaginary quadratic orderO and Z[ϕ] is mapped
to a suborder of O via this isomorphism. It follows that disc(O) | disc(Z[ϕ]). But

disc(Z[ϕ]) = Tr(ϕ)2 − 4 deg(ϕ) = Tr(ϕ)2 − 4	2.

Since O is imaginary quadratic, so is Z[ϕ] and disc(Z[ϕ]) < 0, so that | disc(O)| ≤
| disc(Z[ϕ])| ≤ 4	2.

Since 2	 < p, p does not divide the conductor of O (otherwise, p2 | disc(O) so p2 ≤
4	2). It follows by [46, Lemma 3.1] (generalizing [36, Chapter 13, Theorem 12]), that E is
(primitively)O-oriented. Besides, by [46, Proposition 3.3 and Theorem 3.4] there are at most
2# Cl(O) j-invariants of supersingularO-oriented curves. By Siegel’s theorem [59], we have
# Cl(O) = O(| disc(O)|1/2+o(1)) = O(	1+o(1)), so there are at most O(	) j-invariants ofO-
oriented supersingular elliptic curves. Taking into account all possible imaginary quadratic
ordersO of discriminant | disc(O)| ≤ 4	2, we conclude that j(E) lies in a set of cardinality
O(	3+o(1)), which completes the proof. ��
Lemma A.2 Assume that log(	)  log(p). Then, computing an 	-isogeny between two
	-isogenous supersingular j-invariants chosen uniformly at random takes on average
Õ(	2 log(p)) operations over Fp2 .

Proof As discussed in Sect. 2.5, the average number of operations over Fp2 to compute an
	-isogeny between supersingular 	-isogenous j-invariants is:

N := (1− P(( j(E), j(E ′))singular)− P( j(E) or j(E ′) = 0, 1728))Õ(	2 log(p))

+ (P(( j(E), j(E ′)) singular)+ P( j(E) or j(E ′) = 0, 1728))O(	7/2)

Since there are ∼ p/12 supersingular j-invariants by [60, Theorem V.4.1.c], we obtain by
Lemma A.1:

P(( j(E), j(E ′)) singular) ≤ P( j(E) ∈ S0(	, Fp2)) = O

(

	3+o(1)

p

)
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Besides, P( j(E) or j(E ′) = 0, 1728) = O(1/p). Since log(	)  log(p), we have
	13/2+o(1)  p so the dominant term of N is Õ(	2 log(p)) and all other terms are neg-
ligible. Hence, N = Õ(	2 log(p)) and the proof is complete. ��
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